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Abstract

The separated flow behind an axisymmetric step at high subsonic regime is investigated numer-

ically and compared with the experimental data of Deprés et al.1. Firstly, it is shown that this

axisymmetric step flow has much in common with the two-dimensional facing step flows as regards

the shear layer instability process. Secondly, the statistical and spectral properties of the pressure

fluctuations are scrutinized. Close to the step, the surface pressure signature is characterized by low

frequencies f.Lr/U∞ = O(0.08) and an upstream velocity of 0.26U∞ while in the second half-part

of the recirculation higher frequencies fluctuations at f.Lr/U∞ ≈ 0.6 and a downstream convec-

tion velocity 0.6U∞ are the dominant features. The current calculation shows that the separated

bubble dynamics depends on very complex interactions of large eddies formed in the upstream free

shear layer with the wall in the reattachment region and whose corresponding shedding frequency

is given by f.Lr/U∞ ≈ 0.2. Besides, it has been observed that the secondary corner vortex experi-

ences a cycle of growth and decay. The correspondence between the frequencies of this secondary

corner vortex dynamics and the flapping motion (f.Lr/U∞ ≈ 0.08) suggests that there should be

different aspects of the same motion. Theses results show that there is an ordered structure in this

axisymmetric separating/reattaching flow which is dominated by large scale coherent motion. This

is confirmed by a two-point correlation analysis of the pressure signals showing that the flow is

dominated by highly coherent antisymmetric modes at the flapping and vortex shedding frequen-

cies whose signatures are evidenced in the spectrum of the computed buffet loads. Possible onsets

of a large-scale self-sustained motion of the separated area are finally discussed and the existence of

an absolute instability of the axisymmetric recirculation bubble originating from a region located

near the middle of the recirculating zone is conjectured.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

A. Context

The understanding of the structure of turbulent shear flows with separation and reattach-

ment is of major importance for the design and control of many engineering applications:

aerodynamic performance, structural loads or flight control among others. For example, a

massive and highly unstable separation occurs in the flow around the afterbody of a space

launch vehicle because of an abrupt change in the geometry of the first stage. These recircu-

lating areas are characterized by low pressure levels compared to the freestream conditions,

which dramatically increase the base drag. Furthermore, flow separation is a highly three-

dimensional process which can result in dynamic loads (also called side-loads) and might

disturb the launcher stability. Moreover, these fluctuations can excite a response of the struc-

tural modes called buffeting. As a consequence, a better knowledge of the unsteady flow

mechanisms involved in the buffet phenomenon2–5 is necessary for the design of afterbodies

of future launch vehicles.

B. Basic physics of afterbody flows

Two-dimensional mean flows featuring separation from sharp edge have been extensively

studied in the past numerically and experimentally. Nevertheless, only a limited amount

of experimental data on axisymmetrical afterbodies is available and only a few papers

are devoted to the unsteady properties of axisymmetrical afterbodies flows. Even on

the theoretical side, Roshko6 stressed the lack of a theory comparable to that of Von

Kàrmàn for the two-dimensional vortex street. As an example, Calvert7 investigated the

flow past a cone and observed that the periodic vortex shedding, clearly pronounced in

two-dimensional flows8, does not appear very prominent in an axisymmetric base flow. This

fact is also supported by the findings of Gai and Patil9 who evaluated on a subsonic blunted

axisymmetrical base several devices which have proved to yield significant drag reduction in

two-dimensional low-speed flows. They observed that these devices do not work as well as

in an axisymmetric flow because of the different nature between two and three-dimensional

wake flows. Experimental results on more complex axisymmetrical afterbodies have shown

that the wall pressure is highly dependent on the geometry (see the review by Délery
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and Siriex10). More recently, Deprés et al.1 have highlighted the differences featured

by several axisymmetric base flow configurations, depending on whether a downstream

reattachment of the free shear layer on a solid surface occurs or not. Therefore, two kinds

of flow reattachment can be distiguished depending on whether a solid surface is involved

in the reattachment process (solid reattachment, category II) or not (fluidic reattachment,

category I).

As an example, downstream of a blunt-based body, the flow is characterized by a mutual

interaction between the separating shear layers which results in the formation of large scale

vortices in the wake. The large scale structures in axisymmetric wakes have been investigated

experimentally for different bodies such as spheres, blunted-axisymmetrical base or circular

disks. According to the previous classification, this kind of flows belongs to category I and

has been mainly studied in low speed flows (see table I). Among them, Taneda11 showed

that a sphere in an uniform flow is subject to a side force at Reynolds numbers ranging

from 400 to 106 since the sphere wake is not axisymmetric. Berger et al.12 succeeded in

identifying three instabilities in the wake behind a sphere characterized by distinct Strouhal

numbers (StD = fD/U∞ based on the diameter of the sphere and the free stream velocity).

The first mode was observed at StD ≈ 0.05 and was attributed to an axisymmetric pumping

of the recirculating bubble. A highly coherent antisymmetric mode (referred to as mode

m = 1) at the vortex shedding frequency StD ≈ 0.135 defines the second mode. The last

mode at StD ≈ 1.62 was attributed to an instability of the shear layer. Constantinescu and

Squires13 used Detached Eddy Simulation (DES14) to investigate the flow around a sphere

for conditions corresponding to subcritical and supercritical regimes. They showed that in

the latter one, the wake is characterized by regular shedding of hairpin like vortices. On the

experimental side, Higuchi15 conducted exploratory flow visualization studies and observed

both axisymmetric and asymmetric wake structures behind a circular disk. Besides, Fuchs et

al.16 investigated the unsteady flow past a circular disk and got interested in the azimuthal

structure of the wake by the use of narrow-band two-point space correlation. They showed

that the wake is dominated by a vortex shedding possibly organized in a helicoidal structure

randomly oriented in the azimuthal direction. As far as axisymmetric blunt base flows are

concerned, the most well known feature is probably the static pressure which is found to

be nearly constant over the blunt surface (see the review by Délery and Siriex10). Unlike
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the static pressure behavior, Eldred17 observed that the rms pressure level is lower at the

middle of the base with Cprms = 0.007 and raises as r/R increases to reach Cprms = 0.015

at 65% radius. Deprés et al.1 observed right the opposite behavior since they found that

the maximum value of Cprms = 0.027 in the middle of the base and the minimum value

Cprms = 0.014 in the outer region.

Of interest a vortex shedding process was shown to exist in the wake at high subsonic

regime for high Reynolds numbers. Indeed, Flodrops and Desse18 investigated the wake of

an axisymmetric base flow thanks to hot-wire probes and a Strouhal number StD ≈ 0.2 was

clearly evidenced in their spectrum of streamwise velocity fluctuations. Nevertheless, the

wall pressure spectra do not exhibit any particular contribution at StD ≈ 0.2 but are rather

centered around StD ≈ 0.06. This was also observed by Calvert7 in the flow past a cone. In

addition, Merz et al.19 showed that the maximum backflow velocity Umax on the near-wake

centerline was 35−40% of the free stream velocity and was found at 60% of the recirculation

length Lr. Moreover, the centerline velocity distribution in the recirculation region exhibits

a similarity for all approaching subsonic Mach numbers and can be represented by a simple

expression derived from a correlation of data which expresses U/Umax = sinm [π (x/Lr)
n]

(with m = 0.612949 and n = 1.356915). It is now established20 that flows featuring strong

reverse flow areas are good candidates to support absolute instabilities. Indeed, to illustrate

this it is worthwhile remembering that Monkewitz21 conducted an incompressible stability

analysis of a family of axisymmetric wake profiles showing that the preferred instability mode

in the axisymmetric wake is a simple spiral which may be driven by a self-excited oscillation

of the wake. Weickgenannt and Monkewitz22 confirmed the helical vortex structure in the

wake of an axisymmetric base flow by using phase-locked measurements of the instantaneous

streamwise velocity field. More recently, Sevilla and Mart́ınez-Bazán23 conducted a linear

stability analysis in the wake of an axisymmetric body. They proved the existence of a

finite region of absolute instability in the near field of the wake which presumably triggers

the large-scale helical vortex shedding. These authors also showed that it was possible

to inhibate the vortex shedding of an axisymmetric body by blowing a certain mass flow

through the blunted base. It is well known since the early 1960s that the von Kármán

vortex street can be suppressed by using base bleed24,25, splitter plates26, suction, or other

geometrical manipulations. Such devices allow to avoid the absolutely unstable wake region

behind two-dimensional blunt bodies through the modification of the mean velocity profile
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in the separated region.

The second kind of base flow separations (i.e. of category II) occurs when the free

shear layer interacts with a solid wall through the reattachment process. There has

been a huge amount of quite detailed studies of separated turbulent (mainly low-speed)

flows behind backward facing steps (see the reviews by Eaton and Johnston27, Bradshaw

and Wong28), fences and flat plate leading edges (see table II). Two basic modes of

characteristic frequencies are found in all the abovementioned flow configurations. The

lower frequency mode reflects an overall growth/decay dynamics of the entire bubble or

shear-layer “flapping” as it is often called in the litterature. The higher frequency mode

is the Kelvin Helmholtz instability of the free shear layer. A second kind of vortical

motion is also observed and attributed to a vortex-shedding instability. The review by

Mabey29 on wall pressure fluctuations in recirculating regions covering a wide-range of

separating-reattaching flows has shown that a good scaling parameter is the size of the mean

separated bubble Lr. Indeed, the dominant flow unsteadiness is characterized by a Strouhal

number fLr/U∞ ≈ 0.6. Based on an analogy with cylinder vortex shedding, Sigurdson30

proposed an other frequency scaling based on the bubble height h and the velocity at the

separation point denoted by Us. He showed that non-dimensionalized shedding frequency

fh/Us ≈ 0.08 correlates well with unsteady data taken from a wide range of configurations

where the flow reattaches on walls. He stressed that this result may appear quite surprising

because separating bubbles reattaching on walls have symmetry imposed by the reflection

condition while Kármán vortex shedding is unsymmetrical.

However, less attention was paid to the analysis of the spatial organization of the fluc-

tuating pressure field in case of an axisymmetric separating/reattaching flow than to its

two-dimensional counterpart. One of the objectives of this study is to provide further in-

sight into the unsteady nature of an axisymmetric separating-reattaching flow.

C. Organization of the paper

The paper is organized as follows. In Sec. II we briefly present the numerical methods

and the modelling used. The characteristics of the test case are presented in Sec. III which

includes the description of the computational grids. The Reynolds-averaged data including
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the mixing layer properties and the wall pressure are compared with the available experi-

mental data and with those of classical backward-facing step flows in Sec. IV. The spatial

organization of the fluctuating pressure field is presented in Sec. V which includes spectral

and two-point analysis as well as the description of the resulting buffet loads. Finally, some

details of the self-sustained oscillation mechanism of this afterbody step-flow are discussed

in Sec.VI with the help of instantaneous visualizations and of a propagating disturbance

analysis.

II. NUMERICAL METHOD

A. General description

The solver FLU3M code developed by ONERA solves the compressible Navier-Stokes

equations on multiblock structured grids. The time integration is carried out by means

of the second-order-accurate backward scheme of Gear. In the present study, the Euler

fluxes are discretized by using a Roe scheme (third-order upwind biased). Further details

concerning the numerical method and implementation of turbulence models can be found in

references31,32.

The accuracy of the solver for DNS, LES and hybrid RANS/LES purposes has been assessed

in various applications including transitional flows around a two-dimensional wing profile

in near-stall conditions33, cavity flows at high Reynolds number34, synthetic jets in a cross

flow35 and afterbody flows4.

B. Zonal Detached Eddy Simulation

Because of the high Reynolds number of the flow under consideration, the approach used

in the present work is the Zonal Detached Eddy Simulation (ZDES)36 which is derived from

the classical Detached Eddy Simulation introduced by Spalart et al.14. The two approaches

mainly differ by the fact that within ZDES, the user has to select individual RANS and LES

domains while standard DES is a non-zonal approach. One of the objectives of ZDES is

to shield attached boundary layers from any modelled-stress-depletion issue (see the recent

discussion by Spalart et al.37) especially in presence of thick incoming boundary layers. This

approach is well-adapted when detachment occurs near the sharp edges of the body with
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associated large variations in velocity and pressure downstream. In all cases, these metho-

dologies are part of the RANS/LES family (for more details, see the review by Sagaut, Deck

and Terracol38).

The ZDES approach has been successfully used to predict the transonic buffet phenomenon

over a supercritical airfoil39, the flow around a high-lift configuration36 as well as to investi-

gate supersonic base flow aerodynamics under highly compressible conditions40.

III. TEST CASE

A. ONERA experiment

The afterbody retained for this numerical study was originally designed to be represen-

tative of a space launcher vehicle first stage. Nevertheless, some features detailed below

make this flow particularly well suited to investigate axisymmetric separating/reattaching

flows at high Reynolds number. The experimental study on axisymmetric base flows has

been carried out in the S3Ch continuous research wind tunnel of ONERA’s Chalais Meudon

center. The test section is square shaped, and the dimensions of the test chamber are

0.78× 0.78 m2. A detailed description of the experimental set-up, equipment, and results is

given by Deprés41 and Deprés et al.1.

The general configuration is an axisymmetric body of diameter D = 100mm prolongated

by an emergence of lower diameter and of finite downstream extension L such as L/D = 1.2

(see figure 1). It is immersed into a high subsonic flow with a free stream Mach number

of 0.702 leading to a Reynolds number based on the forebody diameter D of about ReD ≈
1.1 106. Besides, an ideal truncated contoured nozzle (TIC) is integrated in the extension

base center leading to an adapted supersonic jet characterized by a nozzle pressure ratio

NPR ≈ 34. In addition, the initial external boundary layer thickness δ was measured

using a pitot rake at X/D = −2.45 and the ratio δ/D was found to be equal to 0.2. The

model was equipped with both steady pressure taps and unsteady Kulite sensors to record

simultaneously the fluctuating wall pressures.
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B. Grids and description of the computation

The grid generation constitutes an important issue because the grid extension controls

which wavelengths can be resolved as well as the eddy viscosity level. A well-choosen grid

topology allows one to minimize the number of total grid points while achieving the proper

mesh distribution and maintaining the desired level of accuracy in the region of interest.

Therefore, the structured multiblock mesh is made up of 25 blocks and is based on an O-H

topology to avoid singularity problem near the axis. A cut-away view through the mesh

around the afterbody is displayed in figure 2. It is noteworthy that a special care has been

taken to achieve a good cell isotropy in the LES region (i.e. separated area). To assess

the effect of grid distribution on the averaged data, three grids have been built whose main

characteristics are gathered in table III. Grids M1 and M2 differ by the number of points

in a plane of symmetry while having the same azimuthal resolution. Grid M3 differs from

grid M1 by a higher azimuthal discretization.

As reminded in Sec II, within ZDES, the user has to select individual RANS and LES

domains. The nozzle flow as well as the attached boundary layer on the main cylinder (i.e. for

X ≤ 0) are explicitly treated in RANS mode to avoid any modelled stressed depletion while

the LES mode of DES is retained for X > 0. After the transient phase, the real unsteady

calculation begins allowing to collect statistics. The computation and post-processing of the

results are based on nondimensionalized flow quantities. The average procedure is performed

in time during the calculation. The CPU cost per cell and per inner iteration is less than

10−6s. The simulations are performed on a single processor of a NEC-SX6 supercomputer

and the code is running approximatively at 4 × 109 floating-point operations per second.

The time step is fixed to ∆tCFD = 2µs which corresponds to a non-dimensionnalized time-

step ∆t̃ = ∆tCFDU∞/H = 1.58 10−2 with 4 Newton inner iterations yielding a maximum

Courant-Friedrich-Levy number based on acoustic velocity (U+a) equal to 40 (located at the

separation edge). Temporal accuracy of the calculation was checked during the convergence

process of the inner-iterations (a drop of the residuals of at least one order is reached). The

useful unsteady calculation is performed over a total duration of T.U∞/H = 1500.
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IV. RESULTS AND DISCUSSION

A. Instantaneous and time-averaged flowfields

The main characteristics of the instantaneous flowfield are presented in Figure 3. The

turbulent structures are evidenced by showing a positive iso-value of the Q-criterion42. It

defines as vortex tubes the regions where the second invariant of velocity gradient tensor Q
is positive :

Q =
1

2
(ΩijΩij − SijSij) = −1

2

∂ui

∂xj

∂uj

∂xi

> 0 (1)

where Sij and Ωij are respectively the symmetric and antisymmetric components of ∇u.

One can notice at first the roll-up of azimuthal vortical structures which grow by pairing

and are rapidly replaced by large three-dimensional structures developing as the shear layer

approaches reattachment. Note also the occurrence of large scale hairpin vortices in the

reattachment zone.

This time dependent aerodynamic field is then time averaged during the calculation. The

streamwise velocity magnitude, streamlines and pressure coefficient contours are displayed

in figure 4. One can distinguish the recompression shock in the supersonic jet exhausting

from the nozzle as well as the base flow. The external flow expands at the base corner and is

followed by a recompression downstream of the base, which realigns the flow. A low-pressure

region is formed immediately downstream of the edge, characterized by a low-speed recircu-

lating flow region. A secondary vortex is also evidenced in the corner. Interaction between

this recirculating region and the external flow occurs through the free shear mixing region.

This averaged flowfield also shows strong backflow near the middle of the recirculation zone,

which reaches more than 30% of the free stream velocity at X/Lr ≈ 0.6 (see again the

results obtained by Merz et al.19 in the case of an axisymmetric base flow). According to

Mabey29, the mean reattachment length is an important scaling parameter for the present

flow study. It was found to be Lr/D ≈ 1.1 which is in accordance with the measurements

of Lê et al. and Coe (see table II). In their paper, Dépres et al.1 indicate that in the case

of an axisymmetric rearward facing step, the reattachment length was Lr/D ≈ 1.3 using oil

flow visualization. Moreover, they showed that the presence of the jet had no influence on

the rear-body pressure distribution due to the reattachment of the shear layer on the body
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which isolates the recirculating area from the jet.

B. Mixing layer mean flow analysis

Similarly to backward facing step flows, the free shear layer plays an important role

in the global dynamics of the axisymmetric bubble since the interaction of large eddy

structures (figure 3) with the wall in the reattachment region are formed in the upstream

free shear layer. Thus, this section focuses on some important properties of the separating

mixing layer and compare them with those encountered in other classical shear flows.

Therefore it is worth analyzing the streamwise evolution of the characteristic thicknesses

of the shear layer. Among them, the vorticity thickness is given by:

δω (x) = max
y

[
U∞ − umin

∂<u>(x,y)
∂y

]
(2)

where U∞ denotes the free-stream velocity, < u > (x, y) is the time-averaged streamwise

velocity and umin = min[y] (< u > (x, y)). One can also define the momentum thickness

θ (x, y):

θ (x) =

∫ +∞

ymin

< u > (x, y) − umin (x)

U∞ − umin (x)

(
1 − < u > (x, y) − umin (x)

U∞ − umin (x)

)
dy (3)

The streamwise evolution of the vorticity thickness is displayed in figure 5 which evidences

three regions. The first one is located between X/Lr = 0 and X/Lr = 0.2 where the growth

of the mixing layer is exponential as predicted by linear stability theory in the case of

planar mixing layers. At this stage, it is also worthwhile to remember the work by Husain

and Hussain43 who studied experimentally an axisymmetric mixing layer. They observed

that relevant parameters including spread rate, vorticity thickness and streamwise velocity

fluctuations were in both qualitative and quantitative agreement with planar mixing layer

results. The second region evidenced in figure 5 is wider and characterized by a nearly

linear rate dδω/dx = 0.36. This value is twice as high as those observed in classical planar

mixing layer since Ho and Huang44 found a growth rate equal to dδω/dx = 0.17 (assuming

a velocity ratio U∞−umin(x)
U∞+umin(x)

= 1). In our case, the low-speed side flow of the mixing layer is

highly turbulent due to the recirculation. Indeed, turbulent structures are reingested in the

mixing layer thus enhancing its growth. In the last region, i.e. for X/Lr ≥ 0.5, the mixing
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layer is strongly affected by the reattachment process and the vorticity thickness reaches

a plateau. This result is in accordance with the observations of Cherry et al.45 who found

that up to 60% of the separation length the mixing layer grows in relative isolation from the

effects of the rettachment process.

Figure 5 also displays the ratio between the momentum and vorticity thicknesses. The

peak observed near X/Lr ≈ 0.15 is due to the corner flow and more precisely to the definition

of umin appearing in eq. 3. Note that δω/θ lies in the range 4-5 for X/Lr ≥ 0.5. Castro

and Haque46 got interested in the properties of a mixing layer developing downstream of a

normal plate and observed that the ratio between the vorticity and momentum thicknesses

was close to 5. A similar value has been reported by Dandois et al.47 in the case of a rounded

ramp (δω/θ ≈ 4.7) and by Larchevêque et al.48 (δω/θ ≈ 5) who investigated cavity flows.

In addition, the peak of Reynolds stresses in the mixing layer can be compared with those

encountered in classical shear flows including planar and axisymmetric mixing layers as well

as fence and backward facing step flows (see table IV). The maximum level of urms/∆u

is close to those observed in two-dimensional backward facing step flows. However, the

maximum level of vrms/∆u is higher than in the experiments of Jovic49 and Chandrsuda and

Bradshaw50 but lower than in the experiment of Castro and Haque46. These latter authors

observed that normal stresses are always higher than in a planar mixing layer and concluded

that the re-entrainment of the recirculating fluid back into the shear layer is the dominant

mechanism explaining the maintenance of the high normal stresses. The differences between

the geometries and the associated amount of backflow reingested in the mixing layer can thus

partly explain the discrepancies observed in the peak normal stresses. Moreover, the maxi-

mum value of the shear stress
√
−u′v′/∆u is close to the value found by Castro and Haque46.

Finally, this axisymmetric step flow shares many similar features with the two-dimensional

backward facing step flows as regards the shear-layer instability process.

C. Mean and fluctuating pressure distribution

This section focuses on the wall pressure statistical properties along the emerging body.

To begin, figure 6 compares the computed streamwise evolution of the pressure coeffi-

cient Cp = P−P∞

q∞
(q∞ = 1

2
ρ∞U2

∞) with the experiment. Three different regions can be
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distinguished.

On the main cylinder (i.e. X/Lr ≤ 0), one can notice a slow decrease of Cp as the

streamwise location increases which highlights the upstream influence of the recirculation

region on the attached boundary layer. Indeed, the local flow adjacent to the body accel-

erates as the blunt base is approached. Merz et al.19 investigated the turbulent near wake

of a cylindrical blunt based body and observed that the influence of the near wake extends

at least three body diameters upstream of the separation point. The second region shows a

small decrease of Cp in the separation region from X/Lr = 0 up to X/Lr = 0.5 due to the

acceleration of the backflow. Note that the averaged Cp value in this region (Cp = −0.17)

is slightly higher than in the blunt base flow case (Cp = −0.14) in similar free stream

conditions (see table I). The last region is characterized by a strong recompression process

where the amplitude Cpmax is reached downstream of the mean reattachment point (at

X/Lr ≈ 1.1) which corroborates with earlier findings in two-dimensional backward-facing

step flows51,52.

Note that this pressure distribution is well reproduced by ZDES and that only small

differences are observed between the different grids.

The root-mean-square (rms) coefficient of the pressure fluctuation Cprms = P ′2/1
2
ρ∞U2

∞

(where P
′

is the fluctuating pressure) is shown in figure 7.

It increases steadily in the streamwise direction downstream of the base and reaches a

plateau just upstream of the mean shear layer reattachment location (Cprms ≈ 0.05) at

X/Lr = 0.8. Lê53 studied a similar configuration (L/D = 1.22 and M∞ = 0.8) and found

higher value of Cprms = 0.07. Mabey29 noted that this maximum seems relatively insensitive

to wide changes in Reynolds numbers. It is also worth noting that the rms value begins to

increase rapidly at about X/Lr ≈ 0.5, which is the location where the pressure coefficient

Cp also begins to rise (see figure 6). Hudy et al.54 reminded that this increase in rms is

likely due to the organized shear layer structures which get stronger and move closer to

the wall. Furthermore, the rms value decreases only slowly after reattachment. In the case

of two-dimensional backward facing step flows, Lee and Sung52 suggest that this implies

that a large-scale vortical motion persists after reattachment as we will be discussed in

the following. This characteristic behavior of the fluctuating pressure in the recirculation

region when solid reattachment occurs has been fully described by Mabey29 and is observed
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for many bubble type separations. For example, Coe55 measured behind a step on a body

of revolution at M∞ = 0.8 that the maximum fluctuating pressure level reached a value

Cprms = 0.06 and was located at X/Lr ≈ 0.73. Similar levels where also reported by Kumar

et al.56 (Cprms = 0.05) in the case of an axisymmetric step and Mabey57 (Cprms = 0.06) in

the case of a backward facing-step at M∞ = 0.33 (see tab II).

The experimental values have been obtained by integrating the pressure spectra for

normalized frequencies lower than StD ≤ 2. Hence, the computed statistical rms values

(i.e. defined over the all frequency range) are compared to the experimental values and

to the numerical values computed in the same way as in the experiment (i.e. integrated

for StD ∈ [0.02; 2]). One can notice that only minor differences between the two frequency

ranges are observed showing that frequencies higher than StD = 2 are negligible contributors

to the energy of pressure fluctuations.

Figure 7 also highlights the importance of grid refinement on the computed fluctuating

level. Indeed, calculations on grids M1 and M2 overestimate by nearly 40% the rms level

at reattachment though minor differences were observed on the mean field. Let us recall

that these grids differ by the number of points in a plane of symmetry while having the

same azimuthal discretisation (Nz = 97). A significant improvement is obtained with M3

grid which differs with grid M1 by a higher azimuthal resolution (Nz = 144). Figure 3 has

shown the roll-up of toröıdal eddies which are then destabilized by azimuthal instability

modes. This process may be altered by an insufficient azimuthal discretisation leading to

over-coherent structures resulting in too high fluctuating levels. This result reveals the

importance of the azimuthal discretisation when assessing fluctuating pressure levels in an

axisymmetric configuration since unsteadiness is mainly imposed by the annular shear layer.

V. SPATIAL ORGANIZATION OF THE FLUCTUATING PRESSURE FIELD

A. Spectral analysis

The Power Spectral Density (PSD) function of pressure fluctuations, named G(f) and

expressed in Pa2/Hz describes how the mean squared-value of the wall pressure previously

described is distributed in frequency58 since:

σ2 =

∫ ∞

0

G(f)df =

∫ ∞

0

f.G(f)d [log (f)] (4)
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Therefore, by plotting spectra as f.G(f)/σ2 in linear/log axis, one can obtain directly the

contribution to the total energy of the considered frequency band.

Figure 8 compares the spectra of wall pressure fluctuations for several stations along the

model to the experimental data. One can notice that the pressure spectra display different

frequency contributions depending on their position in the recirculation bubble. Indeed,

close to separation (at X/Lr = 0.148) where the amplitude of pressure fluctuation is weak

(see figure 7), the spectrum is dominated by a low frequency contribution since roughly

65% of the energy is contained at fLr/U∞ ≤ 0.12. This spectrum also displays a peak at

fLr/U∞ ≈ 0.08 close to what is observed in two-dimensional separating/reattaching flows

(see table II). This low frequency peak is often attributed51 to the “flapping” of the shear

layer and reflects the overall separation-bubble growth/decay dynamics. Cherry et al.45

noted that this low frequency scales best upon the reattachment length and identified the

motion as one related to the overall bubble scale. This point will be disccused in further

details in Sec. VI.

Moving farther downstream the spectra become dominated by a broadband high

frequency contribution since these organized shear layer structures which grow in strength

move closer to the wall before crashing against it and breaking into smaller scales. Note

also that this broadband contribution is centered around fLr/U∞ ≈ 0.6 which agrees with

Mabey’s57 earlier findings. This is the characteristic frequency of vortical structures seen

in free shear layers since StLr ≈ 0.6 corresponds to Stδω ≈ 0.132 (with δω/D ≈ 0.22 and

Lr/D ≈ 1.1 see figure 5). This value agrees well with the estimation of the local most

amplified frequency of a linear stability analysis in case of a two-dimensional mixing layer as

estimated by Huerre and Rossi59: fKH(x) ≈ 0.135.U/δω(x). In addition to this broadband

contribution, there is a weakly defined local maxima at fLr/U∞ ≈ 0.22 (or fD/U∞ ≈ 0.2)

especially near the middle of the recirculating area that will be discussed in the following.

Besides, the wall pressure spectra reflect the footprint of the propagating disturbances

in the aerodynamic field. To strengthen the interpretation of the different frequency

contribution in the pressure spectra, it is worth analyzing the spectral content of the

velocity field in a few stations of interest. Thus, figure 9 displays the spectrum of the

vertical velocity component for two points located in the shear layer. The first one is
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located 1.6 step heights downstream of the base and exhibits a peak at fLr/U∞ ≈ 0.06

characterizing the flapping of the shear layer, i.e. its vertical motion. This spectrum also

displays a broadband content at much higher frequencies which corresponds to the signature

of the shear layer instability process. The second point is still located in the shear layer

but is already affected by the reattachment region. The velocity spectrum for this sensor

clearly exhibits a peak near fD/U∞ ≈ 0.2 which can be attributed to a vortex shedding

phenomenon of the entire bubble as will be seen in Sec. VI.

The previous spectra have shown for several streamwise locations on the body, how

the energy is distributed in the frequency domain. Concurrently, it is now worthwhile to

assess which length scale contributes preponderantly to the low-frequency fluctuations of the

pressure field. Therefore, let us for instance consider the instantaneous aerodynamic field

in a section located normally to the inflow at an arbitrary time instant t0 in the second-

half of the recirculation zone at X/Lr = 0.67 as shown in figure 10. One can firstly notice

the mushroom-shape structures in the mixing layer reflecting the existence of streamwise

vortices (see the hairpin vortices in figure 3) as well as smaller scales in the backflow region.

Let us now consider the instantaneous azimuthal pressure distribution for three crowns of

sensors located respectively in the shear layer, in the middle of the recirculation zone and

near the wall. For each crown, one can compute the spectra of pressure fluctuations in the

azimuthal wave number GP
′ (kθ, t0) space as a function of the non-dimensionalized azimuthal

wave number kθ.P where P = 2πr denotes the perimeter of the crown located at the radial

position r. The occurrence of the several peaks in the mixing layer (see figure 10) reflects the

contribution of the structures characterized by their azimuthal wave number to the energy

of the instantaneous pressure field. These instantaneous spectra GP
′ (kθ, t) can then be

averaged in time to evidence which azimuthal length scale is, in a statistical sense, mainly

excited. It is noteworthy in the previous figure that these time-averaged spectra display a

peak at kθP ≈ 2 or in other words that the most contributing spatial length in the azimuthal

direction to the energy of pressure fluctuations involves two-points diametrically opposite.

This result is of primary importance due to its relevance to side-loads as discussed in the

following.
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B. Two-point analysis

The spectral analysis has highlighted different frequency contributions depending on the

location in the separated area as well as the azimuthal length scale contributions to the

energy of pressure fluctuations. To get further insight into the spatial organization of the

flow at these frequencies, one can consider the azimuthal coherence of two pressure sensors

p1 (r,X, φ1) and p2 (r,X, φ2) located in a plane normal to the inflow X ≡ constant and at

constant radius r ≡ constant. Assuming the hypothesis of an homogeneous flow, i.e. there

should not be any preferred angle of reference φ1, the complex coherence function may be

expressed as:

C (f, r,X, ∆φ) = (Cr + jCi) (f, r,X, ∆φ)

=
S12 (f, r, ∆φ,X)√

S1 (f, r, φ1, X) S2 (f, r, φ2, X)
(5)

where Cr and Ci are respectively the real and imaginary part of the cross-spectral density

function S12 and ∆φ = φ1 − φ2. Assuming now that the disturbances do not exhibit any

particular direction of propagation S12 (∆φ) = S12 (−∆φ) , the hypothesis of isotropy yields

Ci = 0. The Cr function is 2π periodic with respect to ∆φ and can be expressed thanks to

a Fourier transform in azimuthal modes:

Cr (f, ∆φ) =
∞∑

m=0

Cr,m (f) cos (m∆φ) (6)

Cr,m represents the percentage of the fluctuating energy at frequency f relative to the az-

imuthal mode m since
∑

m Cr,m = 1. In addition, the analysis of the non-symmetric mode

is of primary interest with view to the side-loads60 problem. Note also that no conditional

sampling of the natural occurring fluctuations is required. This analyzing technique has

been used by Fuchs et al.16 in the case of a flow past a circular disk and has been revisited

recently by Deprés et al.1.

Figure 11 shows the Cr,m spectrum for the axisymmetric mode (m = 0) and the anti-

symmetric mode (m = 1) for three different locations in the separated area. Let us remind

that the m = 0 mode is characterized by an inphase relationship of signals recorded simul-

taneously by probes facing each other. An anti-phase relationship characterises the m = 1

mode.

The m = 0 contribution is confined at low frequencies and decreases continuously

with increasing frequencies which is not inconsistent with a small-scale homogeneous and
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isotropic turbulence field. Of great interest is the spectrum of Cr,1 at X/Lr = 0.67 which

displays a peak near fD/U∞ ≈ 0.2 and shows that experimentally more than 50% of the

pressure fluctuations at this frequency are due to this anti-symmetric mode. According to

Fuchs et al.16, the mode m = 1 can be related to helical vortex structures randomly oriented

in the azimuthal direction. Although the time-averaged flow is axisymmetric, the occurrence

of this anti-symmetric mode seems to be a robust feature of axisymmetric flows. Indeed,

Deprés41 investigated experimentally the effect of the rear body extension and the presence

of a jet in the organization of the wall pressure field. He showed the existence of the m = 1

mode whether the separated shear layer interacts with a solid wall (solid reattachment,

present case), a supersonic jet or not (fluid reattachment). In this latter case, i.e. when

the flow is characterized by a mutual interaction between the separating shear layers,

Deprés et al.1 reported that the antisymmetric mode can contribute more than 90% to the

pressure fluctuations at the vortex shedding frequency. Both experimental1 and numerical

studies61 showed that this particular azimuthal correlation of the wall pressure fluctuations

still exist when the external flow interacts with a supersonic jet. Nevertheless the mode

m = 1 is then more weakly defined as in the case of a fluidic reattachment process(category

I) without jet. As noted by Deprés41, this result suggests a somewhat less organised

flow. This is partly due to the small scale turbulence generated by the interaction of the

free shear layer with a solid wall or with a supersonic jet (more or less acting as a solid wall).

C. Buffet Loads

In all cases, the occurrence of highly coherent antisymmetric fluctuations on the body

surface induces unsteady asymmetrical loads. These loads can be obtained by integrating

the unsteady pressure field on the rear body surface during the calculation. Figure 12

shows a typical polar plot of the side-loads (i.e. Fy(t) component of the load versus Fz(t)),

together with its α = 0.95 confidence ellipse which includes 95% of the observations and

whose boundary in R2 space is defined by:

(
F̃ − M

)t

C−1
(
F̃ − M

)
= 2 log (1 − α) (7)
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where F̃ = (Fy, Fz)t denotes the bidimensional random variable defined by its mean value

M =
[
Fy Fz

]t
and its covariance matrix C = F̃ F̃ t − MM t. One can notice the isotropic

(i.e. σFy = σFz and the ellipse becomes a circle) and random character of the fluctuating

side-load. The envelope of the loads is centered at zero since for an averaged axisymmetric

flow the buffet load is absent, that is Fy = Fz = 0. One can show (see the discussion

by Deck and Nguyen60) that this buffet load can be seen as a rotating vector uniformly

distributed within the interval [0, 2π] (i.e. no direction is privileged) and whose magnitude√
F 2

y (t) + F 2
z (t) follows Rayleigh’s law (particular case of a χ2 distribution with two degrees

of freedom). This last result simply means that the side-loads components are normally

distributed. Figure 13 presents the PSD of the Fy(t) component of the buffet load. More

than 80% of the energy of buffet loads are observed for normalized frequencies f.Lr/U∞ ≤ 0.5

and especially in the frequency band f.Lr/U∞ ∈ [0.15; 0.25] which contributes to 30% of this

side-load. A broad band contribution centered near f.Lr/U∞ ≈ 0.08− 0.1 is also evidenced.

These results are consistant with the two-point analysis which highlighted that the pressure

field on the rear body is anticorrelated at frequencies f.Lr/U∞ ≈ 0.08 and 0.2 (see figure

11). The higher frequency peaks are narrow and contribute weakly to the buffet load.

VI. FURTHER DISCUSSION ON SELF-SUSTAINED OSCILLATION

The first part of this study has revealed the occurrence of large scale coherent motions

resulting in self-sustained pressure oscillations. Many scenarii have been advanced by sev-

eral authors to explain the occurrence of self-sustained motions but only a few of them

have been supported with flow visualizations especially in the case of axisymmetric flows.

Among them, Cherry et al.45 investigated the dynamics of the separated bubble downstream

a blunt-face splitter plate. Thanks to instantaneous smoke visualizations, these authors ob-

served shedding of pseudo periodic trains of vortical structures. In the case of a turbulent

reattachment behind a backward facing step, Driver et al.51 observed an important contrac-

tion and elongation of the separated bubble due to the shortening and lengthening of the

reattachment length. It is also worthwhile to remind the work by Pronchick and Kline62

who proposed a qualitative model of the reattachment process. Based on visualization in

a low-velocity water channel, these authors distinguished two groups of structures in the

reattachment region: “overriding” and “interacting” eddies. The overriding eddies pass over
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the reattachment zone without being largely altered while the impinging eddies that strike

the wall lose their large-scale coherence.

In our axisymmetric case, the motion of the separated area is illustrated in figure 14

which presents a sequence of selected numerical schlieren snapshots. It appears clearly that

the separated bubble dynamics depends on very complex interactions of large eddies formed

in the upstream free shear layer with the wall in the reattachment region. One can firstly

notice the growth of the shear layer through the pairing process. The impingement zone is

then characterized by very large-scale, unsteady and three-dimensional eddies which exhibit

wide variations in scale and in trajectories. Conversely, no large-scale turbulent structures

are observed in the backflow. One may also notice the formation of very large eddies which

agglomerate (see instant t0 + 1.32ms) before being advected and which have a size are

comparable to the step height in the present case. It is also observed that the instantaneous

reattachment location moves over a distance up to 30% of the mean reattachment length (or

one step height) which is in accordance with the observations concerning two-dimensional

backward facing step flows. In his review, Simpson63 reminded that in this latter step flow

configuration, the short-time-averaged reattachment location deviates from the long-time-

averaged reattachment location by as much as ±2 step heights.

From figure 14, one now get an estimate of the frequency of this large scale motion

at 450Hz (i.e. StLr ≈ 0.2) which corroborates the peak observed in the spectrum in the

reattachment region at location X/Lr = 0.670.

It is also worth getting interested in the dynamics of the corner secondary vortex

which has so far received very little attention in the literature64 especially in axisymmetric

step-flows. In order to provide further insight into the behavior of the vortical flow in

the near-step region with reference to the low frequency unsteadiness, figure 15 displays

the instantaneous pseudo-streamlines and highlights the streamwise (u > 0) and reverse

(u < 0) flow areas. It is evidenced that the corner region is highly unsteady since at time t0

the size of the secondary vortex becomes of the order of magnitude of the step height. At

t0 + 2.72ms, the secondary vortex has almost disappeared while at time t0 + 5.4ms, both

primary and secondary vortex can be seen again, the size of the latter being comparable to

the step height. This secondary vortex dynamics influences the shear layer motion and one

can conjecture from figure 15, the existence of a cycling behavior (i.e. self-sustained motion)

whose frequency may be estimated by f ≈ 185Hz (i.e. StLr ≈ 0.08). This frequency
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corroborates the peak observed in the spectrum close to the step at location X/Lr = 0.148

(see figure 8). These results are in qualitative agreement with the findings of Spazzini et

al.65 in case of a two-dimensional backward facing step flow. Through flow visualizations,

these authors observed that the secondary corner vortex goes through a process of growing

until its size almost reaches the step height and then breaks down. The frequency of

this quasi-periodic motion was comparable to the flapping frequency (see table II). They

concluded that the correspondence between the frequencies of the flapping motion and the

secondary corner vortex dynamics suggests that there are different aspects of the same

motion. However, it is difficult to say which phenomenon really triggers the overall motion.

Self-sustained pressure oscillations have been observed for a wide range of spatially develo-

ping shear flows. Chomaz et al.66 remind that the origin of these self-sustained motions can

be either due to a hydro-acoustic resonance or driven by purely hydrodynamic means. The

first class of flows classically involves a spatially developing shear layer impinging a solid

surface located farther downstream which gives rise to monochromatic acoustic radiations

due to a feedback process. Cavity flows67, transonic buffet68,69 causing large-scale self-

sustained motion of a shock over the upper-side of an airfoil, etc belong to this kind of flow

regimes. The second class of self-sustained oscillations does not need any downstream body

and may appear when the flowfield exhibits a region of local absolute instability (see the

paper by Huerre and Monkewitz70 for a detailed description of the local and global instability

concepts). These classes of onset of self-sustained motions will be discussed respectively in

the two next sections.

A. Possibility of an hydro-acoustic feedback loop

The snapshots shown in figure 14 have already highlighted the occurrence of pressure

waves leading to possible feedback process. In this section, we briefly investigate such a

possibility.

A wide range of massively separated flows are characterized by shear layers exhibiting

self-sustained pressure oscillations. In most cases, this self-oscillating mixing layer impinges

upon a solid surface and a model based on acoustic resonance proposed by Tam71 (see also
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discussions in the papers by Rockwell72, Rockwell and Naudasher73 and Ho and Nosseir74)

is often used to get the characteristic frequency of the oscillation:

L
ud

+
L
a

=
n

f
(8)

where L represents the length over which the shear layer develops, a the speed of the sound

associated to the upstream travelling disturbance, ud the speed of the downstream travelling

wave and n = 1, 2, .. the stage of the oscillation (vortex pairing, wake oscillation, ...).

As an example Kiya et al.75 used this model to study the unsteadiness of the separated

bubble in the case of a blunt-faced splitter plate. These authors argued that when a vortex

impinges on the body surface in the reattachment region, an upstream travelling wave at the

sound velocity is generated. The pressure fluctuation is received by the flow at the sharp

separation edge, which modifies the roll-up instability process in the shear layer. More

precisely, the downstream perturbation with an average velocity ud arrives at the separation

point Lr at time Lr/ud. In their low-speed experiment ud << a and assuming n = 1, eq. 8

reduces to:

fsheddingLr/U∞ ≈ 0.5 (9)

Since this value is observed in a wide range of separation bubbles, Kiya et al.75 suggested

that this feedback mechanism is universal.

In our high-speed axisymmetric configuration, the hypothesis ud << a does not hold

any more. Nevertheless, L can be taken as the reattachment length Lr ≈ L and ud as the

advection velocity of structures in the shear layer ud ≈ χU∞, the use of eq. (8) yields:

StLr =
fLr

U∞
= n.

χ

1 + χM∞
(10)

Assuming χ = 0.6 (which will be determined in the next section) and M∞ = 0.702,

yields StLr = 0.42 for n = 1 and 0.84 for n = 2 which does not evidence the low frequency

contribution near the base. In other words, the low frequency motions at StLr = O (0.08)

and StLr = O (0.2) cannot be linked straightforwardly to an aero-acoustic feedback.

The occurrence of pressure waves in the outer field being advected upstream (see figure

14) is due to the impact of large structures being convected after reattachment on the wall
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with the supersonic jet acting as a fluidic wall. Let us remind that Deprés et al.1 showed that

the presence of the jet had no influence on the rear-body pressure distribution (including

spectral distribution) due to the reattachment of the shear layer on the body which isolates

the recirculating flow from the jet. The mechanism suggested by Kiya et al. relates to

the feedback of disturbances from the separation point to the reattachment. However, the

next section will show that the strongest feedback disturbances do not originate from the

reattachment point.

B. Analysis of propagating disturbances

The previous discussion (Sec V) has shown that an orderly structure exists in the present

axisymmetric separating/reattaching flow. It is dominated by a large-scale coherent motion

associated with anti-symmetric pressure fluctuations. The characteristic frequencies of this

self-sustained motion do not seem to be directly related to an hydro-acoustic feedback. In

order to get more insight into the origin of this self-sustained motion, the propagating wave

components of the wall pressure signature are investigated in this section.

Before proceeding further, it is worthwhile to look at the space-time characteristics of wall-

pressure fluctuations. Therefore, figure 16 exhibits the space-time contours of the instan-

taneous wall-pressure fluctuations normalized by the dynamic pressure q∞ = 1/2γP∞M2
∞.

This kind of representation allows to educe convective features denoted by an inclined con-

tour pattern and to show that the pressure fluctuations are the most energetic in the reat-

tachment region. This corroborates the high broadly distributed rms pressure levels near

the reattachment (see figure 7). Indeed, it has been shown in earlier studies (see for instance

Cherry et al.45, Kiya and Sasaki76, Lee and Sung77) that the instantaneous negative peaks

are associated with the passage of large-scale vortices while positive peaks are related to free-

stream inrush between the vortices. This figure also highlights the occurrence of upstream

(respectively downstream) propagating disturbances denoted by an inclined contour pattern

with negative (respectively positive) slope. The change in the direction of propagation of the

most energetic disturbances near the middle of the circulating zone are worth being noticed.

This important feature is similar to what Hudy et al.54 observed in the reattachment region

downstream of a fence. These authors got interested in the phase of the pressure signals
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and observed a phase-angle jump of about π near the center of the recirculating bubble.

To evaluate the velocity of the propagating disturbances, one may compute the frequency

wave number spectrum (f-k). The corresponding estimator Ψ (f, k) is based on the cross

spectrum Sxixj
(f) of space-time wall pressure signal between points xi and xj:

Ψ (f, k) = P (k)H M (f) P (k) (11)

where H denotes the Hermitian transpose and the interspectral matrix M and P are respec-

tively defined by:

Mij(f) = Sxixj
(f)

Pi (k) = e−(
√
−1kxi) (12)

The main interest of this estimator is that it allows to investigate non-equally spaced sensors

while a two-dimensional Fourier transform requires equally spaced sensors. Moreover, the

frequency wave-number spectrum enables to evidence multiple convection velocities while

phase data are inevitably contaminated by wave numbers that may not contribute to the

advective motion.

Figure 17 presents the computed frequency wave-number spectrum for respectively the

points located in the first half-part of the recirculation zone (i.e. X/Lr ≤ 0.5), points located

in the second half-part and finally for all the investigated sensors. This allows (see Hudy et

al.54) to determine more accurately the upstream and downstream propagating disturbances.

At positive wave numbers, one obtains a downstream propagating velocity Uc = 0.6U∞ which

from Uc = 2π/ (∆kx/∆f) where ∆kx/∆f is the slope of the line characterizing the convection

speed. This convection velocity corresponds to the shear layer structures signature at the

wall (see Refs.45,47).

At negative wave numbers, an upstream convective velocity of Uc = 0.26U∞ is depicted.

Note that this upstream propagating velocity is not evidenced in the spectrum for the

sensors located at X/Lr ≥ 0.5. This important feature also stressed by Hudy et al.54

provides evidence that the most energetic upstream propagating disturbances are confined

in the range X/Lr ≤ 0.5. In the case of a backward-facing step, Heenan and Morrison78 also

found from cross correlation, a negative convection as well as a positive convection in the

recirculation region close to the step. However, evidence of this upstream convection has

not been reported systematically (see Farabee and Casarella79 and Lee and Sung52). These
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latter authors performed multi-point pressure measurements downstream a backward-facing

step and computed a frequency wave number spectrum similar to the one in figure 17. They

found a stationary spatial mode (kx = 0) that they associated to the flapping motion while

no upstream convection velocity was depicted.

Hudy et al.54 remind that the process associating upstream and downstream travelling

disturbances originating from a common source in the middle of the recirculation zone

indicate the possible existence of an absolutely unstable flow region. Let us briefly recall

that a flow is termed convectively unstable if the disturbances grow in space, convecting

away from the source, whereas it is called absolutely unstable if the disturbances grow in

time and spread everywhere.

Wee et al.80 argued that the eddy shedding phenomena are due to inviscid characteristics

of the mean velocity profile. Then, they conducted a local stability analysis of a family of

velocity profiles issued either from a composite hyperbolic tangent function or a numeri-

cal simulation in the context of a separating shear flow downstream of a two-dimensional

backward facing step of height H. They showed that the largest growth rate of an absolute

instability is located near the middle of the recirculation and that the growth rate of the

absolute unstable mode is controlled by the amount of backflow. This important result is

also supported by the findings of Heenan and Morrison78. These authors used a porous wall

in the vicinity of the reattachment region to diminish significantly the amount of backflow

within the recirculation area. They observed that this weakening of the amount of backflow

resulted in a quasi-cancellation of the flow frequency peak associated with the shear layer

flapping and that the upstream convection motion discussed previously was removed.

Nevertheless, it is not clear whether the absolute instability is associated with vortex shed-

ding or shear-layer flapping. Indeed, Wee et al.80 showed that the corresponding frequency

of the absolute instability mode is determined as StH = fH/U∞ = O (0.1) (StH = 0.067

in their case) while Hudy et al.54 suggest the existence of an absolute instability at a lower

frequency of fH/U∞ = O (0.01) which is commonly attributed the shear-layer flapping.

Driver et al.81 noted in their backward facing step flow that it was not possible to define

precisely a frequency which separates the flapping motion from that of a vortical structure.

Let us recall that the self-sustained motion in our axisymmetric afterbody is observed at

StH = StD.H/D ≈ 0.06 which is in accordance with the findings of Wee et al. in the case of

a two-dimensional backward facing step flow. Nevertheless, the occurrence of cyclic motion
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concerning the secondary corner vortex at StH = StD.H/D ≈ 0.08 suggests there different

aspect of the same motion may be involved.

VII. CONCLUSION

Numerical simulations have been carried out on a compressible axisymmetric step flow

for a Reynolds number based on the diameter of the body nearly equal to 1.1 106. The

literature review has revealed that less attention was paid to the analysis of an axisym-

metric separating/reattaching flow than to its two-dimensional counterpart. The Reynolds

averaged data have been firstly compared with the available experimental data and with

those of classical backward facing step flows. It has been shown that this axisymmetric

step configuration shares many similar features with two-dimensional facing step flows

as regards the shear layer instability process and especially its strong growth rate. The

maximum of pressure fluctuations reaches a plateau just upstream of the mean shear layer

reattachment location (Cprms)max ≈ 0.05 − 0.06.

The spectral analysis of the pressure fluctuations has shown different frequency contri-

butions depending on the location considered in the recirculation bubble. Close to the step,

the spectrum displays a peak near a normalized frequency f.Lr/U∞ ≈ 0.08 which has been

shown to represent the footprint of the vertical motion of the bubble (often called shear

layer flapping). Unlike experiment, calculation provides the whole aerodynamic field and

allows in particular a deep analysis of the unsteady field. Through flow visualizations, it

has been shown that the reattachment length moves over a distance up to 30% of the mean

reattachment length whose characteristic frequencies is given by f.Lr/U∞ ≈ 0.2. Besides, it

has been observed that the secondary corner vortex experiences a cycle of growth and decay.

The correspondence between the frequencies of this secondary corner vortex dynamics and

the flapping motion suggests that there should be different aspects of the same motion.

In addition, it has been shown that the most contributing spatial length in the azimuthal

direction to the energy involves two-points diametrically opposite and that frequencies

f.Lr/U∞ ≈ 0.08 and 0.2 are strongly dominated by the antisymmetric mode m = 1,

although the flow is axisymmetric in a time-averaged sense. Theses results show that

there is an ordered structure in this axisymmetric separating/reattaching flow dominated
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by large scale coherent motions. As stressed by Fuchs et al.16, these large scale coherent

structures are more than just an interesting phenomenon since only anti-symmetric fluctu-

ations associated with the m = 1 mode contribute to the lateral force acting on the rearbody.

Finally, possible onsets of large-scale self-sustained motions of the separated area have

been discussed. We are inclined to rule out the hypothesis of aero-acoustic feedback pro-

cess between the separation and reattachment points. Indeed, the space-time characteristics

of wall-pressure fluctuations on the emerging body feature strong feedback disturbances

originating from the center of the recirculating bubble rather than from the reattachment

point. Frequency/wave-number spectrum analysis shows that the most energetic upstream

propagating disturbances are confined in the range X/Lr ≤ 0.5. Although evidence of

this upstream convection has not been reported systematically, the present axisymmetric

flow shares this characteristic feature observed by Heenan and Morrison78and Hudy et al.54.

These latter authors reminded that the process associating upstream and downstream trav-

elling disturbances originating from a common source in the middle of the recirculation zone

indicate the possible existence of an absolutely unstable flow region. A rigorous approach

to this aspect would consists in a global linear analysis of this compressible axisymmetric

step flow and will follow the present work.
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48 L. Larchevêque, P. Sagaut, T.H. Le, and P. Compte. Large-eddy simulation of a compressible

flow in a three-dimensional open cavity at high reynolds number. Journal of Fluid Mechanics,

vol 516, pp 265-301, 2004.

49 S. Jovic. An experimental study of separated/reattached flow behind a backward-facing step.

reh = 37000. NASA, Technical Memorandum 110384, 1996.

50 C. Chandrsuda and P. Bradshaw. Turbulence structure of a reattaching mixing layer. Journal

of Fluid Mechanics, vol 110, pp 171-194, 1981.

51 D.M. Driver, H.L. Seegmiller, and J. Marvin. Time-dependent bahavior of a reattaching shear

layer. AIAA J. vol.25, No.7, pp 914-919, 1987.

52 I. Lee and H.J. Sung. Characteristics of wall pressure fluctuations in separated and reattaching

flows over a backward facing step. Part I: Time-mean statistics and cross-spectral analyses.

Experiments Fluids, vol.30, pp 262-272, 2001.
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Figures
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FIG. 1: Schematic of the axisymmetric afterbody model.
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FIG. 2: Cut-away through the 3D mesh (M3 grid) around the afterbody (only one cell over two

are plotted in each direction ).
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FIG. 3: Coherent structures downstream of the axisymmetric step flow educed using iso-surface of

QU2
∞

D2 = 70.
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FIG. 4: Time-averaged flowfield. Upper-part: velocity profiles and iso-velocity (dotted) line

U/U∞ = 0.01 − 0.99. Lower part: iso-Cp (dashed) lines with ∆Cp = 0.02 between two lines.

38



FIG. 5: Vorticity thickness and ratio between vorticity and momentum thicknesses along the mixing

layer.
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FIG. 6: Streamwise distribution of the pressure coefficient.
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FIG. 7: Streamwise distribution of the coefficient of rms pressure fluctuations.
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FIG. 8: Pressure spectra along the step. .o., Exp.; , Calc.
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FIG. 9: Velocity spectra along the mixing layer.
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FIG. 10: Upper-part: instantaneous schlieren at X/Lr = 0.670 showing the location of each crown

of sensors. Lower part: spectrum of pressure fluctuation in azimuthal wave-number space at

X/Lr = 0.670.
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FIG. 11: Spectra of the two first azimuthal pressure modes Cr,0 and Cr,1 for three streamwise

locations. −o−, Exp.; , Calc.
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FIG. 12: Polar plot (dotted line) of the computed buffet load and 95% confidence ellipse (symbol)
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FIG. 13: Spectrum of the Fy buffet load component.
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FIG. 14: Numerical snapshots showing the dynamics of the separated region (numerical schlieren).

48



FIG. 15: Corner flow visualization at different times (from top to bottom: times t0, t0 +2.72 10−3s,

t0, t0 + 5.4 10−3s)
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FIG. 16: Space time contours of pressure fluctuations
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FIG. 17: Frequency-streamwise wave number spectrum. From top to bottom: using points located

at X/Lr < 0.5 - using points located at X/Lr > 0.5 - using all points located in the recirculation

bubble.
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ê
5
3

a
x
is

y
m

m
e
tr

ic
0
.7

−
0
.8

7
1
0
5

1
.3

0
.0

7
−

0
.1

3
9

C
p

r
m

s
=

0
.0

2
8
6

b
a
se

(L
/
D

=
0
.1

5
)

L
ê
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TABLE I: Summary of flow data sets featuring a fluidic reattachment (category I). D is the diameter

of the axisymmetric body and L stands for the length of an emerging body or splitter plate.
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TABLE II: Summary of flow data sets featuring a solid reattachment (category II). BFS: backward

facing step; SR: step on a body of revolution; FPLE: flat plate leadind edge; BCC: blunt circular

cylinder; BTE: blunt trailing edge. δ/H (resp. δ1/H) denotes the ratio between the incoming

boundary layer thickness (resp. displacement thickness) and the step height. D is the diameter of

the axisymmetric body and L is the length of an emerging body or splitter plate.
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Parameters Grid M1 Grid M2 Grid M3

Nx × Ny × Nz 5.5 106 7.0 106 8.3 106

Nz(∆φ) 97(3.75o) 97(3.75o) 147(2.5o)

Nx on the emergence (for 0 ≤ X ≤ L) 171 221 171

Ny on the base (for 0.2 ≤ Y/D ≤ 0.5) 70 85 70

TABLE III: Grid characteristics
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Author Topology urms/∆u vrms/∆u
√
−u′v′/∆u

Goebel and Dutton89 PML 0.220 0.150 0.130

Freund et al.90 AML 0.195 0.138 0.105

Jovic49 BFS 0.200 0.148 0.122

Chandrsuda and Bradshaw50 BFS 0.173 0.122 0.105

Castro and Haque46 F 0.244 0.244 0.158

present SR 0.200 0.180 0.141

TABLE IV: Comparison of peak Reynolds stresses in classical shear flows. PML: planar mix-

ing layer; AML: axisymmetric mixing layer; BFS: backward facing step; SR: step on a body of

revolution; F: fence flow.
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