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Interfacing Statistical Turbulence Closures
with Large-Eddy Simulation
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Progress toward a general purpose hybrid Reynolds-averaged Navier–Stokes (RANS)/large-eddy simulation
(LES) framework is described, in which large-scale, statistically represented turbulence kinetic energy is converted
automatically into resolved-scale velocity fluctuations wherever the local mesh resolution is sufficient to support
them. Existing hybrid RANS/LES approaches alter the nature of the local partial differential equations according
to the local mesh resolution, but they do not alter the nature of the data on which these equations operate. The
implications of this are discussed. Subsequently, a simple mechanism is introduced to transfer statistical kinetic
energy into resolved-scale fluctuations in a manner that preserves a given set of space/time correlations and set of
second moments. This process, which can appropriately be termed Large-Eddy STimulation (LEST), generates
the large-scale eddies needed to form the unsteady boundary conditions at RANS interfaces to LES regions, into
which turbulence energy can be deposited either through mean convection or through turbulent transport. The
proposed approach is designed to work on general meshes with arbitrary clusterings and does not require the user
to specify internal boundary surfaces separating RANS and LES regions. Results on a plane channel flow show that
the approach helps to preserve the shear stress across regions where turbulence is transported by mean convection
and also helps to sustain the fluctuations in the outer, unsteady, portion of the boundary layer by reconstructing
the resolved-scale energy that is generated in the statistically modeled near-wall layer and transported across the
boundary layer via turbulent mixing.

Nomenclature
cn = velocity scaling for nth mode, m/s
dn

j = wave vector of nth mode
k = turbulence kinetic energy, m2/s2

L = turbulence length scale (k3/2/ε), m
S = nondimensional strain magnitude
S∗

i j = mean strain tensor, s−1

V = turbulence velocity scale (k1/2), m/s
x j = position vector in Cartesian frame
α = limited numerical scale (LNS) latency parameter
� = LNS filter width, 2 max[�x, �y, �z, �t

√
(u2

i )]
δi j = Kronecker delta
ε = turbulence dissipation rate, m2/s3

εi jk = alternating symbol
µt = turbulence eddy viscosity, kg/(m · s)
ρ = density, kg/m3

τ = turbulence timescale (L/V ), s
φ̄ = time-average of φ

φ̃ = Favre average of φ
� = nondimensional vorticity magnitude
�∗

i j = mean vorticity tensor, s−1

I. Introduction

T HE need to simulate high-Reynolds-number, unsteady turbu-
lent flows has resulted in a recent surge of interest in hybrid

methods that attempt to combine the best features of Reynolds-
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averaged Navier–Stokes (RANS) turbulence closures with large-
eddy simulation (LES) (for example, see Refs. 1–11). Traditional
LES becomes impractical at high Reynolds numbers because of
the small size of the boundary-layer eddies responsible for the ma-
jor portion of the near-wall shear stress. Hybrid methods relax this
stringent requirement on spatial and temporal resolution, by allow-
ing certain regions of the time-dependent flowfield to be treated with
traditional RANS models. Calculations from a number of research
groups, for example, Refs. 2, 4, 6, 10, and 11, have shown that these
hybrid methods can produce good results for a class of separated
flows in which unsteadiness is strongly self-sustaining and the un-
steady effects in the separating boundary layer can be considered
negligible. However, existing hybrid models are not well suited to
flows involving impingement, thin separation, or indeed any region
in which the local mesh undergoes an abrupt, isotropic refinement
and where flow instabilities are too weak to initiate the large-scale
unsteady motions. The reasons for these potential failure modes are
discussed.

This paper then describes an attempt to generalize these hybrid
methods to all types of flow and to arbitrary meshes, which can in-
clude embedded fine-grid regions. This generalization is achieved
by an automatic transfer of statistically represented kinetic energy
data into directly resolved fluctuations, in a manner consistent with
the length and timescales of the statistical turbulence, the second
moments, and the resolvable fraction of the turbulence energy.
The latter is reconstructed using a sum of Fourier modes, as pro-
posed by Kraichnan,12 with a tensor scaling based on the Cholesky
decomposition of the local Reynolds-stress tensor; the latter be-
ing a simplified form of the tensor scaling proposed by Smirnov
et al.13 The proposed synthetic reconstruction involves no addi-
tional transport equations and requires no additional grid-related
storage.

The reported work is still preliminary, but demonstrates, for the
first time, hybrid RANS/LES boundary-layer calculations, which
involve a constant transfer (and translation) of turbulence kinetic
energy between the RANS and LES data. Results on a plane chan-
nel flow indicate that the energy transfer approach helps to preserve
the total shear stress across regions into which turbulence is trans-
ported via mean convection. In addition, the approach helps to sus-
tain the fluctuations in the outer, unsteady, portion of the boundary
layer, by reconstructing the resolved-scale energy that is generated
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in the statistically modeled near-wall layer and transported across
the boundary layer via turbulent mixing.

II. Limited-Numerical-Scales Framework
The hybrid framework used throughout this paper is the limited-

numerical-scales (LNS) approach proposed by Batten et al.3,4 This
method formed the first commercial implementation of a hybrid
RANS/LES approach (in the CFD ++ code) and was first presented
in a conference paper in January 2000.5 Because the LNS method
has not been presented previously in a journal paper, the following
section provides the full details of the method, as it is currently being
used.

LNS was inspired by an earlier suggestion of Speziale,1 whose
original proposal was for a hybrid RANS/LES framework in
which the stress tensor u′

i u
′
j

M
provided by a (conventional RANS)

Reynolds-stress transport model would be damped via

u′
i u

′
j = α u′

i u
′
j

M
(1)

in which

α = [1 − exp(−βL�/Lk)]n (2)

where β and n are some (unspecified) parameters, L� is some rep-
resentative mesh spacing, and Lk is the Kolmogorov length scale

Lk = ν
3
4
/

ε̃
1
4 (3)

The superscript M , denotes values computed using conventional
RANS equations. After the scaling in Eq. (1), regular RANS stress
levels are recovered whenever L� is much larger than Lk , whereas
the subgrid stresses vanish completely as L� → 0.

Unfortunately, the parameters β, n in Eq. (2), and the definition of
the model equations used to derive the undamped Reynolds stresses
were never completely specified by Speziale.1 There is a wide choice
of β and n that would satisfy the two [RANS and direct numerical
simulation (DNS)] limits, and not all such choices guarantee that a
suitable subgrid-scale (LES) model will be recovered in between.

In the LNS approach,3 the definition of α is determined from
the observation that in the commonly used isotropic eddy-viscosity
framework the only relevant parameter is the shear stress aligned
in an axis parallel to that of the mean shear strain. In Boussinesq
models, such as k–ε closures or Smagorinsky-type14 subgrid mod-
els, this is typically the only quantity used in the model calibration.
LNS therefore redefines the latency factor α using the following
ratio of effective-viscosity norms:

α = min[( fµL .V )LES, ( fµL .V )RANS]

( fµL .V )RANS
(4)

The ( fµL .V )LES and ( fµL .V )RANS products denote norms for the
effective viscosity arising from the component LES and RANS mod-
els, respectively. If consistent models are assumed for both LES and
RANS stress tensors, then the preceding latency factor simply se-
lects the shear stress of minimum magnitude.

In current LNS computations, the conventional Smagorinsky
approach14 has been used as the underlying subgrid scale model:

µt = Cs

(
L�

i

)2
√

S∗
kl S

∗
kl

/
2 (5)

in which Cs is the Smagorinsky coefficient, here taken as 0.05. The
parameter L� defines a filter length, which allows the approach to
distinguish between unresolvable and resolvable (or at least poten-
tially resolvable) scales of motion. Because the orientation of local
flow structures is not, in general, known in advance, a safe require-
ment is to choose the smallest wavelength that can be supported
at any orientation to the local mesh. This leads us to the following
measure for the local Nyquist grid wavelength:

L�
i = 4 max

k = 0...n
(|rc − rk |) (6)

where n is the number of faces forming cell i , rc is the centroid of
cell i , and rk is the midpoint of face k. On a structured Cartesian

mesh, this is equivalent to

L� = 2 max[�x, �y, �z] (7)

with the additional factor of two (which is often absorbed into the
Smagorinsky constant) accounting for the wavelength correspond-
ing to the Nyquist frequency of the grid.

One can also insist that the time step be small enough to accurately
resolve the convective transport of any grid-supportable structures.
Thus, the Courant condition based on the local fluid velocity (which
defines a basic condition for accuracy in nonlinear flow problems)
can be used to provide an additional safety factor in the local length-
scale definition. For example, the following extension was proposed
by Batten et al.4:

L� = 2 max
[
�x, �y, �z,

√(
u2

i

)
�t

]
(8)

where ui is the local fluid velocity, relative to the mesh. This ensures
that, irrespective of the local spatial resolution, the RANS solution is
recovered when �t becomes large. This additional constraint is im-
portant in regions of abrupt near-surface mesh clustering, where the
temporal resolution would not permit those very fine scale structures
to be predicted accurately. (These structures would be on the order
of the smallest boundary-layer spacing in all directions, whereas
the global time step is typically set to match the larger cell spacings
away from the immediate near-wall region.)

The Smagorinsky subgrid-scale (SGS) model requires some form
of near-wall damping because, for any finite mesh spacing L�, the
nonvanishing strain rate would otherwise imply a nonvanishing tur-
bulent shear stress at the wall. In conjunction with the Smagorinsky
model, it has been common practice to employ ad hoc damping
functions based on distance to the wall. In the present LNS imple-
mentation, a single low-Reynolds-number damping function fµ is
shared by both RANS and LES component models. The use of a
single fµ function simplifies the definition of α:

α = min[(L .V )LES, (L .V )RANS]

(L .V )RANS
(9)

Using this definition of α in conjunction with Eq. (1), the gov-
erning equations behave as RANS if α = 1, or LES if α < 1. When
fine-grid regions are encountered by the LNS method, the scaling of
the predicted Reynolds-stress tensor by α causes the effective vis-
cosity to be instantly reduced to the levels implied by the underlying
LES subgrid model, with the local flow turbulence also experiencing
a decreased rate of production because of the reduced magnitude of
the stress-tensor components.

The energy fraction αk is interpreted as unresolvable subgrid
turbulence kinetic energy, which can only ever be modeled. The
(1 − α)k component is interpreted as resolvable turbulence kinetic
energy, which could be represented directly on the local mesh (see
Fig. 1). In LNS, the sum total of statistically represented turbulence
energy k(LNS) does not have the same meaning as k(RANS) in a
traditional RANS closure. In general, k(LNS) ≤ k(RANS).

Similarly, the quantity αε is interpreted as the dissipation that
applies to the unresolvable scales and the quantity (1 − α)ε is

Fig. 1 Turbulence energy spectrum partitioned into resolvable and
unresolvable wavelengths.
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interpreted as the dissipation or transfer rate, which applies to the
resolvable scales. For a linear, Boussinesq closure, these partitions
on k and ε imply µt = αµM

t , that is, that the eddy viscosity from a
conventional RANS model is simply scaled by α.

In the present work, the LNS model equations for the unresolved
stresses are based on a nonlinear k − ε closure (see Goldberg et al.15

and references cited therein), in which the Reynolds-stress tensor is
defined via a tensorial expansion, cubic in the mean strain and vortic-
ity tensors. Although there is no specific requirement on the baseline
RANS model within LNS, the cubic model used here helps ensure
realizability (a property that is required for the synthetic reconstruc-
tion in Sec. III) and has some theoretical advantages in situations
where the underlying RANS model is used to predict the onset of the
primary separation. The same expression for the anisotropy tensor
is currently used in both RANS and LES component models. The
governing equations are given as

∂ρ̄k̃

∂t
+ ∂ρ̄ũi k̃

∂xi
= ∂

∂xi

[(
µ + µt

σk

)
∂ k̃

∂xi

]
+ Pk − ρ̄ε̃ (10)

∂ρ̄ε̃

∂t
+ ∂ρ̄ũi ε̃

∂xi
= ∂

∂xi

[(
µ + µt

σε

)
∂ε̃

∂xi

]

+ (Cε1 Pk − Cε2ρ̄ε̃ + E)T −1
t (11)

In the preceding,
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A realizable turbulence timescale is defined as

Tt = (k̃/ε̃) max{1, ξ−1}

where ξ = √
(Rt )/Cτ , with Rt = k̃2/(νε̃) and Cτ = √

2. The eddy
viscosity is defined as

µt = αCµ fµρ̄k̃2
/

ε̃ (12)

with

Cµ = 2/3

A1 + S + 0.9�

c1 = 3/4

(1000 + S3)Cµ

, c2 = 15/4

(1000 + S3)Cµ

c3 = −19/4

(1000 + S3)Cµ

, c4 = −10C2
µ, c5 = 0

c6 = −2C2
µ, c7 = −c6

fµ = 1 − e−Aµ Rt

1 − e−
√

Rt
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{
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1

ξ

}

E = AEτ
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1
2 , (νε̃)

1
4
]√

ε̃Tt�τ
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{
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∂τ

∂x j
, 0

}
, τ = k̃

ε̃

From Eq. (9), the latency parameter α is defined for the current
choice of RANS and LES component models as

α = min

{
Cs

(
L�

i

)2
√

S∗
kl S

∗
kl

/
2

Cµk̃2
/

ε̃ + δ
, 1

}

(13)

with δ some small parameter,O(10−20), to allow α → 1 without sin-
gularities in low-Reynolds-number regions. The remaining model
constants are

A1 = 1.25, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0

σε = 1.3, Aµ = 0.01, AEτ
= 0.15, Cs = 0.05

The key distinguishing feature of LNS is that it contains no em-
pirical constants beyond those appearing in the baseline RANS and
LES models. Thus, the LNS framework is immediately able to ex-
ploit improvements in either RANS or LES modeling, by directly
inserting any enhanced component model.

III. Large-Scale Energy Transfer
Using Synthetic Turbulence

The energy partition in LNS (and, indeed, in any hybrid RANS/
LES) is closely reminiscent of that in earlier multiscale turbulence
closures, for example, Hanjalic et al.16 and Schiestel,17 in which the
turbulence energy is split into large- and small-scale components,
with separate dissipation or transfer rates applying to each. The
multiscale RANS approach recognizes that there can be a signif-
icant time lag between turbulence production via mean strain and
its eventual dissipation (into thermal energy) at the finest scales.
The computed dissipation at the largest scales (the 1 − α fraction
in Fig. 1) defines the rate of kinetic energy transfer between the
large and fine scales. Only the dissipation at the finest scales is able
to reduce the total turbulence kinetic energy. Likewise, in hybrid
RANS/LES, large-scale energy should not be instantly dissipated
to heat simply to satisfy the requirements of a reduced eddy vis-
cosity; however, this error is common practice in many existing
hybrid RANS/LES approaches (for example, see Refs. 1–3 and
6–11). Situations in which large-scale, statistically represented data
experience a locally refined mesh require that resolved-scale energy
be represented as such. Neglecting this fact (by simply dissipat-
ing k to reach some target subgrid stress level) results in a bypass
of the usual energy cascade, leading to a component laminariza-
tion, in which unresolved (modeled) stresses are suppressed, but
resolved-scale fluctuations are never initiated. The net result is an
underprediction of the total stress levels.

An important distinction between multiscale RANS models and
hybrid RANS/LES is the nature of the data within the largest and
smallest scales. In hybrid RANS/LES, turbulence energy in the
smallest scales is represented statistically, whereas turbulence en-
ergy in the larger scales is represented directly in the resolved veloc-
ity components. That distinction means that the transfer of data be-
tween the two scales is more complex than in the case of multiscale
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RANS closures because the transfer process must also involve a
translation between the two types of data representation.

Perhaps the most critical issue facing existing hybrid RANS/LES
methodologies occurs when a solution involving a RANS-type
boundary or shear layer experiences a sudden, isotropic, mesh clus-
tering. Although the model equations can switch to LES, if the data
on which the equations operate do not change accordingly, the result
will be a nonphysical drop in the time-averaged total stresses. As a
result of this obvious failure mode, several practitioners have advo-
cated the use of recycling, in which streamwise periodic boundary
conditions are applied locally, using a rescaling to account for any
boundary-layer growth (for example, see Fan et al.8). Although the
recycling approach has been used successfully in previous LES, it
faces considerable challenges in more complex geometries. Further-
more, it places an additional burden on the end user (who is required
to position the recycling boundaries), and it accounts only for large-
scale energy transferred through mean convection. Recycling cannot
account for large-scale energy transported through turbulent motion,
for example, across a near-wall RANS layer, which is a process typ-
ically modeled via diffusive transport. In this paper, we consider an
alternative to recycling at RANS/LES interfaces, which is based on
the use of a reconstructed, synthetic turbulence field.

There are two important types of interface to be considered. In
either case, these could occur with abrupt or gradual changes in
mesh resolution. The first case is the transfer into resolved com-
ponents of large-scale statistical energy, which is transported into
finer, isotropic mesh regions via mean or resolved convection. The
second case is the transfer from large-scale statistical energy, which
is transported via turbulent motions.

The difficulty in interfacing between RANS and LES in hybrid
calculations leads to the possibility of two unique failure modes,
which we refer to as component laminarizations. On coarser grids,
resolved motions might decay too quickly, leaving the RANS model
unable to support all stress levels via modeling.18 Experience sug-
gests that this failure is strongly dependent on several factors, includ-
ing spatial resolution, temporal resolution, and numerical method.
Conversely, on very fine grids the statistically modeled components
can vanish too quickly, leaving the LES unable to support all of the
stress levels of a full DNS. Because the RANS model generally has
no knowledge of the numerics employed, it seems improbable that
any given RANS component model will guarantee laminarization
at exactly the point at which the LES calculation becomes a full and
accurate DNS. This RANS-component laminarization is, however,
a serious difficulty only when approaching the DNS limit. Thus, in
practical calculations at even modest Reynolds numbers the more
likely mode of failure is that of the LES-component laminarization,
which could occur either through a gradual dissipation of the re-
solved structures or following transport into an isotropic, fine-mesh
region in which the resolved components were never directly rep-
resented in the first place.

Some of the preceding difficulties have been previously high-
lighted by Baggett19 and Nikitin et al.18 In hybrid RANS/LES com-
putations of channel flow, Baggett19 observed streamwise struc-
tures that were approximately three times too large. As a result,
Baggett19 suggested that hybrid RANS/LES might be inappropriate
for use with attached boundary layers. Smaller-scale perturbations
from the buffer layer appear to play a crucial role in breaking up the
larger-scale structures further away from the wall, and represent-
ing this effect on coarse meshes presents an interesting modeling
challenge. Nikitin et al.18 noted the LES component laminariza-
tion on coarse meshes, caused by a total dissipation of the resolved
structures. However, an interesting recent publication by Peltier and
Zajaczkowski20 suggests that an ad hoc random forcing can be suc-
cessfully used to maintain large-scale unsteady motion in the outer
portion of the boundary layer, thereby preventing the component
laminarization of the LES core region and maintaining the time-
averaged turbulence velocity profile. The methodology presented in
this paper provides a rational justification for the use of such forcing,
based on a spatially and temporally correlated synthetic reconstruc-
tion of the statistical turbulence energy, which diffuses across the
near-wall RANS layer.

Many approaches have been proposed for generating inflow con-
ditions for an LES. Possibly the simplest approach involves a su-
perposition of white noise on some mean velocity profile. A fur-
ther elaboration might be a white-noise signal that would reproduce
the single-point statistics. However, most previously reported at-
tempts in this direction have failed because of the rapid dissipation
of Nyquist-frequency signals by the subgrid treatment. An impor-
tant requirement in this synthetic reconstruction is for realistic spa-
tial and temporal correlations, which allow the maintenance and/or
regeneration of physical turbulent structures. Although a full set of
two-point correlations is generally not known, most RANS closures
do provide information on turbulence lengthscales and timescales,
which the synthetic model should mimic.

An early proposal for the generation of synthetic turbulence was
introduced by Kraichnan12 in his work on diffusion by turbulent ve-
locity fields. Kraichnan’s12 proposal was based on a sum of Fourier
modes and was limited to frozen, isotropic turbulence. More re-
cently, Smirnov et al.13 proposed the idea of a tensor scaling based
on a similarity transformation of the Reynolds-stress tensor that is
able to account for turbulence anisotropy—an essential property if
the time-averaged shear stress is to be reproduced. The proposal be-
low presents a simplified alternative to the Smirnov et al.13 method,
which avoids the need to compute similarity transformations:
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In the preceding equations, ai j is the Cholesky decomposition of
u′

i u
′
j and N (φ, ψ) implies a normally distributed random variable

with mean φ and standard deviation ψ . The preceding method is es-
sentially that proposed by Kraichnan,12 but with the additional tensor
scaling, which accounts for the anisotropy. The time and space corre-
lations are represented by scaling the time and distance coordinates
by using the local turbulence timescale τ and (anisotropic) velocity
scale cn taken as a tensorially invariant measure in the direction of
the modal wave vector dn . In the long time average, the synthe-
sized time-dependent flowfield will reproduce the imposed length
and time correlations and all second moments. This does not suggest
that it will match the full set of two-point correlations from DNS data
or experiment, but that the second moments and the average length
and time correlations from the RANS data will be preserved. Part
of our modeling assumption is that these scales are correlated with
the target anisotropy, for example, a larger u′u′ implies a stronger
correlation in the x direction. That assumption is regarded as rea-
sonable in the absence of any other information from the RANS
model. It is possible, however, that the reproduced length and time
correlations can end up smaller than desired if scaling parameters,
such as local timescales, velocity scales, and Cholesky-decomposed
matrices, undergo significant spatial variations of their own.

The reconstruction procedure requires, as input, the local stress
tensor and length scale and timescale of the turbulence, which is
information that can be extracted from the available RANS data.
Ideally, a Reynolds-stress transport model would provide the most
accurate description of the second moments; however, simpler real-
izable models are sufficient to recover the shear stress, and the cubic
k–ε model, currently used in LNS, is also capable of representing
normal-stress anisotropy. (Note that all elements of the Cholesky
decomposition are real if the target stress tensor is realizable.)
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Single-equation eddy-viscosity models, such as that used in the
original DES proposal,2 are not considered here because they pro-
vide no general means of estimating k. Additional modeling as-
sumptions or a modified set of DES equations might be used to
circumvent these issues, but such an approach is not pursued here.

Because each mode in the preceding Fourier model has an as-
sociated wavelength (the wave-vector modulus), it is possible to
reconstruct fluctuations over the full spectrum, or, by selectively
summing over each mode (for example, if cnτ/|dn| > L�), to re-
construct only that portion of the spectrum which corresponds to re-
solvable structures. In hybrid RANS/LES, small-scale fluctuations
are represented by the SGS model, and therefore the synthetic re-
construction is limited to wavelengths larger than that of the Nyquist
grid scale. Thus, no summation is made for mode n (its associated
trigonometric functions are simply not evaluated) if the modal wave-
length is unresolvable. As a result of the required filtering, the cost
of these additional trigonometric functions is negligible everywhere
other than at interface regions. The additional storage requirements
for this synthetic reconstruction relate only to the number of modes
and are independent of the grid size.

The energy extracted from this stochastic model of turbulence
can be determined analytically from the energy distribution used to
produce the initial sampling. Alternatively, this can be determined
numerically, by summing the contribution from each mode. For
example, by integrating over a sufficiently long period of time one
can obtain the following energy fraction for mode n:

k(n)

k
=

[(
pn

i

)2 + (
qn

i

)2
]

∑N
m = 1

[(
pm

i

)2 + (
qm

i

)2
] (15)

This theoretical fraction of energy drained from k is strictly cor-
rect only over a long time-integration period. In practice, the data
transfer is an instantaneous process, carried out in an operator split-
ting fashion prior to each time-integration step. Thus, in reality, the
transfer period is never sufficiently long to guarantee that the pre-
ceding theoretical fraction is reached. However, if there is a constant
source of statistical turbulence energy (fed in through convective or
diffusive transport) the extracted energy fraction will be correct on
the average.

It needs to be acknowledged that the reconstructed energy frac-
tion can differ from the (1 − α)k fraction determined by the LNS
method. Currently both fractions are used independently. The LNS
latency parameter is derived from a constraint that the shear-stress
blend continuously between that prescribed by the underlying turbu-
lence model and that of the underlying subgrid closure. Alternative
partitions can, of course, be derived using other modeling assump-
tions or alternative RANS/LES models.

IV. Application to Fully Developed Channel Flow
The case of plane channel flow is considered with periodic

spanwise and streamwise boundary conditions and a mean pres-
sure gradient imposed in the streamwise direction. All cases pre-
sented used the LNS method with the large-scale energy transfer.
This energy-transfer process is denoted Large-Eddy STimulation
(LEST). The first case presented is that of a Reτ (Reynolds number
based on friction velocity) equal to 2 × 103. The mesh consisted of
64 (streamwise) × 64 (normal to wall) × 32 (spanwise) points and
covered a domain of 2π × 2 × π . Clustering was imposed in the
normal-to-wall direction to ensure that y+ was approximately 1

2 . In
hybrid RANS/LES, y+ again takes its traditional meaning as a local
Reynolds number based on the friction velocity and distance �y
from the wall to the centroid of the first off-wall cell:

y+ = uτ�y/ν (16)

The calculation was started from an analytic profile for the steady
mean velocity and turbulence energy, with the large-scale energy
transfer immediately generating velocity fluctuations from these im-
posed conditions.

Numerical details were found to be much more important for this
case than for previously computed high-Reynolds-number separated
flows.3,4 A condition of Courant–Friedrichs–Lewy (|ui |) < 1 was
enforced in all cells away from the RANS layer and second-order
time stepping was used throughout, with residuals from the inner,
subiterations converged at least one order of magnitude at each
time step. Any form of upwinding was found to quickly dissipate
the resolved-scale structures, and therefore a 95% blend of central
differencing was used for the momentum equations. (Full second-
order upwinding was retained only for the transported turbulence
variables.)

Time averages were taken over approximately 20 flow-through
times. Figure 2 shows the total shear stress and its corresponding
contributions from the unresolved (modeled) and directly resolved
components. There is a curious tendency to create a very small in-
flection in the shear stress, which persists even after very many flow-
through times (even though this should be linear once it balances
the streamwise pressure gradient). Similar channel-flow calcula-
tions have been produced previously by Nikitin et al.,18 using the
basic DES model of Spalart et al.2 The significance of the present
calculations is that, for the first time, these simulations include a
continuous and automatic conversion of energy between the RANS
and LES data representations.

Figures 3 and 4 show the shear-stress and mean velocity pro-
files computed on a coarser mesh at Reτ = 395. Comparisons are
shown against the (unpublished) DNS work of Kim (1989). The
normal-to-wall resolution was, again, set to 64 points, with y+ < 1,
but the mesh spacing in the remaining directions was significantly
coarsened, leaving only 14 points in the streamwise direction and
only 7 points in the span.

At this extremely low resolution, the resolved-scale fluctuations
were quickly dissipated without the large-scale energy transfer. This

Fig. 2 Shear-stress profile from channel flow (64 ×× 64 ×× 32) at
Reτ = 2 ×× 103: LNS + LEST.

Fig. 3 Shear-stress profile from channel flow (14 ×× 64 ×× 7) at
Reτ = 395: LNS + LEST.
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Fig. 4 Mean velocity profile from channel flow (14 ×× 64 ×× 7) at
Reτ = 395: LNS + LEST.

Fig. 5 Channel-flow grid showing streamwise clustering.

problem was referred to earlier as a component laminarization (in
this case, a laminarization of the resolved-scale turbulence). In the
absence of any large-scale energy transfer, the difficulty that must
be anticipated is the quasi-steady boundary condition that the inner
(core) region of the channel flow will experience as a result of the
near-wall RANS layer. If the majority of the boundary layer is treated
with RANS, the remaining (resolved) kinetic energy can simply
become too weak to sustain itself, particularly in the presence of
the larger effective viscosity resulting from the RANS layer. This
situation leads to an underestimation of the total shear stress and
hence an incorrectly predicted mean velocity profile. This example
shows that the large-scale energy transfer is able to help sustain even
very coarse-mesh simulations of unsteady boundary layer flow.

V. Channel Flow with Streamwise Clustering
A channel flow at Reτ = 395 is next considered, with a grid of 25

(streamwise) × 74 (normal to wall) × 7 (spanwise) mesh points cov-
ering a domain of [−3π, 4π ] × [0, 2] × [0, π ]. Upstream, the grid is
heavily elongated to force RANS-like behavior in the first two rows
of cells. At x = π , the mesh is abruptly clustered in the streamwise
direction (Fig. 5). The subsequent streamwise spacing then roughly
matches that in the span and allows some of the larger-scale turbulent
flow structures to be directly resolved. The large-scale energy trans-
fer procedure immediately converts the larger wavelength modes of
the turbulence energy away from the channel wall into fluctuations
in the resolved velocity components.

Figure 6 illustrates the development of the streamwise vorticity
(shaded with the streamwise velocity component), showing the ini-
tiation of the resolved scales of motion downstream of the clustering
at x = π .

Time- and span-averaged probes were placed at locations 3h, 4h,
5h, 6h, 8h, and 10h in the streamwise direction. Figures 7–12 show
the total and component shear stresses at each of these streamwise
locations. Figure 7 shows the rake placed in the row of cells just
prior to the clustering—a row in which cells were still stretched
in the streamwise direction to enforce RANS behavior. The rake
shows no resolved stress contribution and only a very mild distor-
tion in response to the unsteady field downstream. Figure 8 shows
the results of the first rake downstream of the abrupt clustering.
The modeled shear-stress component is now suppressed toward the

Fig. 6 Instantaneous streamwise vorticity isosurfaces shaded with the
streamwise velocity component.

Fig. 7 Shear-stress profiles at x = 3h.

Fig. 8 Shear-stress profiles at x = 4h.

Fig. 9 Shear-stress profiles at x = 5h.
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Fig. 10 Shear-stress profiles at x = 6h.

Fig. 11 Shear-stress profiles at x = 8h.

Fig. 12 Shear-stress profiles at x = 10h.

channel centerline, but the resolved component is not sufficiently
well developed in that location. It is possible that disturbances in the
mean-strain field prevent a more rapid translation of the anisotropy
into resolved velocity components because of a constantly shifting
target Reynolds-stress tensor. Farther downstream, at locations 5h,
6h, 8h, and 10h (Figs. 9–12) the resolved (and hence total) stress
profiles improve slowly. (In the absence of the large-scale energy
transfer, no resolved shear stress is recovered.)

VI. Summary
This paper has considered extending the applicable range of hy-

brid RANS/LES models to include an automatic initiation of LES
fluctuations as RANS data are transported from coarse-mesh into
fine-mesh regions. This work was motivated by the neglect, in all
current hybrid RANS/LES variants, of the transfer between statis-
tically modeled and directly resolved components of the turbulence
kinetic energy, a transfer that should occur at any interface or region

in which the model equations switch (either gradually or abruptly)
from RANS to LES.

The energy transfer procedure also removes any need for the
user to impose unsteady initial conditions because any large-scale
(statistical) kinetic energy imposed will be automatically converted
into velocity fluctuations prior to the first integration step of the
solver. Because of the required filtering employed, the cost associ-
ated with the trigonometric function evaluations is negligible every-
where other than at interface regions.

This paper has specifically considered the interfaces created by
a downstream clustering, into which statistically represented turbu-
lence is convected, and the interfaces across a boundary layer, where
statistically represented energy is transported through turbulent mo-
tions from the near-wall RANS layer into the outer LES region.
Energy transfer into the resolved-scales automatically provides ap-
propriate inlet boundary conditions to embedded LES regions and,
at the coarser grid resolutions intended with hybrid RANS/LES,
helps maintain the unsteady motion within the resolved portion of
the boundary layer. The suggested procedure creates a synthetic field
of velocity fluctuations, which over a long time average achieves the
target second moments, timescales, and lengthscales from a given
set of RANS statistics. The procedure requires no additional trans-
port equations and only minimal additional storage. As input, it
requires a dissipation rate and a realizable set of Reynolds-stresses.
This information is directly available within the LNS model.

It should be emphasized that much of the presented material is
work in progress. The transfer from RANS to LES data does require
some transient period. It is likely that improvements can be made
to the synthetic turbulence model; however, even very accurate un-
steady inlet data would still require some transient period for the
solution to adjust to the new spatial and temporal resolution of the
given mesh and numerics. The situation is, of course, likely to be
worse for synthetic methods because there will be many properties
of the Navier–Stokes equations (in fact, an infinite number) that are
not satisfied by the synthetic reconstruction. There is also a question
of how the induced fluctuations are being damped by the (possibly
large) values of eddy viscosity in the remaining near-wall portion
of the boundary layer. Additionally, high-speed flows will require
further models for temperature and density fluctuations.
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