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A theory for fully developed turbulent pipe and channel flows is proposed which
extends the classical analysis to include the effects of finite Reynolds number. The
proper scaling for these flows at finite Reynolds number is developed from dimensional
and physical considerations using the Reynolds-averaged Navier–Stokes equations.
In the limit of infinite Reynolds number, these reduce to the familiar law of the wall
and velocity deficit law respectively.

The fact that both scaled profiles describe the entire flow for finite values of
Reynolds number but reduce to inner and outer profiles is used to determine their
functional forms in the ‘overlap’ region which both retain in the limit. This overlap
region corresponds to the constant, Reynolds shear stress region (30 < y+ < 0.1R+

approximately, where R+ = u∗R/ν). The profiles in this overlap region are logarithmic,
but in the variable y+ a where a is an offset. Unlike the classical theory, the additive
parameters, Bi, Bo, and log coefficient, 1/κ, depend on R+. They are asymptotically
constant, however, and are linked by a constraint equation. The corresponding friction
law is also logarithmic and entirely determined by the velocity profile parameters, or
vice versa.

It is also argued that there exists a mesolayer near the bottom of the overlap
region approximately bounded by 30 < y+ < 300 where there is not the necessary
scale separation between the energy and dissipation ranges for inertially dominated
turbulence. As a consequence, the Reynolds stress and mean flow retain a Reynolds
number dependence, even though the terms explicitly containing the viscosity are
negligible in the single-point Reynolds-averaged equations. A simple turbulence model
shows that the offset parameter a accounts for the mesolayer, and because of it a
logarithmic behaviour in y applies only beyond y+ > 300, well outside where it has
commonly been sought.

The experimental data from the superpipe experiment and DNS of channel flow
are carefully examined and shown to be in excellent agreement with the new theory
over the entire range 1.8× 102 < R+ < 5.3× 105. The Reynolds number dependence
of all the parameters and the friction law can be determined from the single empirical
function, H = A/(lnR+)α for α > 0, just as for boundary layers. The Reynolds num-
ber dependence of the parameters diminishes very slowly with increasing Reynolds
number, and the asymptotic behaviour is reached only when R+ � 105.
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1. Introduction
Pipe and channel flows have recently become the subject of intense scrutiny, thanks

in part to new experimental data which has become available from the superpipe
experiment at Princeton (Zagarola 1996; Zagarola & Smits 1998a). In spite of the
facts that the scaling laws for pipe and channel flows were established more than 80
years ago (Stanton & Pannell 1914; Prandtl 1932) and that the now classical theory of
Millikan was offered in 1938 for the friction law and velocity profiles, the subject has
remained of considerable interest. Examples from the last 30 years alone include the
analyses of Tennekes (1968), Bush & Fendell (1974), Long & Chen (1981), and Panton
(1990). All of these were essentially refinements of the original Millikan theory in
which the essential functional form of the friction and velocity laws was logarithmic,
and only the infinite Reynolds number state was considered. The difficulties presented
by the experimental data have recently been extensively reviewed by Gad-el-Hak &
Bandyopadhyay (1994).

Barenblatt and coworkers (Barenblatt 1993, 1996; Barenblatt & Prostokishin 1993;
Barenblatt, Chorin & Prostokishin 1997) have suggested that the velocity profiles of
pipe, channel and boundary layer flows are power laws. By contrast, George and
coworkers (George 1988, 1990, 1995; George & Castillo 1993, 1997; George, Knecht
& Castillo 1992; George, Castillo & Knecht 1996; George, Castillo & Wosnik 1997)
have argued that the overlap velocity profiles and friction law for boundary layers
are power laws, but that the corresponding relations for pipes and channels are
logarithmic.

Specifically, for boundary layers George & Castillo (1997 hereafter referred to
as GC), used the Reynolds-averaged Navier–Stokes equations and an asymptotic
invariance principle (AIP) to deduce that the proper velocity scale for the outer part
was U∞, the free-stream velocity. In the inner region, however, the proper velocity
scale was u∗, the friction velocity, just as in the classical law of the wall. Since the
ratio u∗/U∞ varied with Reynolds number, so did the velocity profiles in the Reynolds
number dependent overlap region. These were derived using near asymptotics as

U

u∗
= Ci(y

+ + a+)γ (1.1)

and
U

U∞
= Co(y + a)γ, (1.2)

where y+ = y/η, η = ν/u∗, y = y/δ where δ is the boundary layer thickness (chosen as
δ0.99 for convenience). This overlap region was shown to correspond to the region of
constant Reynolds stress of the flow, approximately 30 < y+ < 0.1δ+. The parameter a
represents an origin shift, and was shown to be related to the existence of a mesolayer
in the region approximately given by 30 < y+ < 300 in which the dissipative scales
are not fully separated from the energy and Reynolds stress producing ones.

The parameters Ci, Co, and γ were functions of δ+, were asymptotically constant,
and satisfied the constraint equation,

ln δ+ dγ

d ln δ+
=

d lnCo/Ci
d ln δ+

(1.3)

where δ+ = u∗δ/ν. The friction law was given by

u∗
U∞

=
Co

Ci
(δ+)−γ. (1.4)
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The constraint equation was transformed by defining a single new function
h = h(ln δ+)

lnCo/Ci = (γ − γ∞) ln δ+ + h (1.5)

and

γ − γ∞ = − dh

d ln δ+
. (1.6)

The function h− h∞ was determined empirically to be given by

h(δ+)− h∞ =
A

(ln δ+)α
, (1.7)

where h∞ = ln(Co∞/Ci∞) and α > 1 is a necessary condition. (Note that this can be
shown to be the leading term in an expansion of the exact solution.)

It followed immediately that

γ − γ∞ =
αA

(ln δ+)1+α
, (1.8)

Co

Ci
=
Co∞
Ci∞

exp[(1 + α)A/(ln δ+)α] (1.9)

and
u∗
U∞

=
Co∞
Ci∞

(δ+)
−γ∞ exp[A/(ln δ+)α]. (1.10)

The values for the constants were determined from the data to be γ∞ = 0.0362,
Co∞/Ci∞ = exp(h∞) = 0.0163, Co ≈ Co∞ = 0.897 (so Ci∞ = 55), A = 2.9, and α = 0.46.
Also it was established from the available data that a+ was nearly constant and
approximately equal to −16.

The purpose of this paper is to apply the same methodology to pipe and channel
flows, and to compare the resulting theory with the new experimental data. The
important difference from previous efforts mentioned above will be seen to be that
the effects of finite Reynolds number are explicitly included and the mesolayer is
accounted for.

2. Scaling laws for turbulent pipe and channel flow
The streamwise momentum equation for a fully developed two-dimensional channel

flow at high Reynolds number reduces to

0 = −1

ρ

dP

dx
+

∂

∂y

[
〈−uv〉+ ν

∂U

∂y

]
. (2.1)

Like the boundary layer, the viscous term is negligible everywhere except very near
the wall, so that the core (or outer) flow in the limit of infinite Reynolds number is
exactly governed by

0 = −1

ρ

dP

dx
+

∂

∂y
〈−uv〉. (2.2)

In the limit of infinite Reynolds number, the inner layer is exactly governed by

0 =
∂

∂y

[
〈−uv〉+ ν

∂U

∂y

]
. (2.3)
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This can be integrated from the wall to obtain the total stress

u2
∗ = 〈−uv〉+ ν

∂U

∂y
, (2.4)

where u∗ is the friction velocity defined as u2∗ ≡ τw/ρ. As the distance from the wall
is increased, the viscous stress vanishes and 〈−uv〉 → u2∗, but only in the infinite
Reynolds number limit. At finite Reynolds numbers the pressure gradient causes the
total stress to drop linearly until it reaches zero at the centre of the channel (or pipe).
Hence the Reynolds stress never really reaches the value of u2∗, but instead reaches a
maximum value away from the wall before dropping slowly as distance from the wall
is increased.

It is obvious that the inner profiles must scale with u∗ and ν since these are the
only parameters in the inner equations and boundary conditions. Hence, there must
be a law of the wall (at least for a limited region very close to the wall). This should
not be taken to imply, however, that u2∗ is an independent parameter; it is not. It is
uniquely determined by the pressure drop imposed on the pipe, the pipe diameter
and the kinematic viscosity.

Because there is no imposed condition on the velocity, except for the no-slip
condition at the wall, an outer scaling velocity must be sought from the parameters
in the outer equation itself. Since there are only two, −(1/ρ)dP/dx, the externally
imposed pressure gradient, and R, the channel half-width, only a single velocity can
be formed, namely

Uo =

(
−R
ρ

dP

dx

)1/2

. (2.5)

Unlike the developing boundary layer, the fully developed pipe or channel flow is
homogeneous in the streamwise direction, so the straightforward similarity analysis
of GC using the x-dependence to establish the scaling parameters is not possible.
However, because of this streamwise homogeneity, there is an exact balance between
the wall shear stress acting on the walls, and the net pressure force acting across the
flow. For fully developed channel flow, this equilibrium requires that

u2
∗ = −R

ρ

dP

dx
. (2.6)

which is just the square of equation (2.5) above; thus, Uo = u∗. Therefore, the outer
scale velocity is also u∗, and the outer and inner velocity scales are the same. The
factor of 2 which appears in the corresponding pipe flow force balance can be ignored
in choosing the scale velocity, so the same argument and result apply to it as well.

Thus channel and pipe flows differ from boundary layer flows where asymptotic
Reynolds number independence and streamwise inhomogeneity demand that the inner
and outer scales for the mean velocity be different (GC). This consequence of the
streamwise homogeneity for the governing equations themselves is fundamental to
understanding the unique nature of pipe and channel flows. Homogeneity causes the
inner and outer velocity scale to be the same, and this in turn is the reason why these
flows show a logarithmic dependence for the velocity in the overlap region and for
the friction law. This can be contrasted with boundary layers, where the inner and
outer velocity scales are different because of their inhomogeneity in x, and hence are
characterized by power laws.

The analysis presented below will be based on using u∗ as the outer velocity scale;
however, it should be noted before leaving this section that there are at least two
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other possibilities which might be considered for an outer velocity scale. Both are
formed from the mass-averaged velocity defined for the pipe by

Um ≡ 1

πR2

∫ R

0

Urdr. (2.7)

The first possibility is to use Um directly, the second is to use its difference from
the centreline velocity, Uc − Um. The former has an advantage in that it is often
easier to specify the mass flow in experiments and simulations than the pressure drop
(or shear stress), but it has the disadvantage that it does not lend itself easily to
the overlap analysis described below. The latter has been utilized with great success
by Zagarola & Smits (1998b) in removing the Reynolds number dependence of the
velocity profiles in both boundary layers and pipe flows. For the purpose of this paper
it is sufficient to note that in the limit as R+ = u∗R/ν → ∞, Uc − Um → const × u∗.
Hence the fundamental limiting and overlap arguments of the succeeding sections
will be the same for both u∗ and Uc −Um; only the Reynolds number dependence of
the coefficients will differ.

3. Finite versus infinite Reynolds number
From the dimensional/physical analysis above, it follows that appropriate inner-

and outer-scaled versions of the velocity profile can be defined as two families of
curves with parameter R+, i.e.

U

u∗
= fi(y

+, R+) (3.1)

and
U −Uc

u∗
= fo(y, R

+), (3.2)

where the outer velocity has been referenced to the velocity at the centreline, Uc, to
avoid the necessity of accounting for viscous effects over the inner layer when the
limits are taken later. The outer length scale is some measure of the diameter of the
pipe (say the pipe radius) or the width of the channel (say half-width). Both of these
will be denoted as R in the remainder of the paper.

Since the length scales for inner and outer profiles are different, no single scaling
law should be able to collapse data for the entire flow. The ratio of length scales
is a Reynolds number, R+ = Ru∗/ν, therefore the region between the two similarity
regimes cannot be Reynolds number independent, except possibly in the limit of
infinite Reynolds number. Moreover, since the neglected terms in both inner and
outer equations depend on the ratio of length scales (see Tennekes & Lumley 1972),
then neither set of scaling parameters will be able to perfectly collapse the data in
either region at finite values of R+.

The actual mean velocity profile at finite Reynolds number is the average of the
instantaneous solutions to the Navier–Stokes equations and boundary conditions.
This profile, whether determined from a real flow by measurement, a direct numerical
simulation, or not at all, exists, at least in principle, and is valid everywhere regardless
of how it is scaled. Therefore it is important to note that both families of curves
described by equations (3.1) and (3.2), fi(y

+, R+) and fo(y, R
+), represent the entire

velocity profile, at least as long as the dependence on R+ is retained (as long as R+

is finite). In other words, they represent the same solutions, and have simply been
scaled differently.
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Figure 1. Velocity profiles in inner variables.
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Figure 2. Velocity profiles in outer variables.

Properly scaled profiles must, by the asymptotic invariance principle (AIP, George
1995), become asymptotically independent of R+ in the limit of infinite Reynolds
number, i.e.

lim fi(y
+, R+)→ fi∞(y+),

lim fo(y, R
+)→ fo∞(y)

as R+ → ∞. Otherwise an inner and outer scaling makes no sense. In fact, these
limiting profiles should be solutions to the inner and outer equations respectively (i.e.
equations (2.3) and (2.2)), which are themselves valid only in the infinite Reynolds
number limit.

Figures 1 and 2 show the mean velocity profile data from the Princeton super-
pipe experiment (Zagarola 1996; Zagarola & Smits 1998a) in both inner and outer
variables. Note the excellent collapse very close to the wall for y+ < 100 in inner vari-
ables, and over the core region for y > 0.3. Note also that the region of approximate
collapse in inner variables (figure 1) increases from the wall with increasing Reynolds
number, as does the inward extent of the outer variable collapse (figure 2). In fact,
the parameter R+ uniquely labels the fanning out of the inner-scaled profiles in the
outer region and the outer-scaled profiles near the wall in figures 1 and 2.



A theory for turbulent pipe and channel flows 121

Finally note that the inner scaling does not collapse the data at all where the outer
scaling collapses it best, and vice versa. Both the region of approximate collapse and
the region of no collapse are manifestations of the dependence of the scaled profiles
on R+ as argued above.

Unlike boundary layer experiments, the wall shear stress for the fully developed pipe
flow can be determined from the pressure drop in the pipe alone, entirely independent
of the velocity profile measurements. The direct determination of the shear stress
from the pressure drop without choosing it to collapse a ‘log layer’ which can only be
assumed to collapse (the so-called ‘Clauser method’) is especially important since, as
noted above, there is evidence of a lack of complete collapse of the data in figure 1
outside y+ = 100, especially for the lowest Reynolds numbers. The lack of collapse is
even more apparent for the outer scaling in figure 2 inside y ≈ 0.3 which includes all
of the overlap region discussed below.

4. The overlap layer: an application of near asymptotics
As discussed in the preceding section, fi and fo are quite unlike their limiting forms,

fi∞ and fo∞, which are only infinite Reynolds number solutions for the inner and
outer equations respectively. If fi and fo are considered instead of fi∞ and fo∞ (as is
usually done), the problem of determining whether an overlap region exists is quite
different from the usual asymptotic matching where infinite Reynolds number inner
and outer solutions are extended and matched in an overlap region if one exists. The
objective here is not to see if fi and fo overlap and match them if they do. Rather, it
is to determine whether the fact that these scaled finite Reynolds number solutions (to
the whole flow) degenerate at infinite Reynolds number in different ways can be used
to determine their functional forms in the common region they retain in the limit.
The methodology, termed near asymptotics, was first utilized by George (1995) (see
also GC), and is necessary because the traditional approach cannot account for the
possibility of the matching parameter tending to zero, as might be the case. It also
makes the results easier to compare to experiments since most are carried out far
from asymptotic conditions.

The fact that analytical forms for fi and fo are not available, and they are only
known in principle turns out not to be a significant handicap. There are several
pieces of information about the two profiles which can be utilized without further
assumptions. They are:

First, since both inner and outer forms of the velocity profile must describe the
flow everywhere as long as the ratio of length scales, R+ = R/η, is finite, it follows
from equations (3.1) and (3.2) that

1

g(R+)
+ fo(y, R

+) = fi(y
+, R+), (4.1)

where g(R+) is defined by

g(R+) ≡ u∗/Uc. (4.2)

Second, for finite values of R+, the velocity derivatives from both inner and outer
forms of the velocity must also be the same everywhere. This implies that

y
∂fo

∂y
= y+ ∂fi

∂y+
(4.3)

for all values of R+ and y.
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Third, as noted above, in the limit both fo and fi must become asymptotically
independent of R+, i.e. fo(y, R

+)→ fo∞(y) and fi(y
+, R+)→ fi∞(y+) as R+ →∞.

Now the problem is that in the limit as R+ →∞, the outer form fails to account for
the behaviour close to the wall while the inner form fails to describe the behaviour
away from it. The question is: In this limit (as well as for all finite values approaching
it) does there exist an ‘overlap’ region where equation (4.1) is still valid? (Note that
boundary layer flows are quite different from pipe and channel flows since the overlap
layer in the latter remains at fixed distance from the wall for all x because of the
streamwise homogeneity, as long as the external parameters – like geometry and
Reynolds number – are fixed, while in the former it moves away from the wall with
increasing x.)

The question of whether there is a common region of validity can be investigated
by examining how rapidly fo and fi are changing with R+, or more conveniently with
lnR+. The relative variation of fi and fo with Reynolds number can be related to
their Taylor series expansion about a fixed value of R+, i.e.

fi(y
+;R+ + ∆R+)− fi(y+;R+)

∆ lnR+fi(y+, R+)
≈ 1

fi(y+, R+)

∂fi(y
+;R+)

∂ lnR+

∣∣∣∣
y+

≡ Si(R+, y+) (4.4)

and
fo(y;R+ + ∆R+)− fo(y;R+)

∆ lnR+fo(y, R+)
≈ 1

fo(y, R+)

∂fo(y;R+)

∂ lnR+

∣∣∣∣
y

≡ So(R+, y). (4.5)

Thus Si and So are measures of the Reynolds number dependence of fi and fo,
respectively. Both vanish identically in the limit as lnR+ → ∞. If y+

max denotes a
location where outer flow effects begin to be strongly felt on the inner-scaled profile,
then for y+ < y+

max, Si should be much less than unity (or else the inner scaling is not
very useful). Similarly, if ymin measures the location where viscous effects begin to be
strongly felt (e.g. as the linear velocity region near the wall is approached), then So
should be small for y > ymin. Obviously either Si or So should increase as these limits
are approached. Outside these limits, one or the other should increase dramatically.

The quantities Si and So can, in fact, be used to provide a formal definition of an
‘overlap’ region where both scaling laws are valid. Since Si will increase drastically
for large values of y for given lnR+, and So will increase for small values of y, an
‘overlap’ region exists only if there is a region for which both Si and So remain small
simultaneously. In the following paragraphs, this condition will be used in conjunction
with equation (4.1) to derive the functional form of the velocity in the overlap region
at finite Reynolds number, hence the term ‘near asymptotics’.

Because the overlap region moves toward the wall with increasing R+, it is
convenient and necessary to introduce an intermediate variable ỹ which can be
fixed in the overlap region all the way to the limit, regardless of what is happening
in physical space (see Cole & Kevorkian 1981). A definition of ỹ which accomplishes
this is given by

ỹ = y+R+−n (4.6)

or

y+ = ỹR+n. (4.7)

Since R+ = y+/y, it follows that

y = ỹR+n−1
. (4.8)

For all values of n satisfying 0 < n < 1, ỹ can remain fixed in the limit as R+ → ∞
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while y → 0 and y+ → ∞. Substituting these into equation (4.1) yields the matching
condition on the velocity in terms of the intermediate variable:

1

g(R+)
+ fo(R

+n−1
ỹ, R+) = fi(R

+nỹ, R+). (4.9)

Now equation (4.9) can be differentiated with respect to R+ for fixed ỹ to yield
equations which explicitly include Si and So. The result after some manipulation is

y
∂fo

∂y

∣∣∣∣
R+

=
1

κ
− [Si(y+, R+)fi(y

+, R+)− So(y, R+)fo(y, R
+)
]
, (4.10)

where
1

κ(R+)
≡ −R

+

g2

dg

dR+
=

d(1/g)

d lnR+
. (4.11)

The first term on the right-hand side of equation (4.10) is at most a function of R+

alone, while the second term contains all of the residual y-dependence.
Now it is clear that if both

|So| fo � 1/κ (4.12)

and
|Si| fi � 1/κ (4.13)

then the first term on the right-hand side of equation (4.10) dominates. If 1/κ → 0,
the inequalities are still satisfied as long as the left-hand side of equations (4.12)
and (4.13) does so more rapidly than 1/κ. Note that a much weaker condition can be
applied which yields the same result, namely that both inner and outer scaled profiles
have the same dependence on R+, i.e. Sifi = Sofo in the overlap range so only 1/κ
remains. If these inequalities are satisfied over some range in y, then to leading order,
equation (4.10) can be written as

y
∂fo

∂y

∣∣∣∣
R+

=
1

κ
. (4.14)

The solution to equation (4.14) could be denoted as f(1)
o since it represents a first-

order approximation to fo. Because 1/κ depends on R+ it is not simply the same
as fo∞, but reduces to it in the limit. Thus, by regrouping all of the y-independent
contributions into the leading term, the method applied here has yielded a more
general result than the customary expansion about infinite Reynolds number. (It is
also easy to see why the usual matching of infinite Reynolds number inner and outer
solutions will not work if the limiting value of 1/κ is zero, which cannot yet be ruled
out.)

From equations (4.3) and (4.14), it follows that

y+ ∂fi

∂y+

∣∣∣∣
R+

=
1

κ
. (4.15)

Equations (4.14) and (4.15) must be independent of the origin for y; hence they
must be invariant to transformations of the forms y → y + a and y+ → y+ + a+,
respectively, where a is at most a function of the Reynolds number. Therefore the
most general forms of equations (4.14) and (4.17) are

(y + a)
∂fo

∂(y + a)

∣∣∣∣
R+

=
1

κ
(4.16)
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and

(y+ + a+)
∂fi

∂(y+ + a+)

∣∣∣∣
R+

=
1

κ
. (4.17)

The solutions to these overlap equations are given by

U −Uc

u∗
= fo(y, R

+) =
1

κ(R+)
ln [y + a(R+)] + Bo(R

+) (4.18)

and
U

u∗
= fi(y

+, R+) =
1

κ(R+)
ln [y+ + a+(R+)] + Bi(R

+). (4.19)

The superscript (1) has been dropped; however it is these first-order solutions that
are being referred to unless otherwise stated. Thus the velocity profiles in the overlap
region are logarithmic, but with parameters which are in general Reynolds number
dependent.

Note that the particular form of the solution ln(y + a) has also been identified by
Oberlack (1997) from a Lie group analysis of the equations governing homogeneous
shear flows. It will be argued in § 8 that a+ is closely related to the mesolayer, just
as it is for the boundary layer (GC). The data will be found to be consistent with
a+ ≈ −8. Interestingly, the need for the offset parameter a appears to have first been
noticed by Squire (1948) (see also Duncan, Thom & Young 1970) using a simple
eddy viscosity model. (Even his value of a+ = 5.9 does not differ much from the one
used here.) George et al. (1996) arrived at a similar form from a simple one-equation
turbulence model for the mesolayer, as discussed in § 8 below.

A particularly interesting feature of these first-order solutions is that the inequal-
ities given by equations (4.12) and (4.13) determine the limits of validity of both
equations (4.16) and (4.17) since either So or Si will be large outside the overlap
region. Clearly, the extent of this region will increase as the Reynolds number (or
R+) increases.

The parameters 1/κ, Bi and Bo must be asymptotically constant since they occur
in solutions to equations which are themselves Reynolds number independent in the
limit (AIP). Moreover, the limiting values, κ∞, Bi∞, and Bo∞ cannot all be zero, or
else the solutions themselves are trivial. In the limit of infinite Reynolds number the
energy balance in the overlap region reduces to production equals dissipation, i.e.
ε+ = P+. In § 8 this will be shown to imply that

ε+ → du+

dy+
=

1

κ(y+ + a+)
. (4.20)

Since the local energy dissipation rate must be finite and non-zero (Frisch 1995),
it follows that 1/κ∞ must be finite and non-zero. It will be shown below that
these conditions severely restrict the possible Reynolds number dependences for the
parameters κ, Bi and Bo. (Note that the same physical constraint on the boundary
layer results requires the power exponent, γ, to be asymptotically finite and non-zero.)

The relation between u∗ and Uc follows immediately from equation (4.1), i.e.

Uc

u∗
=

1

g(R+)
=

1

κ(R+)
lnR+ + [Bi(R

+)− Bo(R+)]. (4.21)

Thus the friction law is entirely determined by the velocity parameters for
the overlap region. However, equation (4.11) must also be satisfied. Substituting
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equation (4.21) into equation (4.11) implies that κ, Bi, and Bo are constrained by

lnR+ d(1/κ)

d lnR+
= −d(Bi − Bo)

d lnR+
. (4.22)

This is exactly the criterion for the neglected terms in equation (4.10) to vanish
identically (i.e. Sifi−Sofo ≡ 0). Therefore the solution represented by equations (4.18)
to (4.22) is, indeed, the first-order solution for the velocity profile in the overlap layer
at finite, but large, Reynolds number. Clearly when y+ is too big or y is too small for
a given value of R+, the inequalities of equations (4.12) and (4.13) cannot be satisfied.
Since all the derivatives with respect to R+ must vanish as R+ → ∞ (AIP), the outer
range of the inner overlap solution is unbounded in the limit, while the inner range
of the outer one is bounded only by y = −a.

Equation (4.22) is invariant to transformations of the form R+ → DsR
+ where Ds

is a scale factor which ensures that the functional dependence is independent of the
particular choice of the outer length scale (e.g. diameter versus radius). Thus the ve-
locity profile in the overlap layer is logarithmic, but with parameters which depend on
the Reynolds number, DsR

+. The functions κ(DsR
+), Bi(DsR

+) and Bo(DsR
+) must be

determined either empirically or from a closure model for the turbulence. Regardless
of how they are determined, the results must be consistent with equation (4.22).

5. A solution for the Reynolds number dependence
From equation (4.22) it is clear that if either Bi − Bo or 1/κ are given, then the

other is determined (to within an additive constant). Since there is only one unknown
function, it is convenient to transform equation (4.22) using the function

H(DsR
+) ≡

(
1

κ
− 1

κ∞

)
lnDsR

+ + (Bi − Bo), (5.1)

where H = H(DsR
+) remains to be determined. If H(DsR

+) satisfies

1

κ
− 1

κ∞
=

dH

d lnDsR+
(5.2)

then equation (4.22) is satisfied. It follows immediately that

1

g
=
Uc

u∗
=

1

κ∞
lnDsR

+ +H(DsR
+). (5.3)

Thus the Reynolds number dependence of the single function H(DsR
+) determines

that of κ, Bi − Bo and g.
The conditions that both Bi∞ and Bo∞ be finite and non-zero require that:

either
Bi, Bo and κ remain constant always;

or
(i) 1/κ→ 1/κ∞ faster than 1/ lnDsR

+ → 0, and
(ii) H(DsR

+)→ H∞ = constant.
Obviously from equation (5.1),

H∞ = Bi∞ − Bo∞. (5.4)

It is also clear from the constraint equation that the natural variable is lnDsR
+.

Since this blows up in the limit as R+ →∞, H can at most depend on inverse powers
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of lnDsR
+. Thus the expansion of H for large values of lnDsR

+ must be of the form

H(DsR
+)−H∞ =

A

[lnDsR+]α

[
1 +

A1

lnDsR+
+

A2

(lnDsR+)2
+ · · ·

]
. (5.5)

Note that conditions (i) and (ii) above imply that α > 0. Although only the leading
term will be found to be necessary to describe the data, the rest will be carried in
developing the theoretical relations below.

Substituting equation (5.5) in equation (5.3) yields

Uc

u∗
=

1

κ∞
lnDsR

+ +[Bi∞−Bo∞]+
A

[lnDsR+]α

[
1 +

A1

lnDsR+
+

A2

(lnDsR+)2
+ · · ·

]
. (5.6)

As R+ →∞ this reduces to the classical solution of Millikan (1938). This is reassuring
since Millikan’s analysis is an infinite Reynolds number analysis of inner and outer
profiles scaled in the same way. (Note that this was not true for the boundary
layer: the Clauser/Millikan analysis assumed the same scaling laws applied as for the
channel/pipe. George & Castillo argued from the Reynolds-averaged equations that
they had to be different, hence the different conclusions.)

The Reynolds number variation of 1/κ and Bi − Bo can be obtained immediately
from equations (5.1), (5.2) and (5.5) as

1

κ
− 1

κ∞
= − αA

(lnDsR+)1+α

[
1 +

(
1 + α

α

)
A1

lnDsR+
+

(
2 + α

α

)
A2

(lnDsR+)2
+ · · ·

]
(5.7)

and

(Bi − Bo)− (Bi∞ − Bo∞)

=
(1 + α)A

(lnDsR+)α

[
1 +

(
2 + α

1 + α

)
A1

lnDsR+
+

(
3 + α

1 + α

)
A2

(lnDsR+)2
+ · · ·

]
. (5.8)

Figure 3 shows the friction data of the superpipe experiment of Zagarola & Smits
(1998a). As the investigators themselves have pointed out, careful scrutiny reveals
that the data do not fall on a straight line on a semi-log plot, so a simple logarithmic
friction law with constant coefficients does not describe all the data to within the
accuracy of the data itself. In particular, a log which attempts to fit all of the data
dips away from it in the middle range. On the other hand, a log law which fits the
high Reynolds number range does not fit the low, or vice versa. Figure 3 shows two
curves: the first represents a regression fit of equation (5.6) with only the leading term
(i.e. A1 = A2 = 0), while the second shows only the asymptotic log form of equation
(5.6). The former provides an excellent fit to the data for all Reynolds numbers
and asymptotes exactly to the latter, but only at much higher Reynolds numbers.
The differences, although slight, are very important since they entirely determine (or
reflect) the Reynolds number dependence of the parameters 1/κ, Bi and Bo. The
last of these will be seen later to be especially sensitive to this dependence. Clearly
the simplest of the proposed forms of H captures the residual Reynolds number
dependence, while simply using constant coefficients does not.

The values obtained for the asymptotic friction law parameters using optimization
techniques are κ∞ = 0.447, Bi∞ − Bo∞ = 8.45, while those describing the Reynolds
number dependence are A = −0.668 and α = 0.441. The higher-order terms in
equation (5.5) were ignored, and will be throughout the remainder of this paper. The
same optimization techniques showed no advantage in using values of the parameter
Ds different from unity, hence Ds = 1 to within experimental error. Note that the
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Figure 3. Variation of Uc/u∗ with R+ = Ru∗/ν.

values of Bi∞ and Bo∞ cannot be determined individually from the friction data,
only their difference. Nominal values for κ and Bi − Bo are approximately 0.445 and
8.20 respectively, the former varying by less than 0.5% and the latter by only 1%
over the entire range of the data. These values differ only slightly from the values
determined by Zagarola (1996) (0.44 and 7.8, respectively) and Zagarola & Smits
(1998a) (0.436 and 7.66, respectively) using the velocity profiles alone and assuming
that the asymptotic state had been reached. In fact it will be shown later from the
velocity profiles that Bi is independent of Reynolds number and approximately equal
to 6.5. Thus only Bo significantly changes with Reynolds number and then only by
about 5% over the range of the data, but even this variation will be seen to be
quite important for the outer profile. Note that the friction law is independent of the
parameter a.

All the parameters are remarkably independent of the particular range of data
utilized. For example, after optimizing the parameters in equation (5.6) for the
friction data of all 26 different Reynolds numbers available, the highest 15 Reynolds
numbers could be dropped before a new optimization would even change the second
digit of the values of the parameters cited above. This suggests strongly, contrary to
the suggestion of Barenblatt et al. (1997) (see also Barenblatt & Chorin 1998; Smits
& Zagarola 1998, for response), that the superpipe data are in fact a smooth curve,
uncontaminated by roughness. If the analysis developed herein is correct, then the
reason these authors had a problem with the superpipe data is obvious: the data vary
logarithmically as derived here, and not according to their conjectured power law.

For the boundary layer the friction data are not as reliable as those reported here,
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so the functional form of h(δ+) had to be inferred by GC after a variety of attempts
to describe the variation of the exponent in a power law description of the velocity
profile in the overlap region. Interestingly, the value for α obtained here is almost
exactly the value obtained for the boundary layer data (0.46 versus 0.44). Even more
intriguing is that both of these are nearly equal to the values found for κ∞ and
1/(γ∞Ci∞). It is not yet clear whether this is of physical significance, or whether it is
just coincidence.

6. Single-point second-order turbulence quantities
Unlike the boundary layer, where the continued downstream evolution imposes

certain similarity constraints, for pipe and channel flows there is only a single velocity
scale so all quantities must scale with it. An immediate consequence of this is that all
quantities scaling with the velocity only will have logarithmic profiles in the overlap
region. (It is straightforward to show this by the same procedures applied above to
the mean velocity.)

For example, in inner variables, the Reynolds stress profiles are given by

〈−umun〉+ =
〈−umun〉
u2∗

= Aimn(R
+) ln (y+ + a+) + Bimn(R

+). (6.1)

As for the velocity, the parameters Aimn and Bimn are functions of the Reynolds
number and asymptotically constant. Note that the offset a+ has been assumed to
be the same as for the velocity, although this needs to be subjected to experimental
verification.

The Reynolds shear stress is particularly interesting since for it more information
can be obtained from the mean momentum equation. In the overlap region in the
limit as R+ →∞, both equations (2.2) and (2.3) reduce to

0 =
∂〈−uv〉
∂y

(6.2)

or in inner variables,

0 =
∂〈−uv〉+
∂y+

. (6.3)

It follows from substituting the 1, 2-component of equation (6.1) that

0 =
Ai12

y+ + a+
. (6.4)

It is immediately clear that equation (6.3) can be satisfied only if Ai12 → 0 as
R+ → ∞. A similar argument for the outer profile implies Ao12 → 0. Thus to leading
order, the Reynolds shear stress profile in the overlap region is independent of y;
however, the remaining parameters Bi12 and Bo12 are only asymptotically constant.
From equation (2.4) it is clear that Bi12 → 1, but only in the limit. Since 〈−uv〉 → u2∗
is also the inner boundary condition on equation (2.2), Bo12 → 1 in the limit also.

Another quantity of particular interest is the rate of dissipation of turbulence
energy per unit mass, ε. For the inner part of the flow, the appropriate dissipation
scale must be u4∗/ν on dimensional grounds, since there are no other possibilities. In
the outer layer in the limit of infinite Reynolds number, the dissipation is effectively
inviscid (as discussed in § 7 below), so it must scale as u3∗/R. (Note that this only
means that profiles scaled as εν/u4∗ vs. y+ and εR/u3∗ vs. y will collapse in the limit
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of infinite Reynolds number in the inner and outer regions, respectively.) It is easy to
show by the methodology applied to mean velocity and Reynolds stresses above that
the dissipation profile in the overlap region is given by a power law with an exponent
of −1. Thus

ε+ =
εν

u4∗
=

Ei(R
+)

y+ + a+
(6.5)

and

ε =
εR

u3∗
=
Eo(R

+)

y + a
, (6.6)

where both Eo and Ei are asymptotically constant. It has again been assumed that
the origin shift a is the same as for the mean velocity. For the dissipation, this can be
justified using the production equals dissipation limit as shown in the § 8.

7. The effect of Reynolds number on the overlap region
The asymptotic values of the parameters established for the friction law will be

used below to calculate the values of κ, Bi and Bo for each Reynolds number of the
superpipe data. Only either of the B one need be established from the experiments
since their difference is known from equation (5.1). Before carrying out a detailed
comparison with the velocity data, however, it is useful to first consider exactly which
region of the flow is being described by the overlap profiles. Also of interest is the
question of how large the Reynolds number must be before the flow begins to show
characteristics of the asymptotic state.

The overlap layer identified in the preceding sections can be related directly to
the averaged equations for the mean flow and the Reynolds stresses. From about
y+ > 30 out to about the centre of the flow, the averaged momentum equation is
given approximately by

0 = −1

ρ

dP

dx
+
∂〈−uv〉
∂y

. (7.1)

It has no explicit Reynolds number dependence; and the Reynolds shear stress drops
linearly all the way to the centre of the flow (see Perry & Abell 1975). Inside about
y = 0.1 and outside of y+ = 30, however, the Reynolds shear stress is very nearly
constant. In fact, at infinite Reynolds number the pressure gradient term vanishes
identically in the constant Reynolds shear stress region and the mean momentum
equation reduces to

0 =
∂〈−uv〉
∂y

. (7.2)

At finite (but large) Reynolds numbers this region is similar to the developing
boundary layer where the Reynolds stress is effectively constant. Obviously the overlap
region corresponds to this constant Reynolds shear stress layer since the Reynolds shear
stress gradient is the common term to both inner and outer momentum equations.
Note that many low Reynolds number experiments do not have a region where the
Reynolds stress is even approximately constant because the pressure gradient term is
not truly negligible. Hence it is unreasonable to expect such experimental profiles to
display any of the characteristics of the overlap described above, except possibly in
combination with the characteristics of the other regions (e.g. through a composite
solution).
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Even when there is a region of reasonably constant Reynolds stress, however, there
remains the Reynolds number dependence of 〈−uv〉 itself. And it is this weak Reynolds
number dependence which is the reason that κ, Bi, and Bo are only asymptotically
constant. The origin of this weak Reynolds number dependence (which is well-known
to turbulence modellers) can be seen by considering the Reynolds transport equations.
For the same region, y+ > 30, the viscous diffusion terms are negligible (as in the mean
momentum equation), so the Reynolds shear stress equations reduce approximately
to (Tennekes & Lumley 1972)

0 = −
(〈

p
∂ui

∂xk

〉
+

〈
p
∂uk

∂xi

〉)
−
[
〈uiu2〉∂Uk

∂x2

+ 〈uku2〉∂Ui

∂x2

]
− ∂〈uiuku2〉

∂x2

− εik, (7.3)

where Ui = Uδi1. Thus viscosity does not appear directly in any of the single-point
equations governing the overlap region, nor in those governing the outer layer.

Viscosity, however, can be shown to play a crucial role in at least a portion of
the constant stress layer, even at infinite Reynolds number. The reason is that the
length scales at which the dissipation, εik , actually takes place depend on the local
turbulence Reynolds number, Rt = q4/νε. For Rt > 5000 approximately, the energy
dissipation is mostly determined by the large energetic scales of motion. These scales
are effectively inviscid, but control the energy transfer through nonlinear interactions
(the energy cascade) to much smaller viscous scales where the actual dissipation
occurs (Tennekes & Lumley 1972). When this is the case, the dissipation is nearly
isotropic so εik ≈ 2εδik . Moreover, ε can be approximated by the infinite Reynolds
number relation: ε ∼ q3/L, where L is a scale characteristic of the energy-containing
eddies. The coefficient has a weak Reynolds number dependence, but is asymptotically
constant. Thus, the Reynolds stress equations themselves are effectively inviscid, but
only exactly so in the limit. Note that in this limit the Reynolds shear stress has no
dissipation at all, i.e. ε12 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing ranges nearly overlap, and so the latter (which also produce the Reynolds
shear stress) feel directly the influence of viscosity. In this limit, the energy and
dissipative scales are about the same, so the dissipation is more reasonably estimated
by ε ∼ νq2/L2, where the constant of proportionality is of order 10. The dissipation
tensor, εik is anisotropic and ε12, in particular, is non-zero. (Hanjalic & Launder 1974,
for example, take ε12 = (−〈u1u2〉ε/q2).)

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from ε ∼ νq2/L2 to
ε ∼ q3/L as Rt increases. This is felt by the Reynolds stresses themselves, which will
show a strong Reynolds number dependence. Obviously, in order to establish when
(if at all) parts of the flow become Reynolds number independent, it is necessary to
determine how the local turbulence Reynolds number varies across the flow.

Over the outer part of the pipe (which is most of it), L ≈ R/2 and q ≈ 3u∗. So
when R+ > 3000, the dissipation in the outer flow is effectively inviscid. Above this
value the mean and turbulence quantities in the core region of the flow should show
little Reynolds number dependence. This is indeed the case as illustrated by figure 2.
The outer region cannot, of course, be entirely Reynolds number independent, except
in the limit, and this residual dependence manifests itself in the overlap layer in the
slow variations of κ and Bo, for example.

The near-wall region is considerably more interesting since in it the scales governing
the energy-containing eddies are constrained by the proximity of the wall. Hence, the
turbulence Reynolds number, Rt, depends on the distance from the wall, y. In fact,
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Rt ∼ y+ with a coefficient of about 18 (Gibson 1997); so, in effect, y+ is the turbulence
Reynolds number. Two things are then immediately obvious:

First, as the Reynolds number increases more of the pipe (in outer variables) will
become effectively inviscid and will be governed by the inviscid dissipation relation.
Correspondingly, the properly scaled mean and turbulence quantities in at least the
outer part of the overlap layer (say, an inertial sublayer) will become Reynolds
number independent, albeit very slowly. This cannot be reached until the layer is
governed by the infinite Reynolds number dissipation relation and its coefficient
has reached the limiting value. Obviously this can happen only when there is a
substantial inertial sublayer satisfying y+ > 300 (approximately) and for which the
mean pressure-gradient term is negligible, typically y < 0.1. Thus the asymptotic
limits are realized only when 300ν/u∗ � 0.1R or R+ � 3000. Therefore below
R+ = 30 000 approximately, even this inertial sublayer should display a Reynolds
number dependence, not only in κ, Bo, and Bi, but correspondingly in the behaviour
of 〈u2〉, 〈uv〉, etc. The lower limit of this inertial sublayer also corresponds (for the
same reasons) to the place where a k−5/3-region should begin to be observed in the
energy spectra.

Second, at the bottom of the overlap region (or the constant Reynolds shear
stress layer) there will always be a mesolayer† below about y+ ≈ 300 in which the
dissipation can never assume the character of a high Reynolds number flow, no
matter how high the Reynolds number becomes. This is because the dissipation (and
Reynolds stress as well) can never become independent of viscosity in this region. Even
though the single-point Reynolds-averaged equations are inviscid above y+ ≈ 30, the
multi-point equations are not! This fact is well-known to turbulence modellers (see
Hanjalic & Launder 1974), but the consequences for similarity theory and asymptotic
analyses do not seem to have been noticed previously. It is particularly important
for experimentalists who have routinely tried to apply asymptotic formulae to data
in this region, wrongly believing the mesolayer to be the inertial sublayer.

Thus, as illustrated in figure 4, the constant stress layer has two separate regions,
each having their own unique character: the constant Reynolds shear stress (or overlap)
region and the viscous sublayer where the viscous stress is also important. Each of
these has two subregions. The overlap region consists of an inertial sublayer (y+ > 300,
y < 0.1) which is nearly inviscid, and a mesolayer (30 < y+ < 300) in which the viscous
stresses are negligible, but in which viscosity acts directly on the turbulence scales
producing the Reynolds stresses. The viscous sublayer is composed of a buffer layer
(3 < y+ < 30) where the Reynolds stress and viscous stress both act directly on the
mean flow, and the linear sublayer near the wall (y+ < 3) where the viscous stresses
dominate. Of these four regions, the inertial sublayer will be the last to appear as the
Reynolds number is increased. Thus, the overlap layer itself will be most difficult to
identify at the modest Reynolds numbers of most laboratory experiments, unless the
properties of the mesolayer are known. In the next section it will be argued that, in
fact, it is the offset parameter a+ which accounts for it. Thus the inertial sublayer can
readily be identified as the region for which y+ � |a+| and the velocity profile in it is
primarily a log profile in y alone, the contribution of the offset being negligible, i.e.
ln (y + a) ≈ ln y. Attempts to identify logarithmic behaviour inside y+ = 300 from

† This appropriates a term from R. R. Long in a presentation at a Naval Hydrodynamics meeting
at Washington, DC, in 1976 (see also Long & Chen 1981) who argued strongly for its existence,
but from entirely different physical and scaling arguments which we find untenable. Despite the
skepticism which greeted his ideas, Long’s instincts were correct.
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Figure 4. Schematic showing various regions and layers of pipe and channel flows.

straight lines on semi-log plots of u+ versus y+ are of little use if the theory presented
herein is correct because of the presence of a. They will, of course, always succeed as
a local approximation, but coefficients so determined will be incapable of extension
to higher values of y+ as the Reynolds number is increased. And this is indeed the
history of attempts to identify the log layer and its parameters from such data.

8. A mesolayer interpretation of a+

As noted in § 4 above, Squire (1948) was apparently the first to notice the need for
the offset coordinate y+ + a+. The basis of his argument was that the mixing length
could not be taken as proportional to y alone, since the physics incorporated in it could
not account for the thickness of the viscous sublayer. Although the overlap analysis
presented here depends on different closure assumptions, the argument concerning
invariance to coordinate origin presented earlier is not much different, in principle at
least. The preceding section argues for the existence of a mesolayer below the usual
inertial layer in which the well-known scale separation of the energy and dissipative
eddies cannot exist. The purpose of this section is to show how these last two ideas
are related.

The overlap solution of equation (4.19) can be expanded for values of y+ � |a+|:
U

u∗
= fi(y

+, R+) =
1

κ

{
[ln y+ + κBi] +

a+

y+
− 1

2

a+2

y+2
+

1

3

a+3

y+3
+ · · ·

}
. (8.1)
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For y+ � 2|a+|, this can be approximated by the first three terms as

U

u∗
≈ 1

κ
ln y+ + Bi +

a+

κy+
. (8.2)

An equivalent expansion in outer variables is given by

U −Uc

u∗
≈ 1

κ
ln y + Bo +

a

κy
. (8.3)

Equations (8.2) and (8.3) are useful for three reasons: First, they are an excellent
approximation to the overlap solutions for values of y+ > 2|a+| (or y > 2|a|). Second,
they are easier to incorporate into a composite solution which includes the viscous
sublayer than is the overlap solution itself since they do not have the singularity at
y+ = −a+ (cf. GC). Third, the inner variable version can be shown to offer useful
insight into the role of the parameter a+ as accounting for the mesolayer.

In the overlap region the turbulence energy balance reduces to production equals
dissipation, i.e. in inner variables, P+ ≈ ε+. This is exactly true in the limit of
infinite Reynolds number, and approximately true at finite Reynolds numbers for
30 < y+ < 0.1R+. It follows immediately by substitution of the overlap solutions for
velocity, Reynolds stress and dissipation for P+ and ε+ that

P+ =
Bi12

κ(y+ + a+)
= ε+ =

Ei

(y+ + a+)
. (8.4)

It is clear that the offset a+ must be the same for both velocity and dissipation, as
assumed earlier. Hence Ei = Bi12/κ → 1/κ, at least in the limit as R+ → ∞ since
Bi12 → 1.

Therefore, in this limit the dissipation and velocity derivative profiles are identical
(as noted earlier) and equal to the derivative of equation (4.19) with respect to y+, i.e.

ε+ =
1

κ(y+ + a+)
= ε+

o fT (y+), (8.5)

where

ε+
o ≡ 1

κy+
(8.6)

and

fT ≡
[
1 +

a+

y+

]−1

≈ 1− a+

y+
, (8.7)

where the higher terms in the expansion in a+ have been neglected. This is iden-
tical to the form used by many turbulence modellers for wall-bounded flows (cf.
Reynolds 1976; Hanjalic & Launder 1974) to account empirically for the change
in the character of the dissipation near the wall since Rt ≈ 18y+ as noted earlier.
Thus the interpretation of a+ as a mesolayer parameter is obvious since it, in effect,
modifies the dissipation (and hence the velocity profile) near the wall. The suggested
value of a+ = −8 accomplishes this.

A similar form of fT is obtained if the power law profile of GC for the boundary
layer is expanded, even though the form of εo is different. Interestingly, if the order of
argument is reversed and any of the simple dissipation models (e.g. Reynolds 1976)
are used to deduce the mesolayer contribution to the velocity profile for the boundary

layer, they produce a y+−1
additive instead of the y+γ−1

required. Obviously these
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simple turbulence models, as currently posed, are consistent with the theory developed
herein only for homogeneous flows, although the difference is slight.

Note that the common practice of choosing the model constants in equation (8.7)
to produce a log profile at y+ ≈ 30 is clearly wrong if the proposed theory is
correct, since this is the location where the mesolayer only begins. As noted in § 7,
the mesolayer ends at y+ ≈ 300, and the inertial sublayer begins. It follows that a+

should be chosen to ‘turn off’ the low Reynolds number contribution at about this
point (for increasing y+) and ‘turn on’ the ln y solution.

9. The superpipe velocity data
Now that the approximate region of validity of the overlap solution has been

established as 30 < y+ < 0.1R+ it is possible to test the theoretical profiles and the
proposed layer model for the Reynolds number dependence. If they are correct, only
an independent determination of either Bi or Bo is necessary to completely specify
the profile, the rest of the parameters having been determined from the friction data.
Since the superpipe experiments have a substantial range satisfying the conditions
for the existence of the inertial sublayer (300 < y+ < 0.1R+), it should be possible to
establish the value of Bi (or Bo) independent from the mesolayer. Also it should be
possible to determine whether the parameter a+ accounts for the mesolayer behaviour,
at least for those data sets where data are available below y+ = 300.

For all of the data sets it appears that Bi = 6.5 is nearly optimal (at least for
values of R+ > 850, the lowest available in this experiment), so that for the remainder
of this paper it will be assumed that Bi = Bi∞. This value is close to the value of
6.15 determined by Zagarola & Smits (1998a), who assumed κ fixed at 0.436. Since
the difference, Bi∞ − Bo∞ = 8.45, was established from the friction data, it follows
that Bo∞ = −1.95. (Note, however, that the DNS channel data below suggest that
Bo∞ = −2.1 and Bi∞ = 6.35 might be more appropriate, but the evidence is not
conclusive yet.)

The constancy of Bi implies that it is Bo which shows all the Reynolds number
dependence of the difference given by equation (5.8). Figures 5 and 6 show the
theoretical variation of 1/κ and Bo with Reynolds number (equations (5.1) and (5.2)).
Clearly both converge very slowly to their asymptotic values. This has far more
relative effect on Bo than it does on 1/κ, however, since Bo has achieved only 85%
of its asymptotic value at R+ = 105. The observed variation of 1/κ and Bo and the
constancy of Bi can be contrasted with the boundary layer results of George et al.
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(1996) and GC in which Co, the outer coefficient, was nearly constant while the power
exponent γ and the inner coefficient Ci varied over the entire range of Reynolds
numbers available.

Therefore the outer profile scaling will show more variation with Reynolds number
in the overlap region than the inner where only κ varies. This explains a great deal of
the problems historically in establishing what Bo∞ is and in determining whether the
outer scaling is correct. And it might also explain the conclusion of Zagarola & Smits
(1998a) that a different scale for the outer flow is required, especially if attention is
focused on the overlap region instead of the core region of the flow.

Figures 7 and 8 show representative velocity profiles of the superpipe data at high
and low Reynolds numbers, respectively. The profiles scaled in inner variables are
shown in the upper plots, and the same data scaled in outer variables are shown in the
lower plots. Also shown for each profile are the overlap solutions of equations (4.18)
and (4.19) together with equations (5.7) and (5.8). The vertical lines on each profile
show the suggested bounds for the two sublayers of the overlap region; in particular,
the mesolayer (30 < y+ < 300 or 30/R+ < y < 300/R+) and the inertial sublayer
(300 < y+ < 0.1R+ or 300/R+ < y < 0.1). The limits vary with R+ for each profile.
Note that for the highest Reynolds number plots the data were not measured close
enough to the wall to see any of the mesolayer; however, they do show clearly the
inertial sublayer. For the lowest Reynolds numbers, enough of the near-wall region
was resolved to clearly see the mesolayer, but the extent of the inertial sublayer was
limited or non-existent. The theoretical profiles were computed using the measured
value of R+ and assuming a+ = 0, −8, and −16 (or a = 0, −8/R+, and −16/R+). (As
noted above, the value of Bo∞ = −1.95 is determined since Bi∞ has been chosen as
6.5 and Bi∞ − Bo∞ = 8.45 from the friction data.) Therefore there are no adjustable
parameters in the outer-scaled plot if a+ is determined from the inner. Thus these
outer profiles provide a completely independent test of the theory (and the data as
well).

The value of a+ = 0 corresponds to the inertial sublayer solution only, and as
expected describes the data well only in the range of 300 < y+ < 0.1R+. The
boundary layer value of a+ = −16 (from the power law) is clearly too large, but
then there is no reason to expect it to be the same since the homogeneous pipe and
inhomogeneous boundary layer flows are fundamentally different, at least in the outer
and overlap regions. The best fit to the DNS channel flow data (see below) above
y+ ≈ 30 is also a+ = −8. It is possible to fit the data to substantially lower values of
y+ by using different values of a+, but there appears to be no theoretical justification
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Figure 7. Inner and outer profiles at relatively high Reynolds number.

for doing so. Note that the Pitot tube used to make the pipe velocity measurements
could be as much as 2% percent too high at y+ = 30 because of the local turbulence
intensity there (since Umeas/U ≈ 1+[〈u2〉+〈v2〉+〈w2〉]/2U2). Additional positive errors
probably arise when the probes are closest to the wall because of the asymmetry in the
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Figure 8. Inner and outer profiles at relatively low Reynolds number.

streamline pattern around them. In spite of this, the agreement between experiment
and theory over the entire overlap region is particularly gratifying since the velocity
data were only used to establish Bi and a+, the remaining parameters having been
entirely determined by the friction data.
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10. Comparison with other data and theories
Figure 9 shows the profiles of y+dU+/dy+ computed from a number of sources,

including the LDA experiment of Durst, Jovanovic & Sender (1995) and the DNS
data discussed below. Also shown are a comparison of the present theoretical results
with the classical theory and the recent contributions of Zagarola & Smits (1998a)
and Barenblatt (1993). Only a single κ = 0.447 is used for the present theory since in
inner variables the parameters are nearly constant, but the same three values of a+

(−16,−8, and 0) are shown. The present theory reduces to a constant in these variables
only when a+ = 0. On the other hand for large values of y+, y+dU+/dy+ → 1/κ for
all values of a+.

The data themselves are not very helpful, especially in the important region from
y+ = 30 to 100. The most that can be said from all the data taken together is that
the value of a+ is bounded by these values. A case could be made that −16 is the
best choice if the Durst et al. data are used. On the other hand, the DNS channel
data discussed below would tend to indicate that zero might better.

There are two reasons why the data are problematical. First, the only reliable data
in this region are from experiments or simulations in which the Reynolds number
is so low that it is impossible to distinguish an overlap region which is reasonably
independent of the inner and outer layers. GC dealt with this problem for boundary
layers by using semi-empirical inner and outer profiles, then building a composite
solution so all the effects could be considered. Obtaining such a composite solution
certainly should be a focus of future work. Second, as noted above, this is probably the
most difficult region in which to measure accurately. The errors in measurement with
virtually every probe are larger than the differences between the theories which are being
compared, especially for the higher Reynolds numbers. Clearly better experiments
and/or simulations at higher Reynolds numbers are necessary.

Figure 10 compares velocity profiles in the overlap region of the present theoretical
result with the classical theory and the recent contributions of Zagarola & Smits
(1998a) and Barenblatt (1993). As noted above there is little difference between the
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present results and that of Zagarola & Smits except below y+ < 300–500 for which
the latter suggest that a power law region exists. Although it can certainly be argued
that a power law fits their low Reynolds number data in this region, there is reason to
doubt both the data and the matching procedure used to obtain the power law result.
As noted above, measurements with Pitot tubes close to (or even on) the wall might
be expected to be in error by the small amounts of interest here. Also, the matching
procedure they employ depends on the existence of an outer-scale velocity different
from that used to obtain the log region. The outer scale they suggest, Uc − Um, is
proportional to u∗ in the limit in which the matching is carried out, hence only a log
profile can result (cf. Appendix I of GC).

The family of curves due to Barenblatt can at most be argued to fit a region which
moves to the right as the Reynolds number is increased. This is exactly what would be
expected if the power law form being fitted were not the right choice for an overlap
region, a conclusion consistent with the difficulties in this ‘theory’ in accounting for
the superpipe friction data as noted earlier.

11. Channel versus pipe flow
Although both fully developed channel and pipe flows are homogeneous in the

stream-wise direction and both scale with u∗, there is no reason, in principle, to expect
the outer flow or overlap profiles of channel flow to be the same as for pipe flow.
The former is planar and homogeneous in planes parallel to the surface, while the
latter is axially symmetric. The geometries are different, but the averaged equations
are nearly the same, differing only in the turbulence and viscous transport terms.

The inner regions of both flows have long been known to be quite close (see
Monin & Yaglom 1971). In fact, they must be exactly the same in the limit as the
ratio of the extent of the viscous sublayer to the pipe radius (or channel half-width)
goes to zero. Therefore it is reasonable to hypothesize that the inner regions of both
flows be the same. Then the only differences between channel and pipe flows must
appear in the outer flow. If this is true, then all of the parameters governing the inner
region (including the overlap region in inner variables) must be the same for both
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Figure 11. Channel flow DNS data of Kim et al. (1987), Kim (1989) and Kim (1997).

pipe and channel flows. In particular, the parameters κ and Bi must be the same, as
well as their dependence on Reynolds number. Hence even the empirical constants
A and α must be identical. Only the parameter Bo and the scale constant Ds can be
different. Moreover, since equation (4.22) must be satisfied, the channel flow value
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of Bo can at most differ by an additive constant from the pipe flow value, since any
other difference would affect the Reynolds-number-dependent relation between κ and
Bi − Bo.

Figure 11 shows the mean velocity profile data from the channel flow simulations
of Kim, Moin & Moser (1987) and Kim (1989) at values of R+ = 180 and 395, where
R in this case is taken to mean the channel half-width. Also shown is the profile
from data given to us by J. Kim 1997, at R+ = 595.† As before the profiles scaled in
inner variables are presented in the upper figure, and the same data in outer variables
in the lower. By the criteria established earlier, there should be no region which is
described by a simple logarithmic profile alone without the mesolayer contribution,
even at the highest Reynolds number. In fact, as is clear from the vertical lines on the
plots, there should not even be a mesolayer region in the lowest Reynolds number
profile (since 0.1R+ < 30).

Nonetheless, the theoretical overlap solution, equation (4.19), with exactly the
parameter values used above for the superpipe data, fits all three sets of data in
inner variables nicely over the very limited range 30 < y+ < 0.1R+. (In fact, the
theoretical curve appears to work well to values of y+ substantially closer to the wall,
even though its use below y+ = 30 cannot be justified theoretically, at least not by
the arguments presented earlier.) It is not even necessary to adjust the scale factor
Ds which was chosen as unity, just as for the pipe data. This agreement is all the
more remarkable because all of the constants have been obtained from the superpipe
experiment at much higher Reynolds number.

The theoretical outer velocity profile uses the pipe values for all constants except
for Bo∞ as noted above. Since Bo∞ is quite small for the channel flow, even small
uncertainties about its value have a relatively large effect on the outer profile. There-
fore the approach taken here has been to first determine Bi∞ − Bo∞ from the channel
friction data, then use the value of Bi∞ from the superpipe (since they should be
the same as noted above) to determine Bo∞ for the channel. Thus the channel flow
velocity data scaled in outer variables provide a completely independent test of the
theory. Unlike the superpipe data, however, there is much less DNS data available so
a sophisticated optimization is not possible. However, there is only a single parameter
which needs to be determined. Note that the experimental channel flow data have
been avoided entirely because of uncertainties about the shear stress (see Kim et al.
1987).

The best overall fit to the friction data, Uc/u∗, is achieved by choosing Bi∞ −Bo∞ =
7.0 with the relative errors being 0.18%, 0.57%, and 1.2% for the Reynolds numbers
of 595, 395, and 180 respectively. It follows that Bo∞ = −0.5.

As shown in the lower plot of figure (11), equation (4.18) provides a reasonable fit
to the higher Reynolds number profiles over the same region as for the inner scaling.
The fit is especially impressive since there has been no effort to optimize the fit to
the velocity profile data. (Recall that all constants but one were determined by the
superpipe and the remaining one was chosen from the friction data!) A near perfect
fit (not shown) to the two higher Reynolds number profiles can be achieved, however,
by using Bo∞ = −0.65. This will increase the relative error in the friction estimates to
0.089%, 1.3%, and 2.0%, respectively, if Bi is maintained at 6.5. On the other hand,
if the value of Bi∞ is reduced to 6.35, then both the better friction prediction and
the better outer profile fits can be maintained simultaneously (since Bi inf − Bo∞ = 7.0

† The authors are very grateful to Professor Kim for making these data available to us. It has
since been published as Moser, Kim & Mansour (1999).
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is maintained), but with little relative change to the inner profile. Note that such a
value for Bi would be closer to the value of 6.15 suggested by Zagarola & Smits
(1998a). The authors have resisted the urge to re-analyse the pipe flow data until
higher Reynolds number DNS data confirm the need to do so, but it is clear that the
only other effect would be to change the pipe flow value of Bo∞ from −1.95 to −2.1
which would hardly be noticeable in the plots.

All of the errors between the calculated and DNS values of Uc/u∗ are within
the uncertainty of the DNS data itself which is estimated at 1–2%. The reason for
the larger discrepancy between the lower Reynolds number profiles is probably
that the theory is simply being stretched to Reynolds numbers below where it can
reasonably be expected to apply. It is clear that the value of Bo∞ is substantially lower
for the channel than for the pipe, but this was expected since, as noted above, the
differences between the two flows should show up only in the outer flow.

The success of the theory developed herein in accounting for the channel flow
data using the pipe flow constants should give considerable confidence in the entire
theoretical approach. Moreover, it provides an independent confirmation of the
values of the constants and the empirical function utilized for the Reynolds number
dependence.

12. Summary and conclusions
The asymptotic invariance principle and the deductions from near asymptotics,

together with the recognition of the existence of a mesolayer, have provided an
excellent description of the mean velocity and skin friction data from fully developed
channel and pipe flows over more than three and a half decades in Reynolds number.
Specifically the theory describes the velocity profile in the region 30 < y+ < 0.1R+ (or
30/R+ < y < 0.1) for the superpipe experiment (850 < R+ < 530 000) and the low
Reynolds number DNS data as well (R+ = 180, 395 and 595). Of the five parameters
needed to describe the flow, four could be determined only from the friction data
alone. Three of these (κ∞ = 0.447, A = −0.67 and α = 0.44) probably apply to
any streamwise homogeneous wall-bounded flow. The difference parameter which
appears in the friction law, Bi∞−Bo∞, is different for pipes and channels (even though
Bi∞ is the same). From the superpipe experiment, Bi∞ − Bo∞ = 8.45, while from the
DNS channel data it was estimated to be 7.0. Both pipe and channel data sets were
consistent with constant values of Bi ≈ Bi∞ = 6.5 and a+ = −8. It follows that the
outer parameter Bo∞ = −1.95 for the pipe flow, and −0.5 for the channel flow. A
case can also be made that the limiting values of Bo∞ should be −2.1 and −0.65
corresponding to Bi∞ = 6.35, but a final decision can probably not be made until
higher Reynolds number DNS data become available.

Unlike the boundary layer, where both Reynolds number effects and the mesolayer
were of equal importance in understanding the data, for pipe and channel flows the
Reynolds number dependence was found to be slight. In fact, only Bo shows significant
variation over the range of the data, and then only about 5%. The variation of the
von Kármán parameter, κ, was only about 1%; and both Bi and a+ were constant to
within the accuracy of the data.

On the other hand, the mesolayer concept (and a+ in particular) proved crucial in
understanding where the theory applied and in understanding why previous attempts
to verify the log law were less than totally satisfactory. In particular, the overlap mean
velocity profile was found to not be a simple logarithm in y, but instead a logarithm
in y + a. The most important consequence of this is that attempts to establish ln y
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behaviour using velocity profile data inside y+ = 300 are doomed to failure and the
results misleading unless the mesolayer (and a in particular) are explicitly accounted
for. This, of course, explains much of the confusion in the literature about precisely
what the log parameters were and where the theory applied – not only was the wrong
profile being used, but it was being applied to the wrong region.

It should be noted that for their boundary layer data analysis, George et al. (1996)
and GC used a procedure which was the reverse of that used here. There a series of
careful attempts was first made to obtain directly the variation of the parameters from
the velocity profiles, then the friction law was inferred and shown to be in agreement
with direct measurements. The fact that the procedure followed here has been equally
successful lends credibility to both analyses, especially in view of the importance of
the subtle difference between the friction law proposed here and a simple log law
with constant coefficients.

There are a number of interesting questions which remain. One of these is whether
the mesolayer parameter a+ is indeed constant, as it appears it might be. This will
require accurate measurements of the velocity profile near y+ = 30 at considerably
higher Reynolds numbers than has been possible to date. Note that the problem is
not with the overall flow Reynolds number (which in the superpipe was certainly
adequate), but with the inability to resolve the flow near the wall at the higher
Reynolds numbers due to probe size limitations. An obvious solution is a bigger pipe
so less absolute resolution is required at a given Reynolds number – a mega-pipe
perhaps (or a mighty duct!).

Another question arises from the Reynolds number dependence itself which is
nearly negligible for channel and pipe, but crucial for boundary layer flows. Is this
a subtle consequence of the homogeneity of the former and inhomogeneity of the
latter, or is it simply a reflection of the differing inner and outer velocity scales for
the boundary layer with the consequent Reynolds number dependence? Or are these
the same thing? Or is the boundary layer’s dependence a residual of the dependence
on upstream conditions?

Then there is the fact that the parameter, α, which accounts for the Reynolds
number dependence is nearly the same as for the boundary layer, and tantalizingly
close to κ∞ and the boundary layer value of 1/(γ∞Co∞). The possible universality of
these is particularly interesting, especially given the agreement between theory and
experiment for both the homogeneous and inhomogeneous flows. A consequence of
this is that the dissipation profiles for the pipe and the infinite Reynolds number
boundary layer are nearly identical throughout the overlap region, even though they
differ substantially for the finite Reynolds numbers of experiments. And, of course,
this raises the question for the functions H (for the pipe and channel) and h (for
the boundary layer) which contain the essential Reynolds number dependence of the
flow: Can they (or alternatives) be derived directly from the underlying physics of the
flow, perhaps through symmetry considerations of the turbulence dissipative scales or
from the multi-point equations?

In conclusion, unlike the classical boundary layer theory which was shown by
GC to be fundamentally flawed, the same approach has been able to show that the
classical theory for pipe and channel flows is really pretty good. The present analysis
has, from purely deductive reasoning using the Reynolds-averaged Navier–Stokes
equations, been able to identify why the classical results were not totally successful,
and was able to account for recent DNS, LDA and superpipe observations. Thus it
would seem that the Navier–Stokes equations indeed apply to turbulence, hardly a
novel idea to most, but reassuring nonetheless.
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