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Numerical Study of Transonic Buffet on a Supercritical Airfoil

Q. Xiao∗ and H. M. Tsai†

National University of Singapore, Singapore 119260, Republic of Singapore
and

F. Liu‡

University of California, Irvine, Irvine, California 92697-3975

The flow of the Bauer–Garabedian–Korn (BGK) No. 1 supercritical airfoil is investigated by the solution of the
unsteady Reynolds-averaged Navier–Stokes equations with a two-equation lagged k–ω turbulent model. Two steady
cases (M = 0.71, α= 1.396 deg and M = 0.71, α= 9.0 deg) and one unsteady case (M = 0.71, α= 6.97 deg), all with
a far-stream Reynolds number of 20 ×× 106, are computed. The results are compared with available experimental
data. The computed shock motion and the evolution of the concomitant flow separation are examined. Space-time
correlations of the unsteady pressure field are used to calculate the time for pressure waves to travel downstream
within the separated region from the shock wave to the airfoil trailing edge and then back from the trailing edge to
the shock outside the separated region. The reduced frequency so calculated agrees well with the computed buffet
frequency, supporting the signal propagation mechanism for buffet proposed by Lee (Lee, B. H. K., “Oscillation
Shock Motion Caused by Transonic Shock Boundary-Layer Interaction,” AIAA Journal, Vol. 28, No. 5, 1990,
pp. 942–944).

Nomenclature
a = speed of sound
c = chord length
E = total energy
e = internal energy
k = turbulent mixing energy
M = Mach number
t = time
t∗ = nondimensional time
U∞ = far-stream velocity
ui = velocity vector
xi = position vector
Pr = Prandtl number
Re = Reynolds number, ρU∞c/μ
α = angle of attack
β, β∗, σ, σ ∗, ε, ε∗ = turbulent closure coefficients
γ = ratio of specific heats
μ = dynamic viscosity
υ = kinematic viscosity
ρ = density
τi j , τ̂i j = Reynolds and total stress tensors
ω = specific dissipation rate

Introduction

S ELF-EXCITED oscillation has been investigated both experi-
mentally and computationally since the early work of McDevitt

et al.1 (e.g., Refs. 1–19.) Previous experimental and numerical stud-
ies of transonic flow over an 18% thick circular-arc airfoil have
indicated that the flow over a circular-arc airfoil exhibits varied
behavior depending on the flow conditions. Three distinct regions
of flight Mach number have been observed for a fixed freestream
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Reynolds number. Below a critical Mach number, the flow is steady
and characterized by a weak shock wave near the midchord with
trailing-edge flow separation. Above this critical Mach number, the
flow becomes unsteady with unsteady shock motions on the upper
and lower surfaces that are out of phase with each other. Shock-
induced separation appears in the flow. As the Mach number is
further increased, a steady shock reappears, and it is sufficiently
strong to induce flow separation.

Compared to the nonlifting circular-arc airfoil, the study of lift-
ing supercritical airfoils is at a lesser extent. Bartels7 and Bartels
et al.8 reported computational and experimental studies of the
NASASC(2)-0714 airfoil. An extensive set of data for the buf-
feting problem over the Bauer–Garabedian–Korn (BGK) No. 1
supercritical airfoil at transonic speeds was reported by Lee,9

Lee et al.,10 Lee,11,12 and Lee et al.13 The experiments were con-
ducted over a range of Mach number and angle of attack. A map
of the shock-induced trailing-edge separation regions together with
steady and unsteady pressure measurements was reported for var-
ious shock/boundary-layer interactions. The investigation of su-
percritical airfoil indicates that, unlike the circular-arc airfoil, the
supercritical airfoil has a much weaker trailing-edge separation and
experiences only one-sided shock oscillation.

The mechanism of the self-excited oscillation is not well
understood although the topic has been explored by several
researchers.11,13−19 The investigation on the biconvex airfoil sug-
gests that the transonic periodic flows are initiated by an asymmet-
ric unsteady disturbance. The shock-induced separation changes the
effective geometry of the airfoil, which causes the forward and rear-
ward movement of the shock depending on whether the streamtube
decreases or increases. The necessary but not sufficient condition for
the periodic flow to appear is that the shock wave be strong enough to
cause boundary-layer separation. The Mach number just upstream
of the shock should be in the range between 1.14 and 1.24. For the
supercritical airfoil,11 a model to predict the shock motion was for-
mulated. The model assumes that the movement of the shock leads
to the formation of pressure waves which propagate downstream
within the separated flow region. On reaching the trailing edge, the
disturbance generates upstream-moving waves, which interact with
the shock wave and impart energy to maintain the limit cycle. Un-
like the downstream waves, the upstream-moving waves travel in
the region outside the separated boundary layer. The period of the
oscillation should be the time for a disturbance to propagate from
shock to the trailing edge plus the duration for an upstream moving
wave to reach the shock from the trailing edge. No computational
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work of buffeting flow for this class of airfoils has been reported to
the authors’ knowledge.

In this paper, we present computational results of buffeting flow
over the BGK No. 1 supercritical airfoil as studied experimentally by
Lee,9 Lee et al.,10 and Lee.11,12 The computations are performed by
a finite volume method for the unsteady Reynolds-averaged Navier–
Stokes equations using a lagged k–ω model.20,21 The lagged model
proposed by Olsen and Coakley22 is used to remedy the inade-
quacy of the baseline k–ω model in dealing with nonequilibrium
turbulent flow, which is often the case for unsteady flow involving
shock-boundary-layer interaction. Self-excited oscillations of the
flow over the BGK No. 1 airfoil are reproduced computationally by
this method. The computational results are compared with the ex-
perimental data. Spatial correlations and Fourier transforms of the
unsteady disturbances inside and outside the separated boundary
layer in the region between the shock wave and airfoil trailing edge
are examined to confirm the proposed mechanism by Lee et al. In
the next section, the lagged k–ω turbulence model along with the nu-
merical method is outlined. Computational results and discussions
will then be presented. Finally, conclusions are drawn based on the
results.

Numerical Method
The governing equations for the unsteady compressible turbulent

flow are expressed as follows.
Mass conservation:

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0 (1)

Momentum conservation:

∂

∂t
(ρui ) + ∂

∂x j
(ρu j ui ) = − ∂p

∂xi
+ ∂τ̂ j i

∂x j
(2)

Mean energy conservation:

∂

∂t
(ρE)+ ∂

∂x j
(ρu j H) = ∂

∂x j

[
ui τ̂i j +(μ+σ ∗μT )

∂k

∂x j
−q j

]
(3)

Turbulent mixing energy:

∂

∂t
(ρk)+ ∂

∂x j
(ρu j k) = τi j

∂ui

∂x j
−β∗ρωk+ ∂

∂x j

[
(μ+σ ∗μT )

∂k

∂x j

]
(4)

Specific dissipation rate:

∂

∂t
(ρω) + ∂

∂x j
(ρu jω) =

(
εω

k

)
τi j

∂ui

∂x j
− βρω2

+ ∂

∂x j

[
(μ + σμT )

∂ω

∂x j

]
(5)

Turbulent eddy viscosity:

∂

∂t
(ρvt ) + ∂

∂x j
(ρu jvt ) = a(RT )ωρ(vtE − vt ) (6)

The total energy and enthalpy are E = e + k + ui ui/2 and H = h +
k + ui ui/2, respectively, with h = e + p/ρ and e = p/[(γ − 1)ρ].
Other quantities are defined in the following equations:

μT = ρvt (7)

vtE = ε∗k

ω
(8)

RT = ρk

μT ω
(9)

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(10)

τi j = 2μT

(
Si j − 1

3

∂uk

∂xk
δi j

)
− 2

3
ρkδi j (11)

τ̂i j = 2μ

(
Si j − 1

3

∂uk

∂xk
δi j

)
+ τi j (12)

q j = −
(

μ

PrL
+ μT

PrT

)
∂h

∂x j
(13)

a(RT ) = a0

[
(RT + RT 0)

(RT + RT ∞)

]
(14)

The other coefficients are as follows:

a0 = 0.35, RT 0 = 1, RT ∞ = 0.01

ε = 5/9, ε∗ = 1, β = 0.075

β∗ = 0.09, σ = 0.5, σ ∗ = 0.5

The validity of turbulence models for unsteady flows featuring buf-
fet and/or dynamic stall has received much attention lately. In the
early work of Levy,2 computations were done using the Baldwin–
Lomax23 model. Algebraic turbulence models such as the Baldwin–
Lomax model do not perform well for flows with large separations
(see Ref. 14). Barakos and Drikakis6 recently presented an assess-
ment of more advanced turbulence closures for transonic buffeting
flows over airfoils. Various turbulence closures such as the alge-
braic model, the one-equation model of Spalart and Allmaras,24

the Launder–Sharma25 and Nagano–Kim26 linear k–ε models, the
nonlinear eddy-viscosity model of Craft et al.,27 and the nonlin-
ear k–ω model of Sofialidis and Prinos28 were studied with limited
success. One difficulty in most turbulence models is the inability
to account directly for nonequilibrium effects found in separated
flows. The conventional one- and two-equation turbulence models
generate Reynolds stresses that respond too rapidly to changes in
mean flow conditions partially because of the need to accurately
reproduce equilibrium flows. As a result, these baseline turbulence
models give unsatisfactory results for flows with significant sepa-
ration under adverse pressure gradients or across shock waves. In
the preceding formulation, the standard k–ω turbulence model is
coupled with the lag model proposed by Olsen and Coakley22 to
calculate the turbulent eddy viscosity. The basic idea of the lag
model is to take a baseline two-equation model Eqs. (4) and (5) and
couple it with a third (lag) equation (6) to model the nonequilib-
rium effects for the eddy viscosity. Xiao et al.20 incorporated the lag
model with the baseline k–ω model and computed both steady and
unsteady transonic nozzle flows. Their computations show notable
improvements for strong shock cases, where strong nonequilibrium
effect is present.

The basic numerical method used to solve the preceding system
of equations is described in Xiao et al.20 and Liu and Ji.29 The inte-
gral forms of the conservation equations are discretized on quadric-
lateral cells using the finite volume approach. A staggered scheme
is used for the coupling of Navier–Stokes equations and the k–ω and
lag equations. A central difference scheme is used to discretize the
diffusive terms, and a second-order upwind Roe’s scheme is used for
convective terms in the Navier–Stokes and the k–ω equations. After
being discretized in space, the governing equations are reduced to a
set of ordinary differential equations with only derivatives in time,
which can be solved using a multistage Runge–Kutta-type scheme.
The dual time-stepping method is adopted here for time marching.
To accelerate the convergence, the unsteady multigrid method pro-
posed by Jameson30 and further implemented by Liu and Ji29 is
applied in the present study for all seven equations.

Computational Results and Discussion
The numerical method just presented is applied to the BGK No. 1

supercritical airfoil, which is extensively investigated experimen-
tally by Lee and coworkers.9−13 The geometry of the airfoil is shown
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Fig. 1 Geometry of the BGK No. 1 supercritical airfoil (from Ref. 9).

in Fig. 1. The experiments have been conducted at a chord Reynolds
number of 20 × 106 with free transition. The Mach numbers in the
investigation ranged from 0.5 to 0.792 with the angle of attack α
varying from 1.3 to 11.5 deg. Based on the measured force and
pressure power spectrum, strong shock oscillation are observed for
Mach numbers between 0.69 and 0.733. For the present numeri-
cal simulation, three test cases are investigated with a fixed chord
Reynolds number of 20 × 106 and Mach number of 0.71 at three dif-
ferent angles of attack; case 1, α = 1.396 deg; case 2, α = 6.97 deg;
and case 3, α = 9.0 deg. Based on Lee’s experimental results, the
flow is steady for the flow conditions of cases 1 and 3. For case 2,
however, the flow is unsteady with shock-induced oscillation.

The computations are performed by the following procedure.
Starting from the initial field, the flowfield solution is integrated
in time by using the dual-time-stepping method. The physical time
step, nondimensionalized by the freestream speed and chord length
is 0.05. After the initial development of the solution, the flow can
achieve a quasi-steady periodic condition, monitored by the time
history of the lift coefficient on the airfoil. Once the flow achieves a
periodic state, the lift coefficient and pressure distribution along the
airfoil are sampled at every iteration. A fast Fourier transform (FFT)
of the lift coefficient is then performed and the dominant frequencies
identified. The code is usually run for a length of 150 to 200 nondi-
mensional time (tU∞/c) to allow the solutions to become periodic.
All three cases are computed using three levels of multigrids with a
Courant–Friedrichs–Lewy number in the range between 3.0 and 7.0.

The computational grid has a C-topology. Most of the compu-
tations are performed on a 640 × 64 mesh with 512 points on the
surface of airfoil, 128 nodes in the wake. The computational do-
main extends approximately 20 chords up- and downstream. The
average minimum normal spacing at the wall is approximately 10−6

chord, which corresponds to a y+ value of about 0.6 for an unsteady
calculation at M = 0.71 with α = 6.97 deg. The no-slip boundary
conditions are imposed on the airfoil surface. At the outer boundary,
far-field Riemann invariant boundary conditions are employed, and
at the downstream all variables are extrapolated. A mesh indepen-
dence study is conducted for the unsteady calculation at M = 0.71
with α = 6.97 deg. The fine grid has 960 × 96 points, the medium
640 × 64, and the coarse grid 320 × 32. Time history of the lift co-
efficient, oscillation reduced frequency (defined as k = π f c/U∞),
and time-mean pressure distribution on the three meshes are com-
pared to one another. Figures are omitted to save space. It suffices
to summarize that large discrepancies exist between the solution on
the coarse grid and those on the finer grids for the time history of
Cl and the pressure distributions, although the predominant reduced
frequency (0.16) is not sensitive to the grid. This indicates that the
320 × 32 grid is not sufficient to correctly predict the flowfield. For
the medium and fine grid, the difference in pressure coefficient dis-
tribution is small except the shock captured by the fine-grid solution
appears to be sharper than that by the medium grid and closer to the
experiment. The computational results presented in the following
are obtained on the 640 × 64 grid.

As the initial conditions are different in the experiments and the
computations, it is important to investigate their influence on the
characteristics of the computed unsteady buffeting flows. Two test
cases are carried out for M = 0.71 and α = 6.97 deg. One starts
from a uniform flow, and the other starts from a convergent steady
solution for M = 0.71 and α = 1.396 deg. Computations reveal that
the time for the flow to reach a periodic solution is earlier for the

Fig. 2 Evolution of lift coefficient Cl of M = 0.71 and α= 1.30 deg.

Fig. 3 Mach contour of M = 0.71 and α= 1.30 deg; ΔM = 0.077.

calculation initialized with the convergent steady result. But once
the periodic state is reached, the time-mean lift coefficient and the
oscillation amplitude and frequency are found to be the same for the
two cases. The time-mean pressure distributions are also the same.

Case 1 (M = 0.71, α= 1.396 deg)
The experimental data for case 1 are M = 0.71 and α = 1.396 deg;

however, the computations use M = 0.71, α = 1.30 deg to account
for wind-tunnel corrections. The time-accurate evolution of the
lift coefficient Cl is shown in Fig. 2 with the computation start-
ing from the uniform freestream flow. The computed Cl eventually
approaches a constant around 0.66, which indicates that the flow
is steady without shock-induced oscillations. The Mach contours
shown in Fig. 3 reveal a weak shock formed at about one quarter-
chord of the airfoil without flow separation. The pressure coefficient
distribution along the airfoil upper surface is shown in Fig. 4 as well
as the experimental data of Lee et al.10 and the computational re-
sult obtained with the original experimental angle of attack. The
computation with the corrected angle of attack is closer to the ex-
periment. An overly downstream shock location is predicted by the
result without the correction.

Case 2 (M = 0.71, α= 6.97 deg)
The lift coefficient Cl evolution is presented in Fig. 5. The flow at

this condition develops into an unsteady mode with shock-induced
oscillation. The average lift coefficient is 1.03, which is close to the
experimental data of 1.016. Fourier analysis of the lift coefficient
shown in Fig. 6 reveals a predominant reduced frequency of 0.16.
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Fig. 4 Pressure comparison with experimental results: �, experiment;
——, computation for M = 0.71, α= 1.30 deg; and – – –, computation for
M = 0.71 and α= 1.396 deg.

Fig. 5 Evolution of lift coefficient Cl of M = 0.71 and α= 6.97 deg.

Fig. 6 Fourier analysis of reduced frequency for M = 0.71 and α=
6.97 deg.

This value is about 36% lower than the experiment of Lee et al.10

(k = π f c/U∞ = 0.25). The same code was used for the computation
of the buffeting phenomena of an 18% thick biconvex airfoil in Xiao
et al.,31 and the predicted oscillation frequency is close to both exper-
iments and other computations. The authors are not aware of other
computational results of buffet for the BGK No. 1 airfoil. Further in-
vestigations into the quantitative agreement of the computed buffet
frequency with experimental value are needed in future work.

Fig. 7 Time-mean pressure distribution on the upper surface of wall
comparison with experimental results: �, experiment and ——, com-
putation.

Fig. 8 Magnitude of pressure wave propagating: �, experiment and
�, computation.

Fig. 9 Phase angle of pressure wave propagating: �, experiment and
�, computation.

The time-mean pressure distribution along the upper surface of
the wall is shown in Fig. 7 along with the experimental data of Lee.
The computation is in good agreement with the experiment without
angle-of-attack correction.

The magnitude and phase angle (relative to the shock oscillation)
of the unsteady pressure at the E-T locations of the airfoil shown
in Fig. 1 (obtained by FFT of –Cp) are presented in Figs. 8 and
9, respectively. The computations show an increase in amplitude
with increasing x/c for x/c < 0.4, followed by a decrease within
the range of 0.4 < x/c < 0.6, and then almost constant values. The
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Fig. 10 Mach-number contour at different instant time in one period: M = 0.71 and α= 6.97 deg; ΔM = 0.095.

experiment, however, shows a continuous decrease of amplitude
before x/c < 0.4 and then a slight increase and a decrease with x/c.

Although there exist large differences of amplitude between the
experiment and computation, the agreement of the phase angle is
much better, as shown in Fig. 9. An important feature to notice is that
both results show a linear relationship between phase angle and the
streamwise location after x/c > 0.5. This suggests a traveling pres-
sure wave with a constant wave speed downstream of shock wave.

The origin and mechanism of self-excited oscillation in buf-
feting phenomena are not fully understood. A variety of con-
cepts are discussed in the literature, for example, mechanisms
related to the maximum Mach number ahead of the shock and
the separation bubble,17,18 and signal propagation in inner and
outer separated flow regions.11 We analyze our computational re-
sults to give insight into the oscillation physics by examining the
motion of the shock, its concomitant evolution of the separation
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Fig. 11 Streamline plots at different instant time in one period: M = 0.71 and α= 6.97 deg.

bubble, and the signal propagation path of the unsteady pressure
disturbances.

The Mach-number contours and streamline plots near the trailing
edge at different time instants during one oscillation cycle are shown
in Figs. 10 and 11. The t∗ = 0 corresponds to the time instant at which
the lift coefficient Cl is the minimum, and t∗ = 1 instant represents
one completed cycle. Unlike in the case of the nonlifting biconvex
circular-arc airfoil, the shock oscillation here occurs on the upper
side of the airfoil only. The shock motion is mainly of the type A
reported by Tijdeman.32 As seen from both figures, at t∗ = 0, a shock
occurs at a location of approximately one-quarter chord of the airfoil,
and there is a large separation region extending from x/c = 0.65
downstream to x/c = 1.35 in the wake region. At subsequent time
instants, the shock becomes stronger and moves downstream, and
the separated flow convects downstream and eventually disappears
on the top region of the airfoil about the time from t∗ = 0.1 to 0.2. At
a later time separated flow reappears, and a bulge can be observed
around x/c = 0.55 at t∗ = 0.3, which then forms a new vortex. At
the time instants of t∗ = 0.4 and 0.5, the bulge becomes larger, and a
large separation region appears at t∗ = 0.5. This also corresponds to
the instants of maximum lift. The shock reaches the most rearward
position at about t∗ = 0.5, which is followed by a forward movement
of the shock in the second half of the cycle (0.5 < t∗ < 1.0). The
shock strength, however, continues to decrease during this period,
which is indicated from the change of normal shock at t∗ = 0.4 to
oblique shock at t∗ = 0.8. In the subsequent time instants (t∗ = 0.6,
0.7, and 0.8), the vortex created at t∗ = 0.5 increases its size in both
upstream and downstream directions with a corresponding loss of
lift. A secondary vortex is also formed in the vicinity of the trailing
edge at t∗ = 0.7 and 0.8. The vortices coalesce and form one large
separation region, which decreases in size in the successive time
instants t∗ = 0.9 and 1.0. The cycle of separated flow and shock
movement then repeats itself.

The upper wall pressure distribution at different time instants dur-
ing one period is shown in Figs. 12a and 12b for the downward and
upward movements of the shock. The shock motion is clearly seen,
and large boundary-layer separation as a result of shock/boundary-
layer interaction occurs near t∗ = 0. The extension of the separation
region is also time dependent.

Clearly the shock motion and the evolution of the shock-induced
separation are intimately connected. Nevertheless, the cause-and-
effect relation of the two is not clear. In addition, this phenomeno-
logical description does not yield information about the buffet
frequency.

Lee11,12 and Lee et al.13 give an explanation of the mechanism
of self-sustained shock oscillation and a method to estimate the fre-
quency of oscillation. The model assumes that the flow behind the
shock-boundary-layer interaction to be fully separated. The move-
ment of the shock creates pressure waves, which propagate down-
stream in the separated flow region (Fig. 13). On reaching the trailing
edge, the disturbances generate upstream-moving waves in the re-
gion outside the separated flow as a result of satisfying the unsteady
“Kutta” condition. The upstream-moving wave interacts with the
shock and imparts energy to return the shock to its initial location.
The loop is then completed. The period of the shock oscillation is the
time it takes for a disturbance to propagate from the shock to the trail-
ing edge plus the duration for an upstream wave to reach the shock
from the trailing edge. This is given by the following formulation11:

Tp = Tp1 + Tp2 (15)

Tp1 =
∫ c

xs

1

ap
dx (16)

Tp2 = −
∫ xs

c

1

au
dx (17)
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Fig. 12 Unsteady shock movement during one period.

Fig. 13 Model of self-sustained oscillation (from Ref. 12).

where Tp1 and ap are the time and speed for the downstream pressure
wave propagation; Tp2 and au are the time and speed for the upstream
wave, respectively; and xs is the time-mean shock location. Vari-
ous empirical formulas have been proposed by Lee,11 Tijdeman,32

Erickson and Stephenson,33 Mabey,34 and Mabey et al.35 to estimate
ap and au or Tp1 and Tp2 based on the estimations of local Mach
number and speed of sound.

In the present study, this empiricism can be avoided because we
have the complete unsteady flowfield from the computation. Two-
point cross correlation of the unsteady pressure is used to deter-
mine the propagation direction and speed of the pressure fluctuations
along a given path. Within the separated region, the cross-correlation
analysis is conducted for the points E to T (shown in Fig. 1) along
the upper airfoil surface. Point T near the trailing edge is used as the
reference point. A cross-correlation coefficient R(x, y, τ ) for two

variables x and y with time delay τ can be defined as

R(x, y, τ ) = x ′(t)y′(t − τ)

x ′2 y′2
(18)

where x and y are the pressure fluctuations at the two points, and
x ′(t) and y′(t) are the fluctuating parts of x and y, respectively. The
overbar stands for time averaging, for example,

x̄ = limT → ∞

(
1

T

)∫ T

0

x(t) dt

Thus, we have

x(t) = x̄ + x ′(t), y(t) = ȳ + y′(t)

In practice, because we have limited signal length, we use the
cross-covariance function xcov(x, y) in MATLAB® to calculate
R(x, y, τ ). The results are shown in Fig. 14, where the positive
time delays obtained in Fig. 14 indicate that the pressure distur-
bances within the separated region behind the shock waves propa-
gate downstream toward the airfoil trailing edge. This is consistent
with the phase-angle distribution of the unsteady pressure on the
airfoil surface shown in Fig. 9. The local propagation speed of the
pressure disturbances can be calculated by dividing the spatial dis-
tances between the neighboring points of pressure measurement by
the time delays between the peaks of the corresponding cross cor-
relations shown in Fig. 14. The total time for a disturbance from
the shock wave to reach the airfoil trailing edge can then be inte-
grated by using Eq. (16). The time-mean shock position xs is 0.15
for this test case. Alternatively, ap can also be calculated by using
the phase delay between the points on the airfoil surface shown in
Fig. 9. The almost linear relation of the phase angles shown in Fig. 9
for x/c > 0.25 indicates a near-constant wave speed, which for this
case is about 0.12U∞.

Outside the separation region, pressure correlations are formed
along three different paths consisting of different selections of four
points A, B, C, and D, as indicated in Table 1. Point A is fixed
at the airfoil trailing edge for all of the three paths and is used

Table 1 Coordinates of off-body locations for
cross-correlation analysis

Path Coordinate A B C D

1 x/c 1.0 0.795 0.591 0.5
y/c 0 0.0873 0.118 0.125

2 x/c 1.0 0.795 0.591 0.5
y/c 0 0.112 0.136 0.138

3 x/c 1.0 0.795 0.591 0.5
y/c 0 0.126 0.157 0.157

Fig. 14 Cross correlation of the downstream pressure wave inside the
separation region.
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Fig. 15 Cross correlation of upstream wave.

as the reference point for all of the cross correlations. The cross-
correlation results are shown in Fig. 15. The negative time delays of
the successive points relative to each other indicate that the unsteady
disturbances propagate upstream from point A to point D. This is in
complete agreement with the hypothesis of Lee’s signal propagation
model. Results on the other two paths outside the separation region
show the same trends but with slightly different time delays between
peaks. The local wave speed of this upstream propagation can again
be calculated by dividing the spatial distances between the points
A, B, C, and D and the corresponding time delays in the pressure
correlations. The upstream propagation time Tp2 is then computed
by integration Eq. (17) along the path of A to D. The times so
calculated for the three paths shown in Table 1 are slightly different.
Integration along path 1 yields the shortest time. Lee11 reported the
existence of a maximum initial ray angle within which a disturbance
generated at the trailing edge can reach the shock wave. This angle
is called critical ray angle. The minimum propagation time Tp2 is
the time it takes a disturbance to travel from the source located
at the trailing edge to the shock wave along this critical ray. Our
computations indicate path 1 is close to the critical ray for this test
case.

It is shown from Fig. 14 that, inside the separated region, the pres-
sure disturbances propagate downstream from shock to the trailing
edge. However, negative time delay is observed in Fig. 15 for the
pressure outside the separation region, which indicates that the dis-
turbances are moving upstream. Lee’s signal propagation model11

suggests that the period of buffet is the sum of Tp1 and Tp2, from
which the reduced frequency (k = π f c/U∞) of buffet can be cal-
culated, where f = 1/Tp . For this test case we obtain k = 0.175.
The FFT of the computed lift coefficient gives k = 0.16. This excel-
lent agreement of the computed buffet frequency with that obtained
from the signal propagation hypothesis using the computational data
lends strong support for the mechanism of self-sustained oscillation
proposed by Lee.

Case 3 (M = 0.71, α= 9.0 deg)
Time-accurate computation of this case is performed starting from

the uniform freestream flow. The computed history of lift coefficient
shows the flow becomes steady again. The final steady-state Mach-
number contours and top wall pressure distribution show that the
shock is near the leading edge and a strong separation extends to the
trailing edge. The details of the computational results are omitted
here.

Conclusions
The unsteady Reynolds-averaged Navier–Stokes computation of

the self-excited oscillation on the BGK No. 1 supercritical airfoil
is conducted using the lagged two-equation k–ω turbulence model.
Pressure correlations of the computed unsteady flowfield are used
to calculate the signal propagation direction and speed within and

outside the separation region between the shock and the airfoil trail-
ing edge. Results confirm that pressure waves behind the shock
propagate downstream within the separated region. On reaching
the trailing edge, the disturbances generate upstream-moving wave
outside of the separated region. The period of the shock oscilla-
tion estimated as the total time for a disturbance to make such a
round-trip travel agrees well with that obtained directly from the
Fourier analysis of the computed lift coefficient, providing strong
support for the buffet model proposed by Lee11 based on a signal
propagation mechanism.
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