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Wind-tunnel experiments on the flows created by a number of slightly tapered 
models of circular cross-section have shown the presence of spanwise cells (regions of 
constant shedding frequency) at  Reynolds numbers of the order of 100. The 
experiments have also shown a number of other interesting features of these flows : 
the cellular flow configuration is dependent on the base Reynolds number and 
independent of the tip Reynolds number, the frequency jump between adjacent cells 
is a function of flow speed, taper angle and kinematic viscosity, but is constant along 
a cone’s span, and the unsteady hot-wire anemometer signal is both amplitude and 
phase modulated. A mathematical model is proposed based on the complex 
Landau-Stuart equation with a spanwise diffusive coupling term. Numerical 
solutions of this equation have shown many of the qualitative features observed in 
the experiments. 

1. Introduction 
Although the problem of the flow past a circular cylinder has received a great deal 

of attention (see Williamson 1989 for a very good introduction to the subject), very 
little has been done to study flows over other bodies of revolution. The dependence of 
the vortex shedding frequency on Reynolds number raises interesting questions about 
how the frequency might vary along a body of slowly changing diameter (and, by 
implication, changing local Reynolds number). Gaster (1969, 197 1) addressed this 
problem. Using cones with relatively high taper angles (18 : 1 and 36 : l ) ,  Gaster (1969) 
observed local shedding frequencies lower than those for a circular cylinder of the 
same diameter. His signals were modulated by a low-frequency oscillation that was 
independent of any lengthscale, and he went on to propose a theoretical model 
involving a spanwise-coupled nonlinear oscillator. Later, experiments on the flow 
over a cone of much smaller taper angle (Gaster 1971) showed the presence of 
spanwise cells (regions of constant frequency) along the cone. The results showed how 
the spanwise coupling inherent in such a system could significantly alter the resulting 
flow pattern. 

More recently, Piccirillo (1990) has also investigated the shedding from a tapered 
body. He observed spanwise cells positioned symmetrically along the cone, and 
found that the vortex shedding geometry was largely unaffected by end conditions. 
Noack, Ohle & Eckelmann (1991) have proposed a mathematical model for the 
formation of such cells based on the van der Pol oscillator first proposed by Gaster 
(1969). They also presented experimental results for one cone. 

The research presented here was undertaken in order to extend Gaster’s early work 
on slender cones of circular section. A number of cones of varying taper angle were 
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Length 
Cone (mm) 

A 202 
B 202 
C 202 
D 202 
E 202 
F 200 

Base 
diameter 

(mm) 
2.19 
2.31 
2.57 
2.86 
3.08 
3.15 

Tip 
diameter 

(mm) 
1.85 
1.81 
1.55 
1.36 
0.98 
0 

Taper angle 
(mrad) 

0.842 
1.238 
2.525 
3.713 
5.198 
7.875 

TABLE 1. The dimensions of the cones. 
(The taper angle is defined as the semi-vertex angle of the cone.) 

used in the experiments. The experimental results are presented in $3, and in $4 a 
mathematical model for the vortex system is proposed. The model yields many of the 
qualitative features of the experimentally determined flow. 

2. Experimental details 
Table 1 shows the dimensions of the six stainless steel cones used in the 

experiments. Most experiments were conducted with cones A, C, and F, as these 
adequately covered the broad spectrum of possible flow regimes. Endplates of 15 and 
10 mm diameter were constructed for the ‘base’ (or root) and ‘tip’ of the cones, 
respectively. Measurements of velocity fluctuations were made 1&15 mm down- 
stream of the cones using a miniature hot wire of the boundary-layer type connected 
to a DISA 55D05 battery-operated constant-temperature anemometer, the output of 
which was amplified and low-pass filtered. Signals were sampled at 400 Hz by a 
Plessey SPM02 Spectrum Analyser interfaced to an Acorn Archimedes 310 computer. 
The turbulence level of the wind tunnel (12 in. x 12 in. in cross-section) was less than 
0.15 %, whilst flow uniformity was better than 0.8 %. 

Air speeds in the tunnel, of the order of 1 m/s, were determined using a calibrated 
vortex-shedding device described by Papangelou ( 1992). 

3. Experimental results 
3.1. Existence of cellular regime 

Figure 1 shows time series of the hot-wire signal for cone C obtained at various 
spanwise positions, z ,  determined as the distance from the base of the cone. A 
maximum Reynolds number, Remax, may be defined as the Reynolds number a t  the 
base of the cone, and a local Reynolds number, Reloc, may be defined for all other 
spanwise locations. Near the base end (z  = 50 mm, figure l a ) ,  the signal resembles a 
sine wave, maintaining a constant dominant frequency component with changing 
spanwise location, z,  despite small changes in Reloc. As z increases the signal 
becomes progressively more modulated ( z  = 85 mm, figure 1 b ) .  At some value of 
z (z = 100 mm, figure 1 c) ,  the modulation of the amplitude is largest and phase jumps 
are occasionally observed. Some irregularity is also apparent in the signals. For 
larger z ( z  = 105 mm, 110 mm, figure 1 ( d  and e ) )  the modulation decreases, though 
from now on it is always present, and a new (higher) frequency dominates. It is this 
variation in the dominant shedding frequency component along the cone that results 
in the cellular structure of the flow. It is important to  stress that each signal seems 
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FIGURE 1.  Hot-wire signals from cone C at different spanwise locations, z. 
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to be composed of a number of different frequency components and that the concept 
of a cell, for the time being, is based on the behaviour of the most dominant 
frequency component. The modulation frequency of the signals is observed to be of 
the same magnitude as the difference between the two dominant frequency 
components of adjacent cells. 

By locating the dominant frequency in the power spectrum a t  a number of 
spanwise locations, it was possible to characterize the different experimental flow 
regimes that exist. Figure 2 shows a number of different flow regimes obtained in this 
way. The Roshko line, defined as the shedding frequency for a circular cylinder of the 
same local diameter, is also shown. Roshko (1954) determined this line from his 
experiments as 

Ro = 0.212Re-4.5 (50 <Re < 150), 

where the Roshko number, Ro = fd2/v, is a non-dimensionalized frequency based on 
diameter, d ,  shedding frequency, f, and kinematic viscosity, v. 

At the lowest Reynolds numbers (Re < 80) no distinct cells are observed. Instead, 
there is a ‘ pre-cellular ’ regime characterized by a continuously increasing frequency 
(figure 2a) .  The hot-wire signal is strongly modulated along the whole length of the 
cone. Such a continuous variation in frequency is possible only if modulation is 
present. It is this process of modulation that allows coherent vortices to be shed at  
different rates along the cone. Caster (1969) also observed strong modulation and a 
continuously varying frequency for cones of much higher taper angles. The trend in 
the frequency variation of figure 2(a)  is similar to that of Roshko, but all 
the frequencies lie below his line. No vortex shedding was observed for points 
z > 170 mm, corresponding to Reynolds numbers less than about 50, a typical value 
for the critical Reynolds number. 

At  higher Reynolds numbers (Re x 100) a ‘cellular’ regime emerges, in which 
spanwise regions of constant dominant frequency are present. Figure 2 ( b )  shows how 
the cells begin to form a t  the base end (where Reynolds numbers are largest), creating 
a situation where both cellular and pre-cellular regimes may co-exist. Figure 2 ( c )  
shows a purely cellular regime (obtained by a further increase in Reynolds number) 
consisting of four distinct cells (of progressively smaller size) in addition to the usual 
end cells. All the points lie below Roshko’s line, and the frequency jump between 
adjacent cells is constant. 

At  still higher Reynolds numbers (Re > 150), the cellular regime begins to break 
down. Figure 2 ( d )  shows how this breakdown begins, significantly, a t  the tip, where 
the Reynolds numbers are lowest. The region closest to the base appears to be more 
resilient, despite its larger local Reynolds numbers, and is the last to break down. 
This observation, combined with the earlier observation that the cellular regime also 
emerges at  the base end, suggests that the two ends of the cone have different roles 
to play. This will be confirmed later. At still higher Reynolds numbers the signals 
become less regular, and a ‘post-cellular’ regime emerges as shown in figure 2 ( e ) .  

Except for the end cells, only one cell was present along the whole length of cone 
A (smallest taper angle), as illustrated by figure 2 (f ). Figure 2 (9)  shows a multiple- 
cell configuration for cone F (largest taper angle). After the first three or four cells, 
the cells become too indistinct for any meaningful observations to be made. Vortices 
are shed by cone F in the cellular regime at Reynolds numbers as low as 25, which 
is well below the usual critical Reynolds number for the onset of vortex shedding. 
This is due to strong spanwise coupling which induces vortices near the tip. 
Interestingly, the lowest Reynolds number at which Sreenivasan, Strykowski & 
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Olinger (1987) managed to induce shedding (by acoustic excitation) was very similar 
(‘about 25’). Finally, figure 2(h) shows the post-cellular configuration for cone F. 

3.2. Variation of flow conjiguration 
The dependence of a cell’s frequency on the model geometry was investigated using 

the single-cell case of cone A. By using movable endplates a t  both ends, the available 
spanwise length of the cone was varied whilst the shedding frequency was monitored. 
The results showed that there was no discernible change in cell frequency when the 
endplate a t  the tip end was moved. This suggested that the cell’s frequency was 
determined by the largest diameter, and this was confirmed by subsequent 
experiments involving the movement of the base endplate. This lack of influence of 
the tip endplate was also noted by Piccirillo (1990), but he failed to investigate the 
effect of a movement of the base endplate. It became clear that the tip endplate 
causes only a local disturbance to the flow, while movement of the base endplate has 
a more global influence. 

In  order to investigate the dependence of a multiple-cell flow configuration on 
geometry, the cell boundaries of cone C were identified for various combinations of 
geometry and speed. Figure 3 shows the number of cells observed as a function of 
cone length, 1, and maximum Reynolds number, Remsx. Each point corresponds to 
one experiment, and the solid lines indicate the boundaries between different cellular 
configurations. An increase in length clearly allows more cells to exist, but the most 
interesting observation is that the number of cells for a given geometrical 
arrangement has a tendency to decrease with increasing air speed, suggesting an 
increase in spanwise coupling. For small cone lengths, the low-aspect-ratio 
configuration supported only one cell and this resulted in the horizontal line which 
separates the one-cell and two-cell regimes. Similar one-cell configurations a t  low 
aspect ratios have been observed by Gerich & Eckelmann (1982), Papangelou (1992) 
and others. 

Attention was subsequently directed to the jump between a three-cell and a two- 
cell regime caused by an increase (or decrease) in flow speed. The extreme sensitivity 
of the system, combined with the practical difficulties of maintaining the system a t  
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FIGURE 4. Power spectra at pre-cellular Reynolds numbers (Re < 80). 
Cone C (a) z = 50 mm; ( b )  z = 100 mm; (c) z = 150 mrn. 

precisely constant speed for sufficiently long periods of time, made the 
characterization of this jump difficult. Hysteresis -could be neither identified nor 
ruled out with any confidence. However, it was established that the jump occurred 
with the simple disappearance (or appearance) of one of the cells rather than with the 
formation of an entirely new cellular configuration. It will be seen in 94.3 that this 
agrees well with the mathematical model, and with the results of Noack et al. (1991) 
who also concluded that ‘the birth of a cell is a local event which does not lead to 
global changes along the span ’. 

The progressively decreasing size of the cells along the span of a cone (as shown in 
figure 2c) may be explained as follows. Assume that each spanwise point has some 
‘natural ’ shedding frequency (attained in the absence of any spanwise coupling) 
associated with it, such as that given by the Roshko line. As the local diameter varies 
along the length of the cone, the coupled frequency (within a cell) departs more and 
more from the local ‘natural’ frequency, and the ‘strain’ on the system’s coupling 
increases. When the difference between the two frequencies is large enough, there is 
a jump to a higher frequency corresponding to that of the next cell. Since this jump 
was observed to be of constant magnitude along the length of the cone (this will be 
discussed in §3.4), the progressively steeper incline of the ‘natural ’ frequency curve 
(with spanwise location) results in progressively smaller cells. The concept of a 
‘strain’ leading to cells (in cylinder vortex shedding) has also been proposed by 
Konig, Eisenlohr & Eckelmann (1990)’ who associated it with the local shedding 
angles. The present observations differ from those of Piccirillo (1990) who observed 
equally sized cells. 

3.3. Power spectra 
At the lowest Reynolds numbers the power spectrum features a broad peak whose 
centre frequency varies continuously along the length of the cone. Figure 4 shows a 
series of such pre-cellular spectra for cone C. It is clear that there is no distinct single- 
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frequency component present, and the modulation referred to in $3.1 is related to 
these broad peaks. Sharp spectral peaks at 100 Hz in figure 4 ( b  and c) were due to 
mains interference and a weak signal generated by low Reynolds numbers. The 
vortex-shedding spectral peaks are much sharper in the cellular regime. At this stage 
it is again appropriate to clarify the concept of a cell. Although the power spectrum 
changes qualitatively along the span of the cone, there are extensive spanwise regions 
('cells') in which the dominant frequency component of the spectrum is constant. 
Each such component is accompanied by several sideband frequency components, the 
upper sideband always being more dominant than the corresponding lower sideband, 
except in the immediate vicinity of a cell boundary. A modulating frequency, f,, 
which is equal to the frequency difference, Af, between the dominant frequency and 
its nearest sidebands, is also present in the spectrum. Figure 5 shows a series of power 
spectra as a cell boundary is approached and passed. Within the first cell (figure 5a) 
a dominant frequency is observed along with its upper sideband. As the cell 
boundary is approached along the span, the upper sideband becomes stronger and 
stronger (figure 5 b ,  c), until there are two peaks of equal strength. At this point a cell 
boundary is defined. Then the formerly upper sideband becomes the new dominant 
frequency of the next cell, and the previous dominant frequency recedes and becomes 
the new lower sideband. This change-over is illustrated by figure 5 ( c ,  d) .  The same 
process occurs with the remaining cells, although there is a general broadening of the 
spectral peaks with increasing distance from the base. Thus the jump from one cell 
to another is associated with a continuous change in the spectrum, and does not arise 
from the disappearance of the old frequency and the sudden appearance of the new 
frequency. Consequently, it  is not yet clear whether these cells are physical entities. 
When the cellular regime breaks down at  higher Reynolds numbers, broad spectral 
peaks are observed again. 

A very similar type of behaviour at cell boundaries has also been observed by 
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FIQURE 6. Power spectra at cellular Reynolds numbers (Re % 100) Cone A (a) z = 50 mm; 
(b) z = 145 mm; (c) z = 160 mm. 

Williamson (1989), Gerich & Eckelmann (1982) and others for a circular cylinder. In  
these cases the boundary was usually between an end cell and the motion generated 
by the rest of the cylinder. The interaction at these boundaries has been attributed 
to a beating effect arising from the two separate (but close) frequencies of adjacent 
cells. However, experiments with single-cell cone A revealed more subtle behaviour. 
As with cone C above, a dominant frequency (surrounded by the usual sidebands) 
was present in the power spectrum. Figure 6 shows the variation of the power 
spectrum along the cone’s length. It is apparent that the upper sideband increases in 
relative power along the cone, but never becomes dominant. If this sideband is taken 
to correspond to the frequency of the next cell, then it is significant that this 
frequency component is present even though the next cell does not exist. It seems 
probable that the modulating effect is intrinsic to the fluid mechanics of the system, 
and that the amplitude modulation is not due to a simple beating effect. This matter 
will be investigated more fully in $3.5. 

3.4. Frequency jump between adjacent cells 
Using cones with much higher taper angles than those employed in the present 
experiments, Gaster (1969) observed that the low-frequency modulation of the 
shedding frequency remained constant along the spans of his models. By non- 
dimensionalizing the modulating frequency, f,, with the air speed, U ,  and 
kinematic viscosity, v ,  he surmised that the quantity fm v /u2  was a constant. He also 
concluded that the modulating frequency was independent of any physical 
lengthscale of the model. Such a linear dependence on u2 of the modulating 
frequency, f,, or equivalently cellular frequency jump, Af, was also observed in the 
present experiments, and the relation has been quantified. By assuming a relation of 
the form Af = k ( t P / v ) ,  values for the constant of proportionality, k (the ‘Gaster’ 
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constant), were determined for the cones. Figure 7 shows the results plotted for the 
different cones (except for the single-cell case of cone A, and the indistinct multiple- 
cell case of cone F), whilst figure 8 shows how k varies with the taper angle, a, of the 
cones. 

3.5. Complex demodulation 
The presence of multiple sidebands and related modulating frequencies in the power 
spectrum obtained from the vortex street suggested nonlinear behaviour, which 
could account for the strong interaction observed between the different frequencies 
in the system. The signals obtained were often strongly modulated in amplitude and 
it was not immediately clear whether this was due to the phenomenon of frequency 
beating (arising from the presence of two or more frequencies), or whether there was 
a genuine modulation process inherent in the system. The broadening of peaks 
observed in the power spectra may have been attributable to the simultaneous 
presence of frequency (or phase) modulation and amplitude modulation. 

Miksad et al. (1982) conducted experiments in a forced two-dimensional laminar 
wake to observe and describe the amplitude and phase modulations, and their 
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FIQURE 8. Variation of Gaster constant, k, (Af = kCm/u) with taper angle, a. 

mutual interaction, during the transition to turbulence. Similar complex demodu- 
lation techniques were used to investigate the existence and nature of any 
amplitude and phase modulation of the present experimental signals. 

Following Kim, Khadra & Powers (1980), a wave modulated in both phase and 
amplitude may be expressed as 

@ ( 2 , t )  = a(2 , t )  cos[k,~-w,t+p(x,t)], 

where a(x, t )  = a,+a,(z,t), and a,(x,t) and p(x,t) are the amplitude and phase 
modulation respectively of a carrier wave with wavenumber k, and frequency w,. If 
this is multiplied by 2 exp (iw, t ) ,  the following expression is obtained 

2@(2,t)exp (iwdt) = a(x ,  t){exp[ik,~-i(w,-~,)t+ip]+exp[ik,z+i(w,+w,)t-ip]), 

where wd is a demodulation frequency. There are two frequencies present now, 
corresponding to the sum and difference of wo and w,. If wd is allowed to equal w, and 
a low-pass filter is applied to cut off the sum frequency component, the complex 
demodulate 

c(x, t )  = a(x, t )  exp [ik, x+ ip(x, t ) ]  

is left. The amplitude of this demodulate describes the amplitude modulation of the 
carrier wave, whilst the phase part corresponds to the instantaneous phase 
modulation. The instantaneous frequency shift, 6w, is given by the time derivative 
of the phase modulation : 

6w = -app/at. 

Kim et al. (1980) went on to show that the power difference between the nth upper 
and lower sidebands is mainly determined by the amplitude and phase modulation 
indices and the phase angle between the respective modulations. 

Time series of the experimental signals were obtained, and, by identifying the 
modulation frequencies, w,, and carrier frequencies, wo, from the power spectra, the 
complex demodulate could be calculated. A cutoff frequency slightly higher than the 
modulating frequency was used. Figure 9 shows the time series of various signals 
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FIGURE 9. Time series, amplitude modulation and phase modulation for different signals. Cone C 
(a) z = 50 mm, Reloc = 104 ; ( b )  z = 100 mm, Relac = 92 ; ( c )  z = 110 mm, Reloc = 90 ; (d )  z = 125 mm, 
Reloc = 87. 

with their respective amplitude and phase modulations. The offsets of the 
modulations have not been removed, so their mean is not zero. It is clear that both 
amplitude and phase modulation of the signal were present, suggesting that the 
signal is more complex than its appearance might otherwise suggest. The presence of 
significant phase (or frequency) modulation in the vicinity of a cell boundary results 
in a continually oscillating shedding frequency. It is important to emphasize that 
there is no particular unique shedding frequency associated with each cell, since the 
instantaneous frequency is continually changing. 

The sign of the phase difference between the amplitude and phase modulation is 
related to  the relative strengths of the lower and upper sidebands. For both cases, 
z = 100 mm and z = 110 mm (figure 9 b ,  c ) ,  the amplitude modulation leads the phase 
modulation by about in radians. According to the analysis of Kim et al. (1980), 
this would be accompanied by an upper sideband that was stronger than the 
corresponding lower sideband. This was confirmed by the respective power spectra. 

The results obtained support the theory that a modulating effect (probably related 
to the spanwise coupling), rather than a beating effect (arising from the interaction 
of two different frequencies), exists within the system. 
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3.6. Shedding angle measurements 

In order to determine shedding angles, two probes spaced 15mm apart in the 
spanwise direction were used. Williamson's (1989) method of observing Lissajous 
figures on an oscilloscope was inappropriate in the present experiments because of 
the much less steady and coherent nature of the vortices, and because of the presence 
of phase modulation. 

The experimental technique involved the determination of the normalized cross- 
correlation coefficient, p,., between the two signals x and y, such that 

(formed from the cross-correlation function, R,,, and autocorrelation functions, R,, 
and R..). By moving one probe relative to the other in the streamwise direction until 
the maximum of the above expression (pXy as close as possible to 1) was achieved, the 
probes were assumed to be in phase. Simple geometrical arguments yielded the 
shedding angle. However, in order to improve accuracy, an averaging technique was 
employed. The value of p,. was determined at twenty equally-spaced streamwise 
offsets of the two probes. The determination of the phase and frequency of a sine 
wave (of amplitude one) fitted to these data points yielded respectively the shedding 
angle and wavelength of the vortex lines. The technique proved to be very successful. 

Shedding angles were obtained for cone A at three different pairs of spanwise 
locations ( x  = 40/55, 80/95 and 120/135 mm) at  each of three different speeds 
(U  = 0.74,0.91 and 1.04 m/s). Spanwise locations greater than z = 150 mm produced 
less reliable data because of the increasing lack of coherency. The same difficulty 
arose with the other cones (with their smaller cells), and so only the results of cone 
A are presented in figure 10. Williamson's (1989) experimental data for the oblique 
shedding angles of a circular cylinder are also shown for comparison. A very similar 
trend to his was observed when a change in Reynolds number was caused by a 
change in speed. However, a change in Reynolds number arising from movement 
along the span (at constant air speed) resulted in a much larger variation in shedding 
angle. This was due to the spanwise coupling present within a cell. Such coupling 
would also account for the larger angles observed. 
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FIQURE 11. Flow visualization. Flow is from left to right. (a)  Cone A, Remax % 100; 
( b )  Cone C, Remax x 140. 

Experiments with other cones showed that the shedding angle decreased across a 
cell boundary. It seems that the shedding angle is initially selected a t  the base of each 
cell and then increases rapidly (owing to  the coupling) along the length of a cell. The 
shedding angle of the next cell begins at a lower value (probably determined by the 
local Reynolds number), but again increases rapidly. These observations suggest 
that the mechanism of shedding-angle selection, on a cone a t  least, may be more 
complicated than the mechanism proposed by Williamson (1989) for a cylinder, 
which involves the matching of end conditions along the span of the cylinder. 
Williamson’s observation of only two unique shedding angles for a given Reynolds 
number (associated with a parallel mode and an oblique mode), despite variations in 
the alignment of the endplates, suggests that  the selection of a shedding angle may 
be an internal process intrinsic to the system and that the angle is not necessarily 
exclusively determined by external boundary conditions. 

According to Williamson (1989), the convection speed, U,, of the vortices may be 
assumed to be independent of the shedding angle. Consequently, the streamwise 
separation of the vortex lines (wavelength, A )  is constant in a cell, since the 
frequency, f, is constant (U,  = fh). Using knowledge of the wavelength, determined 
from the above data, convection speeds were found to be, typically, 90 % of the free- 
stream speed, in good agreement with Williamson. 

3.7. Flow visualization 
Flow visualization of the models, which was conducted using a smoke-wire technique 
and apparatus described by Eisenlohr & Eckelmann (1989a), confirmed for the first 
time that the cells, which have so far been defined only on the basis of a most 
dominant frequency component, were real physical entities. Figure 11 shows the 
main features of the flow observed, with figure 11 (a)  corresponding to (single-cell) 
cone A, and figure 11 ( b )  corresponding to (multiple-cell) cone C. The first observation 
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from the photographs is that the vortex lines are curved, with the shedding angle 
increasing towards the tip. Secondly, it is seen that the orientation and shape of the 
vortices is such that they first begin to peel from the tip and then the point of 
separation accelerates towards the base. Shedding angles were measured directly 
from the photographs taken supporting the values obtained in $3.6. When the cone 
length was shortened by moving the base endplate, the resulting new flow regime 
featured different shedding angles. A significant increase in the maximum shedding 
angle (measured at the tip of the cone) was observed when the length was shortened 
in this way. The flow regime did not, however, change with movement of the tip 
endplate. Again, the dominance of the largest local diameter was noted. The 
maximum shedding angles observed (about 30’) were of the same order as those 
offered by Noack et al. (1991) for their model. The usual vortex ‘splitting’ (as 
described by Eisenlohr & Eckelmann 19893) or vortex ‘dislocation ’ (Williamson 
1989), may be seen in the multiple-cell configuration of figure 11 ( b ) .  A decrease in 
shedding angle across a cell boundary was also observed. Periodic undulations, 
possibly related to the phase modulation, were also observed travelling along the 
span from the base to the tip. 

Gaster & Ponsford (1984) investigated the flows over tapered flat plates at  higher 
Reynolds numbers and observed a dependence of the flow features on the location of 
both the endplates. This is in contrast to the present experiments, which revealed the 
flow features to be independent of the tip endplate location. In addition, it is 
apparent from the photographs that the vortex lines begin to peel at the tip and not 
the base. This dominance of the base parameter remains unclear, but may be 
connected with the periodic undulations mentioned above. 

4. Landau-Stuart model 
4.1, Introduction 

It was Gaster (1969) who first proposed the use of a nonlinear oscillator to model 
vortex shedding. His choice of oscillator was the van der Pol oscillator: 

-+y d2Y = €(l-?y)-, dY 
dt2 dt 

where B ,  the nonlinear parameter, is small. To this he added a spanwise coupling 
term, of the form a2y/az2, to account for the taper, and appropriate scaling factors 
to account for geometrical variations along the span. 

More recently, Noack (1989) and Noack et al. (1991) investigated the behaviour of 
such a van der Pol oscillator but with a different coupling term assumed to arise from 
viscosity. The solution of this equation successfully modelled the presence of 
spanwise cells, but the coupling strength had to be greatly increased before an 
appropriate number of cells was observed. This suggests, not surprisingly, that some 
mechanism other than viscosity is responsible for the coupling. Slantwise shedding 
was also observed, along with power spectra consisting of dominant frequencies with 
sidebands. 

Landau & Lifshitz (1959) showed how the stability of a steady flow investigated 
using a non-stationary perturbation could yield a third-order approximation to the 
Navier-Stokes equation, giving, for the amplitude variation of the speed u:  

dJuJ = alul -bIul3 (a,  b constants). 
dt 
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Following Provansal, Mathis & Boyer (1987), the complex form of this equation, the 
Landau-Stuart equation, will be used. This yields information about the amplitude 
and phase, and is given by: 

du 
dt 
- = uu - ;zlu2lu, 

where u and 1 are complex constants. If we denote the real and imaginary parts of 
u and 1 by u,, 1, and cr,, 1, respectively, and write u = Ae&, then we may determine 
the two equations governing the amplitude and phase parts of the motion by 
equating the real and imaginary parts: 

Amplitude : 

Phase : 

- = ~ , A - ; z , A ~ ,  
dA 
dt 

Both Provansal et al. (1987) and Sreenivasan et al. (1987) confirmed the validity of 
these equations in describing the shedding characteristics of the flow past a cylinder 
near the critical Reynolds number, Re,, but did not specify the range of validity of 
Reynolds number. Neither group mentioned the possibility of oblique shedding 
interfering with their results. However, it is highly unlikely that oblique shedding 
was present since only transients or acoustically-excited regimes were investigated, 
which result in parallel shedding. 

Using the experimental results of Sreenivasan et al. (1987), appropriate values were 
determined for the complex coefficients u and 1, in terms of the viscosity, v, the 
diameter, d, and the Reynolds number, Re. Their experiments showed that : 

(3) 
(4) 

u, = ( v / 5 d 2 )  (Re - Re,), 

u, = (v/d2) [34.3+0.7 (Re-Re,)]. 

At equilibrium, the amplitude, A ,  no longer varies with time, 

dA 
- = 0, 
dt 

and so, from (1 ) 

Experiments have shown that A2 is proportional to (Re-Re,). If c2 is the constant 
of proportionality, then we have : 

A2 = (c,/&) = c2(Re-Re,). 

a , ~  = ; 1 , ~ 3 .  

If we determine c such that A = 1 a t  (Re-Re,) = 100, then c = 0.1. 
Substituting for u, from (3), we obtain: 

1, = 40(v/d2). ( 5 )  
At equilibrium, the frequency shift, Aw = -&A2 (see (2)), was found to vary as 
O.l(Re-Re,) x (2x) by Sreenivasan et aZ. (1987). Setting A 2  = c,/(&) from above and 
equating, we obtain lJ1, = --x. Thus, 

2, = - 126(v/d2). (6) 
The natural shedding frequency a t  equilibrium observed by Sreenivasan et al. was 

given by 

which is very similar to Roshko's line. 

Ro = 0.21Re-4.2 



Vortex shedding from slender cones 315 

. . rn m . . . . 
20 

0 10 20 30 40 50 0 10 20 30 40 50 

Node Node 
FIGURE 12. Spanwise variation of dominant shedding frequency component obtained from 
numerical simulations. d,,, = 3 mm, d,,, = I mm, U = 0.7 m/s. Remsx = 144. (a) A/(Az)’ = 250 ; 
( b )  A/(Az)’ = 500. -, ‘natural’ frequency. 

In order to model the flow past a tapered body, some sort of spanwise coupling is 
necessary. Note that the complex coefficients, determined by the local diameter, vary 
along a tapered body. It is this that provides a ‘natural’ shedding frequency a t  each 
spanwise location. The addition of a spanwise diffusive term to act as the coupling 
mechanism results in a modified, partial differential equation : 

where A is real and has the dimensions of viscosity. It is this equation that will form 
the basis of investigation as a mathematical model of the shedding of the cones. 
Following completion of the present work, it was learned that a similar model based 
on the Landau-Stuart equation has been proposed by Albarkde, Provansal & Boyer 
(1990). Their model features a complex coupling coefficient. 

Equation (7 )  may be expressed in a non-dimensional form using appropriate 
substitutions, though results are presented in dimensional form. By forming non- 
dimensional variables u’ = u /U,  z’ = 211, and t’ = Qt, where U,  1 and are 
respectively the free-stream speed, cone length, and shedding frequency at  some 
reference point (the base, for example), a non-dimensional form for the coupling 
coefficient may be deduced, namely A’ = A/(SZ12) .  

4.2. Numerical procedure 
A centred, second-order-accurate finite-difference scheme for (7)  was time-marched 
using a second-order RungeKutta method until an asymptotic state had been 
reached. The complex constants CT and 1 were determined at  each of fifty spanwise 
nodes considered so that the mesh size, Az, was 0.02. A mesh size of 0.01 was also 
investigated, but more timesteps were needed for stable convcrgence and the results 
were identical to those for a mesh size of 0.02. The kinematic viscosity, v, was set at 
v = 1.46 x and a critical Reynolds number, Re,, of 46 (as determined by 
Sreenivasan et al. 1987) was employed. The Dirichlet boundary condition was 
imposed, enforcing a zero disturbance a t  the end nodes of the body to model the 
effect of the endplates in the experiments. 

4.3. Results 

It was immediately clear that spanwise cells could be generated by (7) for sufficiently 
large values of the coupling coefficient, A. Specific values for A/(Az)2, which were of 
the order of 500, are given in the relevant figures. Figure 12 shows a converged 
solution for two different coupling coefficients, an air speed of 0.7 m/s and end 
diameters of 3 and 1 mm. The solution was assumed to have converged once the 

I 1  FLM 242 
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Cone 
FIQURE 13. Isometric view of numerical simulation. Parameters as for figure 12(b). 

frequency within each cell remained constant to at least four significant figures. A 
number of features determined from the experiments are observed. All the points are 
located below the uncoupled, ‘natural ’ frequency, which is shown for comparison, 
and the frequency jump between adjacent cells is constant along the length of the 
cone. Both of these are important experimental features of the flow not supported by 
the model of Noack et al. (1991). An increase in coupling coefficient, A ,  results in fewer 
cells. However, the trend of decreasing cell size with increasing spanwise location, 
observed in the experiments, is not observed in the simulations. 

In order to achieve convergence at a particular mesh size, the timestep size, At, was 
reduced until the final, asymptotic solution had converged and shown no change with 
further reduction in At. A typical value for At was A formal stability analysis 
of the finite-difference equation was complicated by the nonlinear term in the 
differential equation. However, a sufficiently small timestep size ensured stable 
behaviour. It is worth mentioning that convergence began at the larger diameter end 
and progressed to the smaller diameter end. Convergence was more rapid when fewer 
cells were present. 

Figure 13 shows an isometric view of the vortex structure formed by a typical 
numerical simulation. The mechanism of vortex splitting is apparent and the figure 
serves as a good illustration of how vortices interact a t  cell boundaries. This 
mechanism is very similar t o  that described by Williamson (1989) and Eisenlohr & 
Eckelmann (1989a, b )  for the vortex splitting a t  the (experimental) cell boundaries 
of cylinders. A decrease in the amplitude of the oscillation with local diameter is also 
observed. The numerical simulations yielded vortices which were curved in such a 
way that the shedding angle within a cell increased with decreasing local diameter, 
a feature which was also identified in the flow visualization (see figure 11) .  

An increase in coupling coefficient (at constant speed and unchanged geometry) 
reduces the number of cells present and increases the frequency jump, Af, between 
adjacent cells. It is interesting to note that the frequency of the first cell (nearest the 
base) remained almost constant despite changes in the coupling coefficient. This is 
reminiscent of the dominance of the base diameter observed in the experiments. 
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3 

FIGURE 14. Variation of cellular arrangement with speed. d,,, = 3 mm, d,, = 1 mm, 
A / ( A Z ) ~  = 250. (a) U = 0.7 m/s; ( b )  U = 0.8 m/s; ( e )  U = 0.9 m/s. 

The effect of an increase in air speed is shown in figure 14. Such an increase would 
lead to an increase in the reference shedding frequency, 0, and this would reduce the 
non-dimensional coupling coefficient. The result was an increase in the number of cells 
and a larger frequency jump. The frequency jump was found to be proportional to 
the air speed at low coupling coefficients. The absence of this dependence a t  stronger 
coupling was probably attributable to the fewer cells present and the greater 
influence of the end conditions. The experimental dependence on air speed of the 
frequency jump, Af, was found to be Af cc u2, and an increase in air speed tended to 
reduce the number of cells present. This may suggest that  the coupling coefficient, A,  
and the coupling mechanism are both functions of the air speed. Experimental 
measurements showed an increase in both the maximum shedding angle and the 
modulating frequency strength with air speed (in addition to an increasing cell size), 
which also suggests an increase in coupling strength with speed. The frequency of the 
first cell in the numerical simulations was also found to be proportional to speed, and 
was not directly related to the ‘natural’ shedding frequency. 

In  order to determine the effect of a different taper angle on the system, two 
simulations with the same parameters except for a different tip diameter were 
performed. Figure 15 shows the results. It was important to keep the maximum 
(base) diameter fixed since this determined the first cell’s frequency. A change in 
taper angle is equivalent to a change in 1. The non-dimensional coupling coefficient, 
A’, is inversely proportional to 12, so that an increase in taper angle (equivalent to a 
smaller I )  would result in an increased A’. In the region of local diameter 3 to 2 mm, 
the cone with the lower taper angle (figure 15b) supported more cells, but yielded a 

11-2 
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FIGURE 15. Variation of cellular arrangement with taper angle. A / A z ) ~  = 500, 11 = 0.7 m/s. 
Remax = 144. ( a )  d,,, = 3 mm, d,,, = 1 mm; (b)  d,,, = 3 mm, d,,, = 2 mm. 
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FIGURE 16. Power spectra at different spanwise nodes. h/(Az)*  = 500, U = 0.7 m/s, 
d,,, = 3 mm, d,,, = 1 mm. (a) 4th node; (b)  10th node; (c) 14th node; ( d )  19th node. 

lower frequency jump. The effect of such a change in taper angle could not be 
investigated experimentally. 

Typical power spectra are shown in figure 16. The nature of the spectra is very 
similar to those determined experimentally. A dominant frequency exists surrounded 
by equally spaced sidebands at multiples of the frequency jump between adjacent 
cells. It is interesting to note that the number of sidebands increases with node 
number, a trend which may be compared with the increasingly broader spectrum 
observed in the experiments. The absence of a modulating frequency corresponding 
to the frequency jump may also be noted. 

The number of cells present was dependent on the coupling coefficient. Figure 17 
shows the emergence of a new cell as the coupling coefficient is decreased. It is clear 
that the emergence of a new cell is a local and not a global event - at the instant of 
a cell's birth, the other cell boundaries and cell frequencies remain unaffected. It is 
only when this new cell grows that the cell boundaries gradually move and the cells 
adopt new frequencies. These observations are in agreement with those from the 
experiments (see $3.2). 

The qualitative behaviour of the model has been shown to  agree quite well with the 
experimental observations. In order for a more direct, quantitative comparison to be 
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FIGURE 18. Comparison with experimental results. d,,, = 2.57 mm, d,,, = 1.55 mm, 
U = 0.7 m/s. Remax = 123. (a )  Experimental ; ( b )  numerical (A/(Az)* = 500). 

made, a simulation was conducted with parameters from an actual experiment. The 
dimensions of cone C were combined with an air speed of 0.7 m/s, and the 
experimental results of this configuration are shown in figure 18(a). The coupling 
coefficient was varied until the same number of cells was observed. Figure 18(b) 
shows the numerical results. Comparison with the experimental results shows that 



320 A .  Papangelou 

the frequency jump is higher in the numerical simulation, while the frequencies of the 
cells are lower than those observed experimentally. The cell size does not decrease 
with increasing spanwise location as with the experiments. This may be related to the 
observation from the numerical simulations that the first cell’s frequency was 
proportional to the air speed. If the frequency is not solely determined by the 
‘natural ’ shedding frequency, then the decreasing cell size trend (discussed in $3.2) 
would not necessarily be expected. It is also clear that  end cells are not supported by 
the model. The shortcomings of the model are probably attributable to the choice of 
spanwise coupling. Barenblatt (private communication) has suggested that the 
coupling term might be improved by the addition of further terms of higher order. 

5. Conclusions 
The addition of a new parameter (the varying local diameter) to the classical 

problem of the flow past a circular cylinder has resulted in a flow which exhibits 
many new characteristics. The presence of spanwise coupling in the flow, a 
phenomenon not yet understood, leads to the formation of cells (regions of constant 
shedding frequency) a t  Reynolds numbers in the region of 100. The behaviour and 
characteristics of these cells have been investigated, and many similarities with the 
flow past a circular cylinder have been noted. 

The mutual interactions between the coupling mechanism, the shedding 
mechanism, and the amplitude and phase modulations of the vortex shedding signal 
merit further investigation. It is possible that the modulated signals and oblique 
shedding angles observed are more intrinsic to the flow than has previously been 
suggested, and that they are not simply a result of the boundary conditions. 

A mathematical model has been proposed for the system which has successfully 
modelled many, but not all, of the experimentally determined observations. It is 
possible that the diffusive term employed in the Landau-Stuart equation is not the 
most appropriate way of modelling the coupling mechanism. 

The author is particularly grateful to  Mike Gaster who inspired and supervised the 
work presented, which is a summary of Papangelou (1991). He is also indebted to 
Holger Eisenlohr for his assistance with the flow visualization of the cones, and to 
Bernd Noack for a continual and invaluable correspondence. Financial support from 
the Science and Engineering Research Council is gratefully acknowledged. 
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