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Abstract 
A linear stability analysis provides the basis for 

an analysis of the effects -of prescribed changes 
upon the global stability characteristics of a bluff 
body wake. The analysis is applied in particular 
to the problem of placing a small cylinder in the 
wake of a larger one in order to suppress the vor- 
tex street. A prediction of the alteration in the 
critical Reynolds number of the system as a func- 
tion of the location of the second cylinder rela- 
tive to the first is presented and is shown to com- 

The 
effect upon shedding frequency is also considered. 
The approach relies on the solution of an adjoint 
eigenvalue problem and an inhomogeneous adjoint 
boundary value problem. These a4ioint solutions 
are shown to be a key component in the analysis 
of a variety of wake control strategies. 

,pare favorably with experimental results'. 

Introduction 
The global dynamics of a wake, such as that behind a 

circular cylinder, can be changed dramatically with small 
changes in flow conditions. This is seen clearly in the 
striking low- Reynolds number experiments of Strykowski 
and Sreenivasan' (here onwards referred to as SS) where 
the periodic vortex shedding in the wake of a cylinder is 
suppressed by placement of a second smaller cylinder at 
appropriate locations. 

Recognizing the potential of utilizing this susceptibil- 
ity to small changes as a means of achieving flow control, 
researchers have introduced two principal strategies. The 
simplest strategy for encouraging the restabilization of a 
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flow involves the introduction of some fixed change, such 
as steady wall suction for a boundary layer flow. A sec- 
ond more sophisticated approach involves adaptive con- 
trol whereby a feedback controller measures some physi- 
cal parameter of the system, processes that information, 
and then generates an appropriate unsteady excitation in 
response. This has been used successfully by Liepmann 
et al? to suppress Tollmien-Schlichting wave packets in a 
boundary layer by active wall heating. 

The question of how receptive an instability is to con- 
trol is an additional consideration, especially in the highly 
non-parallel near wake of a cylinder or other bluff body. 
The same control strategy implemented at one location in 
the Bow may have quite a different effect at another. This 
is a major new feature which was not a serious concern 
in the study of parallel Bows. 

Steady and unsteady feedback control, and variations 
in receptivity to control, are all significant influences in 
the dynamics of the circular cylinder wake when a second 
small cylinder is immersed. As a result it is an excellent 
problem to study in order to understand the role of these 
different issues. 

We present here a general linear analysis of the effect 
upon global stability resulting from the introduction of 
steady and unsteady feedback control forces upon the 
wake of a circular cylinder. Experimental results of SS 
support strongly the contention that a global temporal- 
mode approach provides an appropriate description of 
the initial growth stage of vortex shedding. Our partic- 
ular interest, following SS, is in the restabilizing effect of 
placing a second smaller cylinder in the wake of the first, 
where in fact both steady and unsteady control forces are 
in play. 

Implicit in the current analysis is the fact that the local 
far-wake profile is 'convectively unstable' and is driven 
by the 'globally-unstable' near wake (see 'Pryantafyllou 
et al?, and Yang et al?, and Monkewitz et aL5). As a 
consequence the immediate wake of the body is where 
the unstable disturbances are most receptive to control; 
a feature which emerges naturally from the analysis and 
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is quantified. 
We consider the wake of an isolated cylinder to be our 

basic system, and treat the presence of a second small 
cylinder in the flow as a 'feedback controller', with both a 
steady and unsteady control contribution. The mean drag 
on the small cylinder is associated with a steady reaction 
force upon the fluid. Likewise, unsteady motion past the 
small cylinder induces an unsteady reaction. The current 
analysis is used to  determine the change in the global 
stability characteristics, Le., changes in the eigenvalues 
and the critical Reynolds number for the flow, once an 
appropriate model for the feedback forces due to the small 
cylinder has been defined. 

A standard linear stability calculation for viscous flow 
past a circular cylinder is the first step in the analysis. 
The essential wake dynamics is captured using a single 
mode with the computational domain chosen sufficiently 
large. In order to  calculate the changes in stability as a re- 
sult of control a pair of adjoint problems must be solved. 
In order to  handle unsteady control forces we solve an 
adjoint eigenvalue problem, whose formulation is familiar 
to researchers in bifurcation theory (see for example Iooss 
and Joseph6) though the employment within this context 
is believed to be new. In addition an inhomogeneous ad- 
joint boundary value problem is formulated, using prin- 
ciples from the calculus of variations, and whose solution 
is used to model the effect of steady control. A descrip 
tion of these problems, and how their solutions may be 
utilized, forms the main body of the analysis presented 
here. 

This approach is Attractive since there is no need to 
calculate explicitly the correction to the flow field due to 
the presence of the small cylinder at some location; with 
a direct calculation the correction to  the global stability 
can be found for the small cylinder at any location. A 
further bonus is the fact that the same adjoint solutions 
can be employed in the analysis of the effect of a variety 
of control strategies. 

Linear stability and adjoint eigensolutions 
The s t e d y  two-dimensional incompressible viscous 

flow field past a circular cylinder is taken as the basic 
flow for our problem. It is obtained by solving the full 
Navier-Stokes equations using a stream function formu- 
lation following the spectral approach of Zebib'. The 
problem is solved on an annular domain centered on the 
cylinder with soft outflow boundary conditions' applied 
at 20 cylinder radii. Here 44 Chebychev polynomials are 
used in the radial direction, and 40 Fourier components 
in the circumferential direction. The velocity field x() 
has been normalized by the uniform flow at infinity v-, 
and pressure P(d by p v z  where p is the fluid density. 
The Reynolds number R is based upon cylinder diame- 

ter, with lengths scaled on the cylinder radius d / 2  an 'cb 
time on d/2V,. The calculated separation angles and 
wake lengths agree with the results of Dennis et ale. 

If linear time-dependent velocity and pressure distur- 
bances of the form ( ~ ( r - ) , p ( ~ ) ) e i w '  (using a complex rep- 
resentation) are superimposed upon this field, then they 
satisfy the linearised Navier Stokes equations and conti- 
nuity: 

iwl! + L(K, R )  E + V p  = 0, (1) 
0.g = 0, ( 2 )  

where the ith component of the linear operator L(V; R) 

The condition of zero disturbance is applied on the cylin- 
der walls and at the outer perimeter of the computational 
domain. This defines an eigenvalue problem whose nu- 
merical solution yields a discrete set of eigensolutions. It 
is recognized that the imposition of a zero disturbance 
condition at the outer perimeter is an arbitrary choice. 
However, this constraint is not expected to affect the 
near wake dynamics greatly if the outer perimeter is suf- 
ficiently far away, especially in view of the convective t. 
haviour of the far wake. 

The stream functions for the eigensolutions (with 34 
radial Chebychev polynomials and 30 circumferential 
Fourier components) are obtained using a modification 
of the approach of Zebib. For the least stable mode 
(g(O),p(O)) with eigenfrequency W O ,  Figure 1 shows the 
plot of dimensionless growth rate -Im(2uoR) versus 
Reynolds number, with Figure 2 showing the correspond- 
ing frequency Re(woR/r) ,  both being compared to the 
results of SS. The inability of computations of various 
kinds to mirror precisely the correct Strouhal frequency 
behavior is commons, though it should be remembered 
that the current analysis is linear and may not describe 
accurately the nonlinear limit cycle (The Strouhal fre- 
quency is computed here to be 0.12). The growth rate 
correlation is very good, aside from the offset in the loca- 
tion of the critical Reynolds number. The relation 

W 

(4) 
0.1 
R Im(w0) = - - ( R -  R,) 

provides a very good representation of the growth 
rate/Reynolds number relationship. The experimental re- 
sults of SS give the critical Fteynolds number & to be 46, 
while for the current computation R, = 50. 

The key to the analysis of the effects of changes lies 
in the use of adjoint equations. The idea of the adjc 
can be traced back to Lagrange, and in recent times it h& 
found considerable use in bifurcation theory6. Ince'O prw 
vides good background reading in this area. The solution 



- to a carefully-formulated adjoint problem can represent a 
Frechet or functional derivative, which relates how small 
changes in one flow quantity are related to changes in 
some other. For the current problem we wish to study 
how the growth rate associated with the vortex shedding 
motion varie as a result of feedback control at differ- 
ent locations within the flow. The first of the adjoint 
problems needed to  address this question is the adjoint 
eigenvalue problem which we formulate here after devel- 
oping the adjoint linearised Navier-Stokes operator. (A 
second inhomogeneous adjoint boundary value problem 
is formulated later in the section on modification of flow 
stability.) 

We begin the construction of the adjoint equations by 
defining an inner product as follows. For a pair of complex 
vector fields 3, and p defined over the flow domain D ,  the 
inner product is defined after Ladyzenskaya" to be 

(5 )  

For any solenoidal fields (2,~) and (p*,p'), defined over 
the flow domain, we now construct a Lagrange identity 

( L ( L  R)x+ VP) .p* - 2. (Lc'(V; R)c* - Vp') 
= V . M ( ~ . X * ) ,  (6) 

v 
where L * ( y ;  R) is the adjoint linearised Navier-Stokes,op 
erator with components 

The vector&f((v,p*) is the bilinear concomitant with corn 
ponents 

M j  = - U , ~ V ;  + V C U ; ~ ,  (8 )  
where 

The factor uij is the deviatoric stress tensor associated 
with the linear field (2,~). The tensor uzj will be referred 
to as the adjoint stress tensor. 

Consider the eigensolutions of the homogeneous adjoint 
problem for which 

b'g* + L*(x;R)z* - Vp' = Q, (11) 
v.p* = 0 ,  (12) 

q u b j e c t  to the condition 2' = Q on the cylinder and the 
outer boundary of the flow domain. By virtue of the 
fact that our choice of boundary conditions for p and p* 

makes the normal coiaponent of the bilinear concomitant, 
- M,  zero everywhere on the flow boundary, the frequency 
spectrum resulting from the solution of the adjoint prob 
lem is identical to that of our original eigenvalue prob- 
lem. Furthermore, if w, is the nth eigenvalue, and .'") 
and 2(")' the corresponding nth eigen-velocity field and 
its adjoint, then the orthogonality condition 

[g("),p("'r] = a,,, (13) 

is satisfied. This is a useful standard result from bifurca- 
tion theory6. We will denote the adjoint eigensolution to 
the least stable mode by (p('r,p('r). 

Given that the eigensolution (p('),p(')) with eigenfre- 
quency wg characterises the unsteady and possibly un- 
stable motion of the cylinder wake, we wish to know the 
effect upon wo of the placement of a second small cylin- 
der in the wake of the first. A direct approach would in- 
volve the choice of a position and diameter for the small 
cylinder, the recomputation of the steady flow field u 5  
ing a nonlinear Navier-Stokes solver, and subsequently a 
global stability analysis. This is clearly a prohibitively- 
expensive approach for more than a few cylinder locations 
and diameters. 

The alternative which we pursue here is to treat the 
small cylinder as a feedback controller, the effect of the 
control being to modify the global stability characteris- 
tics. The change induced by the small cylinder is repre- 
sented here as a linear perturbation of the eigensolution 
(."), p(')). With a direct calculation the linear change 
in wo is determined for the small cylinder at any location 
within the flow domain. 

A model for the small cylinder 
The small cylinder is modelled here by a point source 

of momentum, with strength and direction equal and o p  
posite to the force which the small cylinder experiences. 
A model must be prescribed for this force, and we make 
an approximation based upon local instantaneous flow 
conditions. The use of instantaneous flow conditions is 
justified since the timescale of unsteadiness is based upon 
the large cylinder Strouhal frequency, with the wake of 
the small cylinder adjusting typically of the order of the 
diameter ratio 1 / q  = d/d,  faster, d, being the diameter 
of the small  cylinder. The Reynolds number for the small 
cylinder is of the order of qR, which for our calculation 
is typically in the range 0 to 10. In this range the force 
experienced by the cylinder is proportional to the veloc- 
ity. The constant of proportionality is determined here 
from a semi-empirical rule for the drag coefficient for a 
cylinder in a low-Reynolds number flow. 

is the total instantaneous velocity in the vicinity 
of a small cylinder of diameter d,, then the force upon 

If 



1) . 
v such a cylinder immersed in an infinite uniform steady 

flow of velocity c, in where the coefficient 

= ‘$0 (Iy(3)hR) E(%)/ 
(22) 

1 - - 
R ( a  +ah E,) ’  

(14) 
1 
2 
-pdsCD( @*‘)k k, 

reflects the linear dtag/velocity relationship which is a p  
propriate at the low Reynolds numbers present here. We 
can also rewrite (18) simply as 

where CD is the drag coefficient, and 

(15) 
R P  = -qR I L I  

V, 

is the instantaneous Reynolds number based upon the E(U = -€(E‘)y. (23) 
small cylinder diameter. 

Normaliked by an appropriate factor 2/(&d), the 
force exerted upon the flow by a small cylinder placed Modification of wake stability 
at location 5 is modelled as a source in the dimension- The presence of the small cylinder will lead to  a modifi- 
less momentum equations cation to both the steady and unsteady flow components. 

If we write @’), P(O)) for the steady flow past the origi- 
nal cvlinder. then the new steadv flow is written in terms = - 9 c D ( w ) k k 6 k - 5 ) ,  (16) 

- -  of an expansion around this flow. The expansion is made 
where L = L/va’ If we express 
and 

as a sum Of steady on the basis that the maximum value taken by c, which 
components? 1 and !! respectively, then we we will denote by t ,  is much less than 1 (which is true for 

the current problem), with can split likewise as 

- v = p + Zy’ + 0 ( t 2 )  , 
P = P(0) + ZP + 0 (Z2) , 

(24) 
(25’ 

E, = E ~ ( E  - a) + fa(r - a). (17) 

An expansion on the assumption that 2 is small reveals 

E =  -vc~(&)ucLEL, 
that L/ 

and 
(18) for some steady fields Z(y’, P’). At order 2 the linearisb 

tion of the steady Navier-Stokes equations gives 

+ 0 ( l v 1 2 ) ,  (19) 
where V’ = Q on the cylinder surface, and ideally should 
satisfy the soft boundary conditions at the outer flow 
boundary. Here we impose the hard conditions y’ = 0. 
This is assumed not to have a large effect since the d e  
main appears l / v  - 10 times larger for the small cylinder 

The equations of unsteady motion linearised around 
this perturbed base flow can now be written with the 
left hand side consisting of the governing equations for 
disturbances superimposed on the original flow z(’)’. On 
the right hand side are placed the terms accounting for 
the dynamic effect of the steady flow perturbation and 
the unsteady dynamic forces which will arise due to the 
small cylinder : 

where now Rs = lKhR is the local 
based on the steady velocity component. 

Reynolds number range 1 to 10 by 
The drag coefficient is approximated well in the than for the large 

1 
(20) CD(R) = R(a + b In R) ’ 

with a = 0.0798 and 6 = -0.0194. The form of this 
relation is taken from asymptotic low Reynolds number 
analysis for flow past a cylinder (see h n h e a d ’ z ) ,  with 
the constant a taking the theoretically-derived value. The 
constant 6 can also be derived theoretically, but fails to 
give satisfactory agreement with experiments at the ’rel- 
atively high’ Reynolds number of 5! The constant 6 is 
chosen to  fit the experimental and computational data where 
presented by Dennis et al8, and so relation (20) is in 
essence semi-empirical. Using (20) in (19) we find that 

iwg+ L(@’);R) g + V p =  - Q(2) + O  ( E 2 ) ,  (28) 

Qi(d = fi(d6k-5) I 



~ If Q is set to  zero, corresponding to the 1) + 0 l i t ,  
thrsolution of the eigenvalue problem yields the famil- 

lated cylinder. Expanding in powers of 2 around the mode 
iar normal modes for disturbances in the wake of an is- 

(tJo),p(0)) we write 

of (36), and then making use of the Lagrange identity ( 6 ) ,  
whereupon 

An = - i L  Zy’. { L’(@O); R)Y(O” - VI‘(’)’ dS > 

withd being a complex vector field such that [E‘,.”] = = -i {@o)).y(or} = i c ( & ) y ( ~ ) . K ( ~ ) ’ ( ~ ) .  (39) 

The first order shift in the complex natural frequency 
of the vortex shedding motion is thus expressed rather 
simply as 

0, and w‘ being a complex constant. At order Z we have - ,=, 
+ vcp’ = -iZw’E(O) 

+g(d0’), (32) 
V.&’ = 0. (33) Awn = ir(R,) {g(’).g(’)’ + l(o).y(o)’ (40) 

Following fiiedrich~’~, we apply the Fredholm alternative 
to obtain the unknown shift tu’, by projecting the equa- 
tions with the adjoint velocity field ~(‘y. Writing AUO in 
place of tu’ we now have 

Awo = -i [g (~(~) ) ,g( ’ ) ’ ]  = Aw + An, (34) 

vhere 

and after integration by parts 

While Aw may be evaluated explicitly at this stage, the 
factor AD is a volume integral involving the as-yet un- 
known steady field Zy’. 

In order to determine An we now consider the inh- 
mogeneous adjoint problem 

,tbject to the conditions J&O,’ = Q at the large cylinder 
Ldalls and at the outer computational boundary. The sig- 

nificance of the solution to this problem can be seen by 
substituting the left hand side of (37) into the integrand 

The shift in the growth rate is given by -Im(Awo) ; 
a negative sh i t  indicates that restabilization is encour- 
aged, while a positive shift indicates that instability is 
enhanced. Similarly Re ( L o )  /T indicates the shift in 
the Strouhal frequency which results from the introduc- 
tion of the small cylinder. Clearly this shows that as far 
&s global stability is concerned x(Oy weights the influence 
of the unsteady reaction - C ~ ( O )  to the oscillation E(’), 
while V(O) weights the influence of the steady reaction 
--Ey(orto the steady flow E(’). 

After calculating a growth rate -Im(Awo) at the criti- 
cal condition R, = 50 using (40), it is possible to estimate 
the shift in the critical Reynolds of the system on the ba- 
sis of (4) as 

In the upper half of Figure 3 is plotted the change in 
critical Reynolds number ARC for the flow as a function 
of the location of a small cylinder 1/10 the diameter of 
the large one within the flow, as determined by SS from 
experiment. With q = 1/10, the lower half of Figure 3 
shows the equivalent results calculated with the current 
theory, based on the solution at a Reynolds number of 
50. The forms are clearly close, both qualitatively and 
quantitatively, especially for the higher critical Reynolds 
number shift. As noted by SS the stabilizing effect is 
strongest when the small cylinder is placed just above the 
vortex sheets emanating from the large cylinder. This 
rearrangement of the vorticity in the flow has a strong 
stabilizing effect. This is not the only effect though as 
the unsteady small cylinder reaction forces, as reflected 
by the term &‘).$‘y, also play a significant role in the 
stabilization process. 

The most notable differences from experimental results 
of SS are in the regions of stabilization for Reynolds n u n  
bers of only 2 beyond the critical. Experimental results 
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show regions which extend farther from the wake centre- 
line and do not extend upstream of the cylinder as the 
calculation suggests. The reason for the failure to pre- 
dict the lateral extent is not clear, although it must be 
remembered that the approximations made include the 
assumption of linearity in the flow correction, and a s i m  
ple point model for the cylinder. The extension of the 
zone of reatabilieation well forward of the main cylinder 
may be explained in terms of vorticity distributions as 
follows. The presence of the small cylinder acts as a vor- 
ticity source V x & 5 ( ~ -  5). If the small cylinder is up 
stream of the large then the wake of this 'vortex dipole' 
disrupts the vorticity distribution around the large cyli-  
der and as a consequence alters the global stability by 
some small amount. In the experiment it is poasible that 
noise disrupts the spatial structure of the vortex dipole 
wake leaving a mixed wake with a weaker effect. The ef- 
fect is felt however in the noiseless numerical calculation. 
A small airfoil, rather than a small cylinder, is likely to 
behave more as a monopole source, and as a result we 
may speculate that it will have an effect upon stability 
when positioned upstream. The existence of the region 
lying on the wake centreline, between 1/2 and 5 / 2  diame- 
ters behind the rear stagnation point is predicted well by 
the calculation. 

Regions where placement of the small cylinder pro- 
motes the global instability were not found in the exper- 
iment. In the current calculation such regions exist very 
close to the large cylinder, in front of the separation point 
and behind the position of maximum surface vorticity. 
Here our simple model for the force on the small cylinder 
may be expected to be inaccurate due to the proximity 
of the large cylinder wall. in view of the experimental 
evidence it is hard to  conclude that a destabilizing effect 
is possible, though the calculation does suggest a weak 
effect may be induced. 

According to  the calculation the tendency of the small 
cylinder is to reduce the shedding frequency. While this is 
in qualitative agreement with experiment, the measured 
reductions at a Fkynolda number of 80 may be as large 
as 30% with the small cylinder (q  = 1/10) located 1.2 
cylinder diameters downstream and 1.0 diameter off the 
centreline. At this point the predicted frequency reduc- 
tion is only a few percent. Lack of success in capturing 
the frequency dependence to greater accuracy with the 
original stability analysis is almost certainly to blame for 
this discrepancy. 

The linear analysis as shown in Figure 3 is clearly quite 
successful in capturing the effect upon global stability of 
placing the small cylinder in the wake of the large. Fac- 
tors which have been ignored include the inertia effect 
arising from ty'.Vty' in equation (26), and the fact that 
the model does not guarantee the n d i p  condition on the 
small cylinder wall. Ideally we would wish to  specify a 

v 
momentum source distribution within the flow which ex- 
actly arrests the flow upon that surface within the flow 
where the small cylinder wall is located. The use of a 
more sophisticated model for the small cylinder may as- 
sist in improving the accuracy of the results though the 
effort involved may be considerable. 

O the r  control strategies 
The appeal of this method lies in the fact that simply 

solving a pair of adjoint problems, a homogeneous eigen- 
value problem and an inhomogeneous problem, provides a 
map of the influence which unsteady and steady feedback 
forcing have upon the global stability of the fluid system. 
Our prescription for the forces @')) and j (Z ( ' ) )  used 
in (35) and (39) was based on our desire tomodel the 
effect of the small cylinder. 

The effect of a splitter plate laid along the wake cen- 
treline can be modelled in a similar way, with the change 
in global stability simply being the integral over the plate 
surface of the drag force alignment with the field Y(') . 
The unsteady loads due to the oscillation y(') could then 
be weighted by y('Y to give a further dynamic contribu- 
tion. 

Steady suction on the cylinder surface (in the absenp- 
of a second small cylinder) with a velocity distributiG- 

can be shown to induce a change in the eigenvalue wg 

where r is the cylinder surface and E is the local out- 
wards normal. This is derived by reformulating the linear 
steady flow correction problem (26),(27) by removing the 
momentum source term, and replacing the boundary con- 
dition on the cylinder by <x' = %. When solving for AR 
in equation (39) the integral over the flow domain of the 
divergence of the bilinear concomitant gives the boundary 
integral (42) over the cylinder surface. The surface veloc- 
ity distribution is weighted simply by the adjoint nor- 
mal surface stress associated with the field (@'y, P(OY) 
which is again the solution of the inhomogeneous adjoint 
problem (37),(38), with 'no-slip' boundary conditions. 

The real part of the adjoint surface stress is a vector 
field defined over the cylinder surface. It may be regarded 
as a 'receptivity map' which shows how receptive the in- 
stability is to control by suction (or blowing) at any po- 
sition on the cylinder surface. 

Conclusions 
A linear stability and perturbation analysis has be 

performed for the low-Reynolds number flow past a circuk 
lar cylinder . The restabilizing effect of placing a second 
smaller cylinder at any location within the wake of the 



v first has been quantified by a shift in the critical Reynolds 
number of the system. The shift predicted from the cur- 
rent theory matches well with experiment'. The shedding 
frequency, when shedding resumes above the new criti- 
cal Reynolds number, is predicted to be reduced, though 
the prediction is somewhat below the experimentally- 
measured results. 

Central to the analysis is the formulation and solution 
of a pair of adjoint problems. The first is simply an ad- 
joint eigenvalue problem whose solutions characterise the 
the influence of adaptive controllers upon the global sta- 
bility of the various modes of the system. The solution 
to the inhomogeneous adjoint problem (37),(38), on the 
other band characterises the result of applying a steady 
control. 

It has been suggested how the presence of a splitter 
plate, or steady wall suction, might also be modelled using 
the current approach. 
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Figure 1. D i n s i o d e s  growth rate --Im(2woR) = 0.2(R- 
a) a a function of Rcynalds number R. Solid line gives 
fit to experimental results of SS, with R. = 46. Sym- 
bols show computed values, with the dashed line showing 
0.2(2 - &j, +t+I & = 56. 
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Figure 2. Dimensionlen frequency Re(waR/ r )  bs a hmc- 
tion of Rcynolds number R. Solid line gives a fit to the 
experimental results of SS (see a h  Williamson’). Symbols 
show computed values. 
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Figure 3. Shitt in the critical Reynolds number AR. for the onset 
of vortex shedding, as a result of placement of a small cylinder 1/10 
the diameter of the large in the wake. Upper half plane shows ex- 
perimental results of SS. Lower half plane shows computed results. 
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