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Reynolds numbers 
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Water-tunnel experiments on two cones of taper ratio 36: 1 and 18: 1 have 
shown that the frequency of vortex shedding is controlled by the local diameter 
and has a value which is slightly lower than that on a parallel cylinder of the 
same size. The shedding process is modulated by a low-frequency oscillation 
which has a frequency dependent only on U2/v  and is independent of any physical 
dimension of the model. A mathematical analogue of the wake, which helps to 
explain these features of the flow, has been constructed. The pattern of vortices 
in the wake of a cone suggested by this model is in reasonable agreement with 
the photographic evidence. 

1. Introduction 
The present paper gives a brief account of a water-tunnel investigation into 

the low Reynolds number flow past slender cones with axes normal to the flow. 
The classical phenomenon of vortex shedding fi-om circular cylinders has been 
studied in some detail for a considerable period, the various flow regimes have 
been classified and some explanations for the mode changes have been suggested 
(see Morkovin 1964, p. 102). However, very little attention has been paid to the 
influence of a slight three-dimensionality in the model, e.g. taper. The flows 
past conical models of taper ratio 36:  1 and 18: 1 were therefore studied. The 
Reynolds number range of the experiments was 150-600 based on root diameter, 
or 50-200 based on local diameter in the region where most of the measurements 
were made. 

Roshko (1954) carried out an extensive low Reynolds number investigation of 
vortex shedding from parallel cylinders. He found that very regular shedding 
took place over a Reynolds number range of about 47-170; above this upper limit 
the process became irregular and the frequency difficult to define. He used hot- 
wire probes in the wake to obtain shedding frequencies within the regular range 
and found that these followed the empirical law 

Ud _ -  - 0.212 - - 4.5, 
n d 2  

V V 

where n is the vortex frequency, d is the cylinder diameter, U is the free stream 
velocity, v is the kinematic viscosity. Frequencies given by (1) agree well with 
early results obtained by Kovasznay (1949). 
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By comparing the signals from two hot wires spaced across the span Roshko 
showed that above a certain critical Reynolds number vortices were not shed at  
the same instant along the whole length of the model. The variations in phase of 
these signals suggested that the vortices were inclined to the model axis. Berger 
(1964) also observed that vortices peel off cylindrical models in this way. 

Models which are almost parallel and have only slight taper might be expected 
to generate local flow structures very similar to those on a cylinder of the same 
diameter. For steady flows this is certainly a good approximation for any central 
region away from the tip or root. However, if the resulting motion is unsteady, 
as in the present example of vortex shedding, it is clear that each section of the 
flow cannot generate an identical flow pattern to that of the equivalent parallel 
model. There is always some coupling between flows a t  neighbouring stations 
and if the characteristic time scales differ, the coupling process, and subsequently 
the motion, will also be affected. At low Reynolds numbers the shed vortices are 
coherent over many cylinder diameters and the spanwise coupling is strong. 
Moreover the shedding motion expected from the quasi-cylindrical approach is 
very sharply defined by a near line spectrum with a centre frequency that varies 
continuously along the cone. Any spanwise coupling implies that the spectra 
from neighbouring stations have some common region of overlap and one can 
therefore expect broadening in the physical situation. The purpose of this experi- 
mental study was to attempt to understand this feature of the flow: how can the 
vortex pattern in the wake of a slender cone be consistent to some extent with the 
quasi-cylindrical approximation without violating Helmholtz’s theorem con- 
cerning the continuity of vortex filaments? 

2. Apparatus 
The experiments were carried out in the National Physical Laboratory 

closed-circuit water tunnel, which has a vertical working section 13 x 9 in. 
(325 x 225 mm). The flow velocity was controlled by adjusting the fan speed 
and, a t  low speeds below about 1 in./sec (25 mm/sec), by restricting the flow with 
a flap in the return circuit. Within the very low speed range of the present ex- 
periments it was necessary to keep the motor rev/min at  a minimum and difficulty 
was experienced in maintaining a constant speed in the tunnel for more than a 
few minutes a t  a time. 

Figure 1 shows the two brass cone models used in the experiments. Each model 
was fitted with a large circular disk end-plate to try and isolate the flow on the 
cone from the wall boundary layer of the water tunnel. 

Wake oscillations were detected by a hot-wire probe of 0.0005 in. (12 pm) diam. 
nickel wire soft soldered to phosphor-bronze wire prongs spaced 0.1 in. (2-5 mm) 
apart. The wire was run in the constant current mode a t  about 0.2 A. The probe 
was positioned roughly $in. (6 mm) behind the model and to one side of the centre 
line with the wire normal to the model axis. The hot-wire probe could be traversed 
so that any station along the cone could be selected from outside the tunnel. 

A parallel cylinder of & in. (2.5 mm) &am. was used in conjunction with a 
aecond hot-wire probe to monitor the tunnel velocity through Roshko’s emirical 
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law relating shedding frequency with flow velocity. After suitable amplification 
the two hot-wire signals energized the galvanometers of an ultraviolet recorder. 

L 3 t i n .  diameter 

\ 

, l i  in. diameter end plate 
\ 

(b) 

FIGURE 1. Two brass cone models. ( a )  Model 1, 36 : 1 taper. ( b )  Model 2, 18 : 1 taper. 

3. Experimental results 
3.1 Velocity determination 

The flow velocities at  the monitor station and the model position were compared 
by replacing the cone with a second parallel cylinder and measuring the shedding 
frequencies from the two hot-wire records. The difference between the two veloci- 
ties found with the aid of equation (1) was of the order of 1 % and due account 
of this was taken in reducing the cone data. A typical hot-wire trace from the 
monitor probe is reproduced in figure 2. Regular constant amplitude signals 
of this type were obtained up to Reynolds numbers of about 170, above which 
they became irregular. Tritton (1959), who also used the shedding frequencies of 
cylinders to find flow velocity, observed changes in the mode of shedding at  
Reynolds numbers between 80 and 90. As the mode changed the hot-wire 
signals became irregular and the relationship between flow velocity and shedding 
frequency also changed slightly. However, in the present experiment no such 
behaviour was observed and runs with different diameter cylinders over this 
critical Reynolds number range failed to reveal any derivation from a regular 
periodic wake. Dye filaments also failed to show the flow patterns obtained by 
Tritton. The flow visualization did, however, show that above some quite low 
Reynolds number the vortices were inclined to the model axis, peeling away 
from the centre as observed by Berger. 

3.2 Hot-wire signals from cones 

Signals from the hot-wire probe in the wake of the cone models were recorded 
on ultraviolet-sensitive paper together with those from the cylindrical model. 
A typical pair of signals is shown in figure 3. The irregular nature of the cone signal 
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contrasts strongly with the regular periodic motion generated by the cylinder. 
Clearly the modulation is not associated with fluctuations in velocity as these 
would also appear on the monitor record. A set of ultraviolet traces from model 1 
(18 : 1) at  one spanwise position for a range of flow velocities is reproduced in 
figure 4. At low Reynolds numbers, when the wake just becomes unstable, t he  
hot-wire signals are fairly regular and periodic. An increase in speed introduces 

FIGURE 2.  Hot-wire signal from the wake region of a circular cylinder in the regular 
shedding r6gime. 

( b )  

FIGURE 3. Typical hot-wire signals from the wake regions of a cylinder and a core. 
(a)  From the wake of cone 2 .  ( b )  From the parallel model used for determination of velocity. 

a low-frequency modulation of the signal, further increases causing the modula- 
tion to beome deeper until an almost regular series of wave patches is produced. 
.At local Reynolds numbers above about 170, where parallel cylinders start to 
shed in an irregular manner, the cone signal also becomes less well behaved and 
the almost periodic modulation gives way to a form which has some added 
randomness. Shedding frequencies were estimated from regions of the records 
where the oscillation amplitude was large. These were reduced to a non-dimen- 
sional form using the free-stream velocity calculated from the parallel cylinder 
signal and the local diameter of the cone. Figure 5 compares Roshko's cylin- 
der data with the present measurements from both cones for various spanwise 
positions. Although this method of obtaining the shedding frequencies is not 
very precise the results lie within sufficiently narrow limits to show quite clearly 
that the frequency a t  any station is solely a function of the local diameter and is 
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independent of the position along the model. The actual values of the cone shed- 
ding frequencies are slightly lower than those from cylinders. 

Some of the hot-wire signals were recorded on magnetic tape for subsequent 
digital processing to produce narrow-band power spectra. The frequencies of the 
power peaks of these spectra were non-dimensionalized as before and are plotted 

Reynolds number 

I I Revnolds number II 
= 125 
Scale 

12.5 cm/sec 

, I , Revnolds number 

FIGURE 4. Wake oscillations behind cone 2 (18 : 1) for various Reynolds numbers at 5 in. 
from the base. Local diameter is 0.099 in. 

on figure 5 together with data obtained by the simple technique of direct trace 
measurement. 

Since the shedding frequency is controlled by the local diameter on the cone it 
might be expected that the whole vortex formation process follows the same 
pattern of similarity. However, signals recorded at different spanwise stations 
having the same local Reynolds numbers are different in structure and it is clear 
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that this aspect of the motion, associated with the low-frequency modulation, 
is not a local phenomenon. The set of signals reproduced in figure 6 were recorded 
at a fixed flow velocity for various probe positions along the cone. It may be noted 
how the low-frequency modulation of the shedding signal is maintained a t  almost 
the same value throughout the length of the model. Recordings were made with 
the probe in a fixed position over a range of flow velocities and these are shown 
on figure 7 in a non-dimensional form based on the free-stream velocity and the 
cone length. Since nllUis proportional to Ullv, the quantity nvlU2 is a constant 
and the frequency is independent of any physical length scale of the model over 
the range of parameters investigated. 

0 40 80 120 160 200 
Reynolds number based on local diameter Ud/v  

FIGURE 5. Variation of shedding frequency with local Reynolds number. From trace 
measurement: A ,  5 ;  in. from base cone 1 ;  +, 4 in. from base cone 2 ;  0, 44 in. from 
baso cone 2 ;  0, 5 in. from base cone 2. From power spectra: 0, 6 in. from base cone 1 ;  
A, 4 in. from base cone 2. -, Roshko’s line from cylinders. Point: A ,  critical Reynolds 
number for cylinders; B, critical Reynolds number for cone 2 (36 : 1)  ; C, critical Reynolds 
number for cone 1 (18 : 1).  

The tip region of the cone always had a stable laminar wake, but some dis- 
tance towards the base where the local Reynolds number exceeded some critical 
value, weak oscillations were observed on the hot-wire signals. This critical local 
Reynolds number appeared to be higher on the conical models than on parallel 
ones. Approximate critical local Reynolds numbers are 47 for a cylinder, 53 for 
the 36 : 1 cone and 65 for the steep 18 : 1 model. 
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3.3. Plow visualization 

Flow visualization with a filament of Fluorescene dye was used to aid the inter- 
pretation of the hot-wire measurements. Figure 8 (plate I) compares the wake 
structures of a cylinder and cone 2 viewed along the model axes. The modulation 

Distance from the base 4.30 in. 
1 Reynolds number 11 8 
1 Local diameter 0.138 in. 

Distance from the base 405 in. 
Reynolds number 130 

Local diameter 0,152 in. 

Distance from the base 3.80 in. 
Reynolds number 142 

Local diameter 0.166 in. 

FIGURE 6. Hot-wire recordings taken at a fixed free-stream velocity for a range of span- 
wise positions along cone 2. 

of the regular wake structure by taper is evident, both the wake width and the 
vortex strength varying down the wake. These distortions form in the base region 
of the model and then travel downstream with the flow. The almost frozen vortex 
pattern behind the cylinder perists far downstream, but the cone wake breaks 
down into a turbulent condition quite rapidly. The dye filaments are not as sharp 
in the cone photograph as the cylinder, due to the three-dimensional nature of 
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this flow which causes the dye to spread out along the span of the model. In  fact 
to obtain this photograph it was necessary to illuminate a narrow slice of the wake 
only. Figure 9 (plate 2), which shows a side view of the flow, gives some indica- 
tion of the three-dimensional character of the wake. In the region in line with the 
dye filaments the flow is just unstable and, as there is strong cross-flow in the 
near wake at  these Reynolds numbers, the flow is made visible over quite an 
extensive portion of the model. Vortices can clearly be seen peeling off the cone 
with their axes inclined to that of the model. Downstream the pattern becomes 
confused and the motion appears to break down into turbulence. 

+ 

Reynolds number based on cone length Ullv 

FIGIJRE 7. Modulation frequency parameter against cone Reynolds number. 
+, cone 1; 0, cone 2. 

4. Theoretical model 
Although the complex wake structure of a cylinder is not amenable to a full 

mathematical treatment, an attempt will be made to discuss the shedding process 
from a siender cone with the aid of a simple idealized analogue model. In the 
Reynolds number range 47-1 70, coherent vortices are shed from parallel cylinders 
in a periodic manner-the motion is both self-excited and self-limited in ampli- 
tude. A Van de Pol oscillator (see Stoker 1950) with a weak non-linear excitation 
term has just such a behaviour and may represent the motion from a cylinder. 
The oscillations from a cone can therefore be represented by a line of such oscil- 
lators having suitable coefficients to give different oscillation frequencies along 
the line. It is convenient to neglect the fact that the 'tuned' frequency of each 
section of a cone depends on the local Reynolds number, and only to consider a 
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simple analogue which has frequency inversely proportional to a local dimension. 
Such an oscillator can be written 

where D is a local length scale, N is the characteristic frequency, and E is a 
small non-linear parameter determining the initial rate of growth of the motion 
8, which represents some velocity fluctuation near the body. To complete the 
analogue it is necessary to incorporate some coupling between the sections of 
different natural frequency and this can conveniently be done by including a 
spanwise stiffness term suitably scaled with a local dimension 

a2e a28 ae [ at2 8x21 at 
0 2  --A- +“v = ED- (02- 1);  (3) 

A is the stiffness parameter. 

we get the form 
Putting D = ax, where x is the distance from the apex and a is the apex angle, 

If we consider the problem in the semi-infinite domain (0 < x < 00) we can 

Taking 7 = at/x, we get 
reduce the above equation to an ordinary differential equation in tlx. 

where primes denote differentiation with respect to 7. 
The rough form of the solution of the above equation can be deduced suffi- 

ciently well for our purpose without the need to solve it exactly. For very slender 
models (small a) the equation approaches a simple Van der Pol form with the 
addition of a small damping term proportional to 7. When 7 is small this term is 
unimportant and the motion builds up into a limited oscillation controlled by 
the non-linear damping term on the right-hand side, the amplitude stablizing 
at  such a level that the mean value of the non-linear term is zero. For larger values 
of 7 the damping term becomes important and the motion decays. Note that the 
‘damping’ arises solely through the spanwise coupling; there are no dissipative 
mechanisms involved and the decay of energy at  one station occurs through 
transfer of energy towards the base. Figure 10 shows the form of the solution of 
equation ( 5 ) ,  the rays indicating peaks of the wave-form in the x, t plane. The 
behaviour of this analogue suggests a possible form of the vortex wake pattern 
on a semi-infinite cone. The motion shown in figure 10 represents the vorticity 
shed into the near wake region of the body. This vorticity is convected downstream 
at some velocity close to that of the free stream and the vortex lines in the physical 
plane appropriate to this solution are as shown in figure 11. 

This analogue of the physical situation can only apply in the Reynolds number 
range over which the shed vortices are coherent; that is, over some finite length 
of cone. In fact vortices have a tendency to propagate towards regions of higher 
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Y 

FIGURE 10. Form of solution of equation (8) in the s,t plane. The rays indicate maxima. 

7 

X 

FIGURE 11. Wake structure: after time 7 for the unbounded case. 
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local Reynolds number where turbulence destroys their coherence, preventing 
them from having any further inhibiting influence on the motion nearer to the 
tip. It is suggested that the formation, growth and subsequent decay of shed 
vortex strength follows the behaviour of the semi-infinite system over some finite 
region of the cone, but after the amplitude of the motion has fallen sufficiently 
the whole cycle of events is repeated. The period of this secondary oscillation is 
given by the time taken for the amplitude of the high-frequency motion to fall 

! ‘ I  

Turbulent vortices 

X 

FIGURE 12. Suggested form of wake structure on the physical model. 

below some critical level, or for the weakest vortices to be convected into a region 
of high Reynolds number and hence vortex destruction. Provided the physical 
length of the cone is sufficient, such a period is proportional to l*/U, where I* 
is the length of the cone over which the vortices are coherent and U is the free- 
stream velocity. Now, I* may be defined in terms of a constant Reynolds number 
Ul*lv, so that the repetition frequency becomes proportional to Uzlv and is in- 
dependent of the model dimensions. This result is consistent with the experimental 
observations plotted in figure 7, which also show that the modulation frequency 
is proportional to U21v. 

5.  Conclusions 
Slight taper on a model of circular cross-section has a powerful influence on 

the flow structure. Although, as might be expected, the local shedding frequency is 
determined by the local diameter, coupling between regions of different charac- 
teristic frequency introduces a certain amount of amplitude modulation to 
the motion. Modulation of the shedding process is inevitable if coherent vortices 
are shed at  different rates along the cone. The present series of experiments have 
shown that the modulation frequency is independent of the spanwise station. 
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The vortices are shed in patches with the predominant frequency in the patch 
varying continuously along the model while the repetition frequency of the 
packets remains constant. 

An attempt has been made to provide a mathematical representation of the 
flow by considering a continuous line of non-linear oscillators with different 
tuned frequencies which are coupled together. In  the unbounded case this model 
shows how spanwise coupling can introduce a damping effect on the oscillation 
at  any one station. It is postulated that the physically finite situation can be 
represented by a series of signal packets described by solutions for the semi- 
infinite case. Although no solutions of the equations have been obtained this 
approach enables a physical picture of the vortex wake pattern to be constructed. 
This picture is consistent both with the hot-wire measurements and with the flow 
visualization observations. 

A slight taper, or possibly shear in the oncoming stream, can produce an irregu- 
lar modulation of the shedding signal not unlike those shown by Tritton (1959). 
His flow visualization photographs are also fairly similar to some of those ob- 
tained on a cone and it is tentatively suggested that the observed breakdown in 
regular shedding which he observed at  Reynolds numbers of between 80 and 90 
may have been due to some non-uniformity in the flow. 

The author wishes to acknowledge the help given by Mr Maybrey in taking 
the photographs. This work was carried out as part of the general research 
programme of the National Physical Laboratory. 
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(4 (6) 
FIGURE 8. Dye visualization of the wake structures behind ( a )  a circular cylinder and 

( b )  cone 2 (18 : 1)  viewed along the model axes. 
GASTER (Fucing p.  576) 
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FIGURE 9. Side view of wake behind cone 2. 

Plate 2 

GASTER 




