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Numerical simulation of a compressible mixing layer past an axisymmetric trailing
edge is carried out for a Reynolds number based on the diameter of the trailing edge
approximately equal to 2.9×106. The free-stream Mach number at separation is equal
to 2.46, which corresponds to experiments and leads to high levels of compressibility.
The present work focuses on the evolution of the turbulence field through extra
strain rates and on the unsteady features of the annular shear layer. Both time-
averaged and instantaneous data are used to obtain further insight into the dynamics
of the flow. An investigation of the time-averaged flow field reveals an important
shear-layer growth rate in its initial stage and a strong anisotropy of the turbulent
field. The convection velocity of the vortices is found to be somewhat higher than
the estimated isentropic value. This corroborates findings on the domination of the
supersonic mode in planar supersonic/subsonic mixing layers. The development of
the shear layer leads to a rapid decrease of the anisotropy until the onset of streamline
realignment with the axis. Due to the increase of the axisymmetric constraints, an
adverse pressure gradient originates from the change in streamline curvature. This
recompression is found to slow down the eddy convection. The foot shock pattern
features several convected shocks emanating from the upper side of the vortices,
which merge into a recompression shock in the free stream. Then, the flow accelerates
and the compressibility levels quickly drop in the turbulent developing wake. Some
evidence of the existence of large-scale structures in the near wake is found through
the domination of the azimuthal mode m =1 for a Strouhal number based on trailing-
edge diameter equal to 0.26.

1. Introduction
The understanding of free shear flows is of primary interest as they include

numerous fundamental but also complex physics features and have been the focus
of many studies for decades. As reasonable knowledge of low-speed shear layers
was achieved, research interest was pushed toward the supersonic case thus revealing
strong differences with subsonic mixing layers. The major discrepancies appear to be
a reduction in the shear layer growth rate coupled with a decrease of the turbulent
Reynolds stresses magnitude. Such behaviour has been found to be a direct effect of
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the compressibility and the scaling parameter was found to be the convective Mach
number Mc (Bogdanoff 1983; Papamoschou & Roshko 1988). Mc was derived from
isentropic assumptions and is

Mc =
U1 − U2

a1 + a2

(1.1)

where the subscripts 1 and 2 respectively describe the high- and the low-speed
streams. An early interpretation of this stabilizing effect involved a reduction of
communication in the shear layer by Papamoschou (1990) and Breidenthal (1990).
First observed in experiments (Papamoschou & Roshko 1988; Papamoschou 1991;
Gruber, Messersmith & Dutton 1993; Barre, Quine & Dussauge 1994; Clemens &
Mungal 1995) it also has been highlighted by means of direct numerical simulations
(DNS) (Sandham & Reynolds 1989; 1991; Sarkar 1995 Vreman, Sandham & Luo 1996
Freund, Lele & Moin 2000; Pantano & Sarkar 2002). It has been demonstrated that
the normalized pressure–strain term decreases with increasing Mc. The consequence
of this compressibility effect is an energy transfer reduction from the streamwise
to cross-stream velocity fluctuations involving a decay of the turbulence production
term in the Reynolds stresses transport equation. From a theoretical point of view,
such an influence on homogeneous sheared turbulence has also been demonstrated
by Simone, Coleman & Cambon (1997) using linear rapid-distortion theory. The use
of linear stability analysis of compressible mixing layers gives the same conclusions
(Jackson & Grosch 1989; Sandham & Reynolds 1991).

It has been demonstrated that increasing Mc leads to a physical change in the
geometry of the large-scale structures. For Mc values less than 0.6, the instability
process is bi-dimensional with large spanwise correlated structures originating from
the Kelvin–Helmholtz (KH) instability. These spanwise rollers are quite easy to
follow in the flow field and phenomena such as pairing or merging can also clearly
be observed participating in the shear layer growth. For values above 0.6, oblique
waves compete with bi-dimensional instability modes. Finally, when Mc > 1, the
instability waves are three-dimensional and the growth rate of the most amplified
mode is greatly reduced compared to the bi-dimensional mode in low-Mc cases.
This shift in the instability process comes with a modification of the coherent-
structure shape in supersonic mixing layers. Moreover, these structures are difficult
to identify and to track due to their less coherent properties. Pairing and merging
processes, seem to be inhibited, at least in the initial stage of development of the free
compressible shear layer. Sandham & Reynolds (1991) observed λ-vortices staggered
in the streamwise direction at high Mc values. Another important finding of the
linear stability studies is the departure from the isentropic Mc model under highly
compressible conditions. Jackson & Grosch (1989) have highlighted the existence of
a slow mode and a supersonic mode at high Mc in addition to the neutral mode (also
called the central mode) already existing in the subsonic case. This explains some
experimental observations of asymmetric behaviour of supersonic mixing layers. In
the two-stream supersonic–supersonic case, the slow mode develops whereas in the
supersonic–subsonic case, the fast mode dominates.

In the case of axisymmetric supersonic shear layers, previous studies (Fourguette,
Mungal & Dibble 1991; Freund et al. 2000; Thurow, Ssamimy & Lempert 2003) have
demonstrated the three-dimensional shape of the turbulent eddies, as in the planar
case. Freund (2000) have performed direct simulations of temporally developing round
compressible jets in the early stages of their development. They observed a diminution
of the velocity fluctuations with the convective Mach number. This behaviour, similar



Compressible mixing layer past an axisymmetric trailing edge 217

to that encountered in planar shear layers, is somewhat reduced in the axisymmetric
case. However, the authors could not state if it was a direct effect of the geometry
configuration or due to greater turbulence intensity in the non-similar states of the jet.
Moreover, in their more compressible case (Mc = 0.87), Thurow et al. (2003) observed
a bimodal instability with the appearance of both slow and fast modes, which differs
from planar mixing layer studies.

However, in some specific cases, axisymmetric compressible shear layers can lead
to the occurrence of a wide range of phenomena coupled with complex interactions.
To investigate such flows, the separation process past a blunt-base axisymmetric
trailing edge is used to generate a supersonic annular shear layer. This particular
geometrical configuration involves an important modification of the whole flow field
compared to the canonical case. The separating process transforms the incoming
boundary layer into an annular mixing layer. On passing through the expansion
fan centred at the base, the developing shear layer is deflected toward the axis and
then grow on moving downstream. On approaching the axis, concave curvature effects
originating from the increasing axisymmetrical constraint appear. An adverse pressure
gradient then originates from the change in lateral streamline curvature leading to
the formation of a recompression shock in the free stream like that encountered in
ramp compression configurations (see for example Adams 2000). On passing through
the pressure gradient, the flow realigns with the axis and the axisymmetric mixing
layer transitions into a turbulent wake. Both the streamline curvature and the adverse
pressure gradient constitute extra strain rates (as defined by Bradshaw (1974) for
supersonic boundary layers studies) which can deeply alter the turbulence structure
of the flow field.

In the past, due to measurement difficulties, attention has been focused on the far
wake. For example, Demetriades (1968, 1976) has experimentally studied the far field
behind a slender axisymmetric body and found some evidence of the existence of
large-scale structures (organized structures have also been experimentally found in
subsonic axisymmetric wakes by Roberts (1973), Fuchs, Mercker & Michel (1979)
and more recently by Deprés (2003)). However, excepting the work of Gaviglio et al.
(1977), the near wake has been studied only very recently thanks to the improvement
of non-intrusive measurement tools. Such a case has been experimentally investigated
at the University of Illinois where this configuration has received particular attention
with the use of visualizations and laser Doppler velocimetry (LDV). A lot of work
has been done by Dutton and co-workers in postprocessing instantaneous snapshots
to gain insight into the vortex dynamics. However, the experimental nature of their
work prevent them from directly acquiring unsteady data in the separated flow field,
thus limiting our comprehension of such flows. During the last ten years, several
works have been devoted to the simulation of such a flow in order to improve
turbulence model predictions or to validate new hybrid numerical approaches (see
for example, Fureby, Nilsson & Andersson 1999; Forsythe et al. 2002; Baurle et al.
2003; Kawai & Fujii 2005). Unfortunately, these numerical studies have focused on
time-averaged results and none of them has been used to assess the unsteadiness
of the flow, except the study of Sandberg & Fasel (2006a, b) who investigated the
transitional wake at ReD = 100 000 with D the diameter of the trailing edge, with the
use of DNS and linear stability investigations. A major result is the coexistence of
convective shear layer instabilities and of an absolute instability of the recirculating
flow.

Numerical simulation is therefore a useful tool to go beyond the shortcomings of
the available experimental data as some questions remain open:
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(i) Does the initial part of the mixing layer behave as in the planar case? What is
the dynamics of the eddies in the developing shear layer?

(ii) How do the extra strain rates alter the turbulent field and the shear layer
dynamics?

(iii) The far field is known to be self-similar but what happens in the transition
region before the wake attains a fully developed state?

(iv) A characteristic feature of such a configuration is the existence of a subsonic
recirculating flow enclosed in the supersonic annular mixing layer. What role does
this bubble play in the shear layer dynamics and does a forcing through a feedback
mechanism exist?

The present work investigates the unsteadiness of the compressible shear layer
development past an axisymmetric trailing edge and the influence of extra strain rates
on the turbulence field by means of numerical simulation. The paper is organized as
follows. First the main features of the experimental setup and the test case will be
described. Then, the numerical code and the simulation methodology as well as the
mesh grid will be described. A mean flow analysis will be performed to investigate the
classical properties of supersonic base flows. In the two following sections, attention
will be focused on the description of the shear layer behaviour in terms of time-
averaged characteristics, coherent-structure dynamics and spectral analysis. Once the
shear layer has been investigated, the recompression region, the turbulent wake
development and the recirculation area will be successively considered.

2. Main features of the experimental setup
The supersonic base flow past an axisymmetric trailing edge was experimentally

investigated at the University of Illinois Gas Dynamics Laboratory by Herrin &
Dutton (1994a) for a free-stream Mach number M∞ equal to 2.46 and a Reynolds
number per metre equal to 52 × 106. The wind tunnel was specially designed for
axisymmetric base flow investigations and is of blowdown-type. Special care was
taken that the axisymmetry of the flow was not altered on the cylinder due to a slight
misalignment of the model. This test case has been chosen as a consequence of the
great amount of available data to validate the numerical results.

This bluntbase case was investigated using a two-component (LDV) system (Herrin
& Dutton (1994a, 1995). Conventional schlieren and shadowgraph photography were
also used to investigate the coherent-structure properties. Planar flow visualizations
(both side and end views) using the single-pulse, planar Mie scattering technique
have also been published by Bourdon & Dutton (1999, 2000) and Cannon, Elliott &
Dutton (2005). Mean-static pressure measurements and high-frequency measurements
using Kulite pressure transducers have been published by Janssen & Dutton (2004).

Also, the planar case (Smith & Dutton 1996; Messersmith & Dutton 1996; Smith
& Dutton 1999; 2001) and the boattailed-base case (Herrin & Dutton 1994b, 1995,
1997; Bourdon & Dutton 2001) have also received attention, thus providing additional
insight into the axisymmetric case.

A detailed description of the wind tunnel facility and of the experimental diagnostics
can be found in the above references.

3. Numerical procedure
3.1. FLU3M code

The multiblock Navier–Stokes solver used in the present study is the FLU3M code
developed by ONERA. The equations are discretized using a second-order- accurate
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upwind finite volume scheme and a cell-centred discretization. The Euler fluxes are
discretized by a modified AUSM+(P) upwind scheme which is fully described in Mary
& Sagaut (2002). Time discretization is based on second-order Gear’s formulation as
presented by Péchier et al. (2001). Further details concerning the numerical procedure
and the turbulence modelling may be found in Péchier et al. (2001) and Deck et al.
(2002). This numerical strategy has already been applied with success to a wide range
of turbulent flows such as the compressible flow over an open cavity at high Reynolds
number (Larchevêque et al. 2003, 2004) and transonic buffet over a supercritical
airfoil (Deck (2005a)).

3.2. Turbulence modelling

Because of the high Reynolds number of the flow, the methodology used in the
present work is the zonal-detached eddy simulation (ZDES) which is derived from
the classical detached eddy simulation (called DES97) introduced by Spalart et al.
(1997). These methodologies are part of the RANS/LES family (for more details, see
the discussion by Sagaut, Deck & Terracol 2006).

The model was originally based on the Spalart–Allmaras (SA) model which solves
a one-equation turbulence model for the eddy viscosity ν̃:

Dρ̄ν̃

Dt
= cb1S̃ρ̄ν̃ +

1

σ

(
∂

∂xj

(µ + ρ̄ν̃)
∂ν̃

∂xj

+ cb2

∂ν̃

∂xj

ρ̄ν̃

∂xj

)
− ρ̄cw1fw

(
ν̃

dw

)2

. (3.1)

The eddy viscosity is defined as:

µt = ρν̃fv1 = ρνt , fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
. (3.2)

The fw and fv functions are near-wall correction functions in the finite-Reynolds-
number version of the model and we refer to the original papers Spalart & Allmaras
(1992, 1994) for details on the constants and the quantities involved. For the current
research, the transition terms of the SA model allowing for a shift from a laminar to
a turbulent state were turned off.

What is important here is that the model is provided with a destruction term for
the eddy viscosity that contains d , the distance to the closest wall. This term, when
balanced with the the production term, adjusts the eddy viscosity to scale with the
local deformation rate S̃ producing an eddy viscosity given by:

ν̃ ∼ S̃d2. (3.3)

The idea suggested by Spalart et al. (1997) was to modify the destruction term so
that the RANS model is reduced to an LES subgrid-scale one in the detached flows.
They proposed to replace the distance d to the closest wall with d̃ defined by

d̃ = min(d, CDES�) (3.4)

where � is a characteristic mesh length. Away from the wall, if the destruction term
balances the production one, the eddy viscosity scales with the length � and the local
vorticity modulus S: νt ∼ S�2, then takes the form of Smagorinsky’s SGS-viscosity
νSGS ∼

√
2SijSij�

2, where Sij are the components of the strain tensor. Moreover, the
subgrid model behaves somewhat like a dynamic model because of the material
derivative and the diffusion term. Shur et al. (1999) have calibrated the CDES value by
performing homogeneous isotropic turbulence simulations using high-order schemes
and found a value of 0.65. The use of lower-order spatial schemes suggests lowering
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this value. In accordance with the previous statement and in agreement with previous
work (Simon et al. (2006)), the CDES constant was set to 0.55 in the present study.

Originally, we chose to define � as the largest of the spacings in all three directions

� = �max = max(�x, �y, �z) (3.5)

so that the model ‘naturally’ switches from the RANS behaviour in the grid region
typical of a boundary layer, i.e. d � �= max(�x, �z) ( y being normal to the wall)
to the LES behaviour away from the wall, i.e. � � d . Nevertheless, and from the
beginning, a special care was given to the region, named the ‘grey area’, where the
model switches, and where the velocity fluctuations (the ‘LES content’), are expected
to be not sufficiently developed to compensate for the loss of modelled turbulent
stresses. This can lead to unphysical outcomes, such as an under-estimation of the
skin friction, and so motivated, first, the publication of a paper (Spalart 2001) to
specify the character of DES97 meshes, and then, a modification of d̃ , presented as a
delayed-DES (Spalart et al. 2006), to extend the RANS mode and prevent ‘modelled-
stress depletion’. In order to remove this drawback, Deck (2005a, b) proposed a zonal
approach of the original DES, called zonal-DES or ZDES, in which RANS and DES
domains are selected individually. In RANS regions, the model is forced to behave
as a RANS model, while in DES regions, the model can switch from the RANS
mode to the LES mode by means of (3.4). The zonal approach is well-adapted to
treat free shear flows, as the user can focus grid refinements on the regions of interest
without corrupting the boundary-layer properties farther upstream or downstream.
For instance, in DES regions, the grid is designed to obtain nearly cubic cells. In these
regions, Deck also suggested adopting the classical characteristic length scale used in
LES and based on the cell volume:

� = �vol = (�x�y�z)
1/3. (3.6)

In addition, the near-wall functions of the RANS model are explicitly disabled in the
LES mode of DES regions (but not in the RANS mode) as follows (Breuer, Jovicic
& Mazaev 2003):

fv1 = 1, fv2 = 0, fw = 1. (3.7)

This choice avoids the low eddy viscosity levels typical of resolved LES regions being
treated as in boundary layers. The use of (3.6) and (3.7) in DES regions justifies
its notation being different from DES97. In practice, DES switches very quickly to
the LES mode thanks to (3.6) and (3.7). In this way, the LES mode is managed by
the transport equation of νt calibrated for free shear flows plus a destruction term
rescaling the subgrid-scale viscosity as a function of the mesh resolution. To complete
the closure of the RANS/SGS stress tensor, its deviatoric part τ d is linearly linked
to the deviatoric part of the resolved strain tensor:

τ d
ij = 2ρνt (Sij − 1

3
Sllδij ) (3.8)

while its isotropic part, whose trace equals 2/3 times the specific kinetic energy (of
the whole of the turbulence in RANS mode or under the gridscale in LES mode),
can be included in the pressure term and is often neglected with respect to it. In the
present work, the subgrid kinetic energy is neglected in the total energy equation.
This hypothesis is based on the work by Erlebacher et al. (1992) who demonstrate
that it is reasonable to neglect this term without compromising the flow physics
prediction in the case of turbulent Mach numbers Mt lower than 0.60. In the near
wake, the turbulent activity leads to Mt levels up to 0.40 when the resolved turbulent



Compressible mixing layer past an axisymmetric trailing edge 221

8R

10R

8.3R

xz

y

Figure 1. The computational mesh.

kinetic energy is considered (see figure 19). As at the same time, the SGS contribution
is very weak, this justifies the use of the present numerical model without altering
significantly the resolved flow physics.

It has successfully been used to calculate the transonic buffet phenomenon over
a supercritical airfoil (Deck 2005a) and the flow around a high-lift configuration
(Deck 2005b). The case of an axisymmetric separating/reattaching shear layer in the
subsonic regime has also been assessed recently (Deck & Thorigny 2007). In the
supersonic regime, a previous study has successfully examined the present separated
base flow (Simon et al. 2006).

3.3. Simulation overview

The present simulation was performed at a free-stream Mach number M∞ equal to
2.46 which corresponds to the experimental value. The free-stream velocity U∞, equal
to 593.8 m s−1, gives a Reynolds number Re approximatively equal to 2.9 × 106. The
free-stream pressure P∞ and temperature T∞ are respectively set to 31415 Pa and
145 K. The base radius R of the trailing edge is equal to 31.75 mm.

The computational mesh used in the present work is plotted in figure 1. The
cylinder length is equal to 8R in order to fit the experimental boundary layer height
δ at separation, while beyond the base, the computational domain extends to 10R.
In addition, the outside boundary is set to 4.15R from the axis of symmetry. These
dimensions are identical to those used in previous studies such as Forsythe (2002) and
Simon (2006). The grid includes nearly 20.7 million cells with 240 cells in the azimuthal
direction (1.5 degrees per plan). Behind the base, an O-H topology has been used in
order to avoid convergence problems and high CFL values on the axis. Moreover,
particular attention has been paid to the cells isotropy in the separated region where
the numerical model behaves in the LES mode. An a posteriori verification shows
that there are at least 15 points in the vorticity thickness in the early stages of
its development. On moving downstream, this resolution increases thanks to the
mixing-layer growth.

The temporal integration has been performed with four inner Newton sub-iterations
and a physical time step equal to 2 × 10−7 s. These choices lead to the decay of at
least one order during the convergence process.
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Figure 2. Supersonic base flow topology (iso-lines of pressure and computed streamlines).

The averaging process has been performed over a physical time equal to 75 ms
which represents slightly less than 80 flow-through times. Based on the estimation
of 1 µs per iteration and per grid cell, the simulation cost is equal to approximately
8650 CPU hours on a NEC SX6 processor. In addition to the time-averaged flow
field, nearly 430 sensors were also placed in all the relevant areas of the near wake in
order to measure the dominant frequencies of the flow. The sampling rate is equal to
250 kHz.

4. Validation
The time-averaged flow field is depicted in figure 2 which highlights the classical

topology of the near wake in supersonic blunt-base flows. The incoming turbulent
boundary layer separates at the base after passing through an expansion fan shown
by the iso-contours of pressure. The free shear flow transforms into a mixing layer
exhibiting high compressibility levels. On moving downstream, the mixing process
inside the shear layer leads to an equilibrium between the free stream and the low-
pressure region behind the trailing edge which represents the recirculating area (also
called the ‘dead-air region’ despite its unsteady nature). The streamline curvature in
the shear flow then decreases due to the axisymmetric constraint for 1.8 <x/R < 4.
On realigning with the axis, part of the incoming flow has enough momentum to pass
through the recompression and to be convected downstream into a turbulent wake.
The compression waves coalesce in the free stream and form a recompression shock.
The other part of the flow is pushed upstream thus forming a toroidal reverse flow
topology. This recirculating region extends to approximately 2.7R (= LR) which agrees
very well with the experimental value of 2.67R. The streamline which represents the
boundary between the recirculation region and the free stream is called the dividing
streamline and its intersection with the axis is named the rear stagnation point.

To validate the present simulation, the shear stress profiles, the main contributor
to the turbulence production, are compared to the experimental data in figure 3.
The results appear to compare favourably with the LDV data for all the locations
considered. The turbulent field is properly predicted, which demonstrates that all the
characteristic features of the flow physics are well-captured in the simulation and
corroborates the proper prediction of the rear stagnation point location.

As the present work is focused on the unsteady features of the flow, numerical
schlieren-like visualizations have been used by plotting iso-contours of ‖grad(ρ)‖.
Moreover, the existence of coherent structures in the flow field has been assessed with



Compressible mixing layer past an axisymmetric trailing edge 223

x/R

r–
R

0 1 2 3 4 5
0

0.5

1.0

1.5

Figure 3. Time-averaged shear stress u′v′/U 2
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Figure 4. Iso-surface of the Q criterion (Q = (D/U∞)2) and numerical schlieren-like
visualization (iso-contours of ‖grad(ρ)‖).

iso-surfaces of the Q criterion (Jeong & Hussain 1995):

Q = − 1
2
(‖S‖ − ‖Ω‖) (4.1)

with S and Ω denoting respectively the strain and the rotation tensor. It must be
recalled that this criterion is only applied to the resolved scales and that the vortex
shapes could be different if the whole flow field was considered. A positive value
of Q highlights the regions where the rotation exceeds the strain. An example
of such visualizations is depicted in figure 4 which presents an instantaneous
snapshot of the flow. The high-density-gradient areas are respectively the expansion
fan at the base and the recompression region. However, the recompression shock
pattern appears to be much more complex than in the time-averaged point of view,
denoting strong unsteady features. Numerous turbulent structures are educed thanks
to the Q criterion, with the occurrence of hairpin vortices. The eddies are highly
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Figure 5. Estimation of the number of structures in the azimuthal direction (dashed line,
simulation; �, experiment; grey area, RMS experimental value).

three-dimensional and appear to grow in size farther downstream leading to a
reduction of the number of vortices.

Figure 5 depicts the streamwise evolution of the number of eddies in the azimuthal
direction along the shear layer and the results are compared to the experimental data
of Bourdon & Dutton (2001).

Despite only one time instant being used for the present estimation, the numerical
observations compare well with the experimental results and properly predict the
reduction in the number of eddies as the recirculation area shrinks. This is further
evidence that the simulation can be used to investigate the vortex dynamics.

Thus, the present simulation exhibits most of the features observable in the
experiment and will now be used to obtain a better insight into the dynamics of
the flow.

5. Mixing layer analysis for 0 < x/LR < 0.60

5.1. Mean flow analysis

The time-averaged behaviour of the free shear layer was first investigated and
particular attention was paid to the mixing layer growth. Consequently, the vorticity
thickness δω has been used:

δω(x, θ) =
�U

(∂u(x, r, θ)/∂r)max

(5.1)

with �U = U1 − U2.

The evolution of δω behind the base is plotted in figure 6 where three distinct zones
can seen. The first region just after separation extends to approximately 0.3 x/LR and
exhibits a growth rate dδω/dx approximately equal to 0.25. This region corresponds to
the initial part of the shear layer where instabilities develop. On moving downstream,
dδω/dx increases until reaching a value equal to 0.38. This large value departs from
the classical values encountered in canonical shear layers. However, this quite high
spreading rate is due to the existence of the recirculating flow which involves high
turbulence levels on the low-speed side as already observed in planar incompressible
separating/reattaching flows (Dandois, Garnier & Sagaut 2007) as well as in subsonic
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Figure 6. Vorticity thickness evolution along the mixing layer.

axisymmetric cases under moderate compressibility (Deck & Thorigny 2007 and
Simon et al. 2007). For example, the latter showed that high values of the mixing
layer spreading rate are also observed in massively separated base flows for projectile
configurations in the subsonic and transsonic regimes. At x/LR ∼ 0.60, a strong
change in the mixing layer evolution is observed. The vorticity thickness becomes
nearly constant until the rear stagnation point at x/LR = 1 is reached. This shift in
the trend of the growth rate is due to the appearance of an adverse pressure gradient
when the flow starts to realign with the axis as observed in figure 2. It can be noted
that the numerical results agree fairly well with the experimental values extracted
from the LDV data.

For canonical shear layers, the vorticiy thickness growth rate can be defined by the
relation

dδw

dx
= Cδ

U1 − U2

U1 + U2

. (5.2)

However, due to the present configuration and the existence of recirculating flow,
this formula does not strictly hold and leads to a Cδ value which is dependent upon
the streamwise location (for dδw/dx ∼ 0.38, Cδ(x) varies from 0.14 to 0.16, the latter
being the classical incompressible value for planar shear layers).

For the purpose of better understanding the turbulence field modifications, the
streamwise evolution of the peak Reynolds stress magnitudes |u′

iu
′
j |max/U 2

∞ have been
investigated. Figure 7 presents the primary shear stress and both the axial and radial
components of the stress tensors.

The −u′v′/U 2
∞ component results compare fairly well with the experimental data. In

accordance with the shear layer growth, the primary Reynolds shear stress magnitudes
rise by a factor of 2 between x/LR =0.05 and 0.6. The onset of the recompression
region appears to deeply alter the turbulence field as the primary stresses start to
monotically decrease from this location. This is consistent with the observations of
Herrin & Dutton (1997) and confirms that the turbulence immediately reacts to the
pressure gradient which constitutes an extra strain rate, and contrasts with conclusions
about subsonic flows.

The evolution of the streamwise component u′2/U 2
∞, depicted in figure 7(b) can

be divided into four regions. For 0.05 <x/LR < 0.2, it decreases by nearly 16%.
Then, its magnitude remains constant until x/LR =0.45. Downstream of this point,
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Figure 7. Longitudinal evolution of the peak Reynolds stresses: (a) −u′v′/U 2
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∞
and (c) v′2/U 2

∞.

u′2/U 2
∞ increases until the onset of recompression. Once again, the axial normal stress

responds instantaneously to the adverse pressure gradient. Figure 7(c) presents the
evolution of the radial normal stress. Its magnitude is less than that of the axial stress
and corroborates the finding of the domination of streamwise velocity fluctuations in
such flows (see for example Olsen & Dutton 2003; Goebel & Dutton 1990, Samimy &
Elliot 1990, Urban & Mungal 2001); it exhibits a different behaviour than u′2/U 2

∞ in

the initial stage of the shear layer. The magnitude of v′2/U 2
∞ is found to increase until

the recompression point is reached. Although not shown here, both the magnitude
and evolution of w′2/U 2

∞ are similar to those of v′2/U 2
∞.

Table 1 summarizes some interesting properties of the turbulent field encountered
in classical shear flows as well as those encountered in the present simulation. It
illustrates the decrease of the fluctuation magnitude with Mc in canonical shear flows
while the anisotropy is found to increase.

Because of the different evolution of the peak Reynolds stresses along the mixing
layer, it is interesting to investigate some particular ratios which depict the structural
changes of the turbulent field due to the application of the extra strain rates.
Figure 8(a) depicts the evolution of the Reynolds stress anisotropy through a primary-
to-secondary stress ratio (σu/σv)

2 and a secondary-to-secondary stress ratio (σw/σv)
2.

These ratios, measured at the peak shear stress location, exhibit two distinct trends.
The first ratio underlines the domination of the axial stress in the whole turbulent field.
However, (σu/σv)

2 is nearly equal to 3 downstream of separation and quickly decays to
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Topology EXP SIM Mc urms/�u vrms/�u
√

u′v′/�u vrms/urms

√
u′v′/urms

Friedrich & Arnal(1990) BFS x – 0.224 0.141 0.126 0.629 0.562

Bell & Mehta (1990) PML x ∼0.00 0.18 0.14 0.10 0.777 0.555

Jovic (1996) BFS x ∼0.02 0.2 0.148 0.122 0.74 0.61

Olsen & Dutton (2003) PML x 0.02 0.18 0.16 0.10 0.888 0.555

Chandsruda & Bradshaw (1981) BFS x ∼0.04 0.173 0.118 0.105 0.682 0.607

Goebel & Dutton (1990) PML x 0.20 0.22 0.15 0.13 0.682 0.593

Freund, Lele & Moin (2000) AML x 0.20 0.195 0.138 0.105 0.708 0.538

Urban & Mungal (2001) PML x 0.25 0.17 0.13 0.109 0.765 0.644

Pantano & Sarkar (2002) PML x 0.3 0.17 0.134 0.103 0.788 0.606

Olsen & Dutton (2003) PML x 0.38 0.19 0.13 0.10 0.684 0.526

Goebel & Dutton (1990) PML x 0.46 0.17 0.17 0.10 0.588 0.588

Samimy & Elliot (1990) PML x 0.51 0.16 0.11 0.089 0.687 0.556

Urban & Mungal (2001) PML x 0.63 0.16 0.09 0.089 0.562 0.556

Samimy & Elliot (1990) PML x 0.64 0.15 0.10 0.088 0.666 0.586

Goebel & Dutton (1990) PML x 0.69 0.18 0.078 0.083 0.429 0.461

Pantano & Sarkar (2002) PML x 0.70 0.153 0.103 0.087 0.673 0.568

Urban & Mungal (2001) PML x 0.76 0.151 0.082 0.088 0.543 0.583

Goebel & Dutton (1990) PML x 0.86 0.18 0.065 0.081 0.365 0.45

Freund, Lele & Moin (2000) AML x 0.99 0.190 0.088 0.086 0.463 0.453

Goebel & Dutton (1990) PML x 0.99 0.18 0.053 0.076 0.283 0.422

Pantano & Sarkar (2002) PML x 1.10 0.141 0.095 0.083 0.674 0.588

Freund, Lele & Moin(2000) AML x 1.80 0.205 0.055 0.063 0.268 0.307

Present simulation x 0.140 0.117 0.106 0.836 0.714

Table 1. Comparison of peak Reynolds stresses in classical shear flows: PML denotes planar
shear layer, AML axisymmetric mixing layer, and BFS backward-facing step
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approximately 1.2 at x/LR = 0.5, denoting a larger growth of the radial fluctuations
compared to the longitudinal ones. Farther downstream, this value remains constant
through the recompression process and the developing wake, assuming that some
equilibrium state has been reached. The 1.2 value is significantly lower than in planar
shear layers mentioned in table 1. However, in the present case, both high- and low-
speed stream characteristics evolve in the streamwise direction due to the existence
of the recirculating flow. Such spatial evolution greatly differs from canonical mixing
layers. In addition, the low-speed side is altered by the existence of the recirculation
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area which enhances its turbulence level. Owing to these considerations, a strict
comparison between the axisymmetric and the planar cases is quite difficult. The
second ratio, (σw/σv)

2, remains nearly constant along the mixing layer independently
of the additional strain rates. Its value is slightly larger than 1 in accordance with the
results of Herrin & Dutton (1997) in the case of an axisymmetric, boat-tailed trailing
edge.

In addition to the normal shear stress distribution, some others relevant ratios
can be studied. As stated by Herrin & Dutton (1997), shear-stress-to-normal stress
ratio may be used for Reynolds stress closure. Two turbulence structure parameters
are plotted in figure 8(b). The first ratio is −u′v′/k where k is the turbulent kinetic
energy defined as k = (σ 2

u + σ 2
v + σ 2

w)/2. The second one, commonly called the shear
stress correlation coefficient, is Ruv = (−u′v′)/(σuσv). Both ratios exhibit the same
evolution despite different magnitudes. A strong decay is observed until x/LR = 1 and
an asymptotic level is then reached. This contrasts with the experimental observation
of Herrin & Dutton (1997) where no equilibrium state is reached at least until
x/LR = 1.5 when a boat-tailed trailing edge is used to generate the annular mixing
layer. The −u′v′/k ratio has a constant value of 0.4 which is slightly higher than the
value of 0.3 recommended by Harsha & Lee (1970) for turbulent flow calculations.
The Ruv ratio magnitude of approximately 0.6 agrees well with the results of Urban
& Mungal (2001) for Mc = 0.63.

To conclude the study of the mean properties of the shear layer before entering
the recompression region, the maximum of the pressure fluctuations have been
investigated and plotted in figure 9. It can be seen that pressure fluctuation maxima
are nearly constant for 0 < x/XR < 0.5 with Cprmsmax

∼ 0.01. This behaviour differs
from those observed in subsonic compressible base flows such as in Deck, Garnier &
Guillen (2002), where the pressure maxima quickly increase during the early stages of
development of the shear layer and reach a value of approximatly 0.07 (for M∞ = 0.7),
which is much higher than the constant value observed in the present case.

5.2. Coherent structure dynamics

In the previous section, the turbulence field has been investigated by means of
the time-averaged data and its behaviour has been highlighted. Instantaneous data
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Figure 10. Visualization of radiating pressure waves on the upper side of the vortices
educed using ∂ρ/∂x.

will now be used to investigate the turbulence properties through the existence and
evolution of coherent vortices along the mixing layer.

The initial stage of the shear layer is first investigated. Figure 4 depicts the iso-
surface of the Q criterion. The present case differs from the incompressible shear layer
cases where large spanwise rollers are observed due to the domination of the classical
KH instability. The small scales appear to be highly three-dimensional. Indeed, after
separation, the compressibility effects are strong and the local convective Mach
number is greater than 1. It has been demonstrated (see for example Sandham &
Reynolds 1991) that the shear layer is no longer dominated by the Kelvin–Helmholtz
instability. When Mc > 1, oblique modes dominate the instability process, leading to
small-scale three-dimensional structures. The angle of the structure with the axis of
the mean flow is dependent on the Mc value. Sandham & Reynolds (1991) have used
the linear stability theory to educe a relation between Mc and the preferred mode for
planar shear layers:

Mc cos(θ) ∼ 0.6. (5.3)

Even though an averaged structure angle has not been clearly found in the
simulation, the visualization of figure 4 clearly shows highly three-dimensional
vortices, inclined toward the axis and with a weak azimuthal coherency.

The streamwise derivative of the density is used to show the vicinity of the separation
process in figure 10. The white area depicts the expansion fan centred at the base
which deflects the separating boundary layer. It is obvious that coherent vortices exist
in the shear layer just downstream of the base. Further evidence of their existence is
found in the pressure waves emanating from their upper side. Some eddies are seen
along the trailing edge and a small recirculation area is educed in the outer part of
the base. These observations are consistent with the strong growth rate of the mixing
layer which can be forced by the impact of vortices coming from the recirculation
bubble.

As the existence of coherent vortices has been demonstrated in the developing shear
layer, it is of primary interest to investigate their convective velocity Uc in order to
estimate the relevance of the isentropic model of Uc. An estimation of the isentropic
convective Mach number Mc has been plotted in figure 11 and compared to the
experimental values. The convective velocity has also been estimated with the use of
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the isentropic model:

Uc =
a2U1 + a1U2

a1 + a2

. (5.4)

Lastly, the calculated convective velocities (using two-point–two-time correlations)
have been added. In the present section, the analysis will only focus on the mixing
layer behaviour for locations 0 <x/L < 0.60 and the other parts of the flow will be
discussed in subsequent sections. The convective Mach number exhibits an identical
trend for simulation and experiment despite a higher value in the initial stage of the
mixing layer. In both cases, Mc is greater than 1 until x/L = 0.60 is reached, which
denotes a high compressibility level in the shear layer. The isentropic model leads to
convective velocity Ucis

values of nearly 0.5U∞ which is equal to those encountered
in flows with Mc < 1 such as cavity or backward-facing step configurations. Two-
point–two-time correlations are used to measure the real convective velocities. The
structures are found to quickly accelerate over a short length to reach a constant
value nearly equal to 0.8U∞ for 0.2 <x/L < 0.60. This value is greatly higher than
the predictions given by the isentropic model and is in accordance with fundamental
work on supersonic planar shear layers. As the upper side of the shear layer is
supersonic, in contrast to the subsonic lower side, the mixing layer is convectively
unstable toward the fast mode (also called the supersonic mode). The behaviour of
the present axisymmetric mixing layer is thus close to that of two-stream supersonic–
subsonic shear layers at identical Mc. However, the present result contrasts with the
experimental measurements of Thurow et al. (2003) who observed both slow and fast
modes in a round jet at high Mc.

According to the previous results, the isentropic model fails to predict the convective
velocity in the present case. Figure 12 displays Mc2

values versus Mc1
along the mixing

layer in order to show the departure of the flow from the isentropic assumptions
which lead to Mc1

= Mc2
. It is obvious that the present physics greatly differs from the
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isentropic model in conjunction with the high values of Mc and agree well with the
results of previous studies on supersonic–subsonic shear layers.

Visualizations of the educed vortices convected at supersonic speeds are given in
figure 13 by iso-contours of ‖grad(ρ)‖. In these side views, the eddies appear to
have an elliptical shape with their major axis inclined toward the mixing layer axis.
These structures are convected without strong structural changes as their exis tence is
obvious in the first three successive instantaneous snapshots, in accordance with the
experimental results reported by Bourdon & Dutton (1999). Farther downstream,
the vortices exhibit some merging which differs from the classical rotational
pairing responsible for the subsonic mixing layer growth. In fact, three-dimensional
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Figure 14. Instantaneous end views of iso-contours of the Mach number in the near wake
(0 < x/LR < 0.60). From top left to bottom right, each picture is translated by 0.1 × x/LR .

animations of the Q criterion reveal that the primary oblique vortices realign with
the longitudinal axis on being convected downstream and then merge in a complex
process as depicted in figure 13. This coalescence phenomenon occurs upstream of the
recompression region where the peak magnitude of −u′v′/U∞ increases (see figure 7).
The realignment of the oblique eddies in the streamwise direction while they are
convected is consistent with the increase in their major axis observed by Bourdon &
Dutton (1999) when looking at the vortices in a planar view.

In addition to the previous side-views, end-views are used to investigate the
occurrence of coherent vortices in the azimuthal direction. Such visualizations are
depicted in figure 14 where each picture is offset by 0.1 × x/LR . Only one-quarter
of the recirculating area is plotted to better show the azimuthal distribution of the
eddies. In the first two pictures, no longitudinal vortices can be seen in accordance with
figure 4 as this area is dominated by oblique modes. On moving farther downstream,
mushroom-shape structures arise which corroborates the planar visualizations of
Bourdon & Dutton (1999) and give further evidence of the existence of streamwise
vortices. Their number is found to decrease as the recirculation area shrinks due to
the initial deflection of the shear layer during the separation process.

Herrin & Dutton (1995) have performed an analysis of the instantaneous shear
stress angle Ψ , where Ψ = arctan(v′/u′) in order to show the evolution of the Reynolds
stress distribution in the light of the previous visualizations. This investigation has
been performed for two different streamwise stations corresponding respectively to
the appearance of streamwise vortices and to a location just ahead of the onset of
recompression.

Figure 15 depicts the probability density function (PDF) of Ψ for the two streamwise
stations (N/NT represents the normalized number of samples). In figure 15(a),
preferentially negative Ψ values, corresponding to Q2 and Q4 events in a quadrant



Compressible mixing layer past an axisymmetric trailing edge 233

10
(a) (b)

r/R = 0.90
r/R = 0.80

r/R = 0.73
r/R = 0.61

6

8

4

N
/N

T

2

0
–80 –60 –40 –20 0 20 40 60 80

10

6

8

4

2

0
–80 –60 –40 –20 0 20 40 60 80

Instantaneous shear angle, ψ (deg.) Instantaneous shear angle, ψ (deg.)

Figure 15. PDF of the instantaneous shear angle Ψ past separation (x/R = 0.79) (a) and
just ahead of recompression (x/R = 1.28) (b) in the mixing layer.

1.5

0.5

0 0.5
x/R

1.0 1.5

1.0
r
R

Figure 16. Visualization of a large-scale coherent structure originating from the first stage of
the mixing layer shown with iso-contours of ||grad(ρ)||.

decomposition, are observed. However, the Ψ distribution appears to be highly
sensitive to the radial location of measurement. A strong orientation of the shear
stress of around 30◦ is observed in the inner part of the mixing layer whereas a more
broadband distribution centred around nearly 55◦ is encountered on approaching
the high-speed side (a strong dependence upon the radial location has also been
observed by Clemens, Petullo & Dolling (1996) for a confined supersonic shear
layer at low Mc). Further downstream, the difference between the lower and upper
sides of the free shear layer is reduced. This is consistent with the growth of the
vortices on convection downstream and with the amalgamation of the structures
previously highlighted. These results are consistent with those of Herrin & Dutton
(1997) achieved in the case of a boat-tailed afterbody.

To conclude the investigation of the dynamics of the vortices in the initial part
of the mixing layer, planar and full three-dimensional animations have been used
to educe the existence of large-scale structures. According to Bourdon & Dutton
(2000), an apparent flapping motion of the shear layer is caused by the convection
of very large-scale vortices along the mixing layer, leading to an asymmetry in the
instantaneous pressure distribution in the azimuthal direction. Such eddies have also
been found among all the instantaneous data as it can be seen in figure 16 (the scale
is identical to that used in figure 13 to allow comparison of the structure size).
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mixing layer.

Such an eddy is significantly larger than the vortices educed in figure 13 and
corroborates the experimental findings. However, no clear periodic nature in their
occurrence has been found and a spectral analysis is required in order to show
possible periodic motions in the mixing layer.

5.3. Spectral analysis

Some additional knowledge can be obtained by performing a spectral analysis of
the mixing layer. Such an investigation has been performed by plotting the spectral
surface of the longitudinal velocity fluctuations along the mixing layer using 23
sensors in figure 17.

The present analysis focuses on the mixing layer behaviour ahead of the
recompression. Two distinct areas can be seen: downstream of separation, the initial
stage of the shear layer displays a high-frequency content corresponding to the primary
instability of the mixing layer unlike downstream locations where the spectral content
is pushed toward lower frequencies in accordance with the growth and amalgation of
the convected vortices along the shear layer.

Two characteristic spectra coming from the previous spectral surface can be seen
in figure 18. Figure 18(a) depicts a spectrum of velocity fluctuations downstream
of separation. As mentioned earlier, the high-frequency content, centred around
approximately 60 kHz, is the signature of the instability process of the shear layer.
This frequency is also encountered in the radial velocity fluctuation spectra and in
the temporal autocorrelation coefficients. However, it is obvious that, at this location,
the shear layer has a low-frequency component. A peak is observed at 1350 Hz
(StD ∼ 0.144) but energy is relatively constant until 700 Hz. A similar frequency is
observed in radial and tangential velocity spectra despite the lower value of 900 Hz
(StD ∼ 0.096). This quite low frequency does not scale with the mixing layer properties
and may be characteristic of a global behaviour of the whole flow just downstream
of separation. As previously discussed, a flapping motion of the shear layer is a good
candidate for this frequency.

Figure 18(b) exhibits the longitudinal velocity spectrum just ahead of recompression
in the mixing layer. It is observed that the high-frequency component has spread to
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0.25 and y/R = 0.97 and (b) ahead of the recompression region for x/R = 1.52 and y/R = 0.61.

lower frequencies corresponding to the growth of the vortices as they are convected.
The spectrum exhibits a broadband shape with maximum fluctuations around 25 kHz
(this value is a little higher for the radial and tangential velocity fluctuations).
In addition, a small peak is observed at a frequency corresponding to 800 Hz
(StD ∼ 0.085). Movements of the whole separated flow enclosed in the annular shear
layer have been experimentally observed for frequencies below 1 kHz (Cannon et al.
2005). The present work gives further evidence of the existence of such large-scale
behaviour.

To summarize, the present section is devoted to the mixing layer properties
ahead of the recompression. An investigation of the time-averaged flow field has
highlighted the strong growth rate of the shear layer coupled with a domination
of the streamwise velocity fluctuations. Instantaneous samples have demonstrated
the existence of numerous turbulent scales. As a result of the compressibility of the
flow, the isentropic model of the convective Mach number fails to predict the vortex
dynamics which appear to be linked to the supersonic mode. A spectral analysis gives
the frequency of the shear layer instability as well as a low-frequency phenomenon
which appears to be related to a flapping motion of the mixing layer. The next section
will assess the shear layer properties during the recompression process as well as the
dynamics of the complex shock pattern educed in figure 4.

6. Turbulence structure in the recompression and in the rear stagnation region
(0.6 < x/LR < 1)

6.1. Mean flow analysis

On moving downstream, the free shear layer develops closer to the axis and
the axisymmetrical constraints increase. For x/LR > 0.65, the lateral streamline
convergence leads to recompression and to the formation of a compression shock
from a time-averaged point of view as depicted in figure 2. The incoming fluid
particles having enough momentum pass through the recompression and then are
convected downstream into the developing wake. Those with less energy are pushed
upstream into a backflow area which will be discussed in the last section.

The recompression process has a direct effect on the shear layer behaviour as
highlighted by the evolution of δω (see figure 6). A constant value of δω is observed
until the rear stagnation point is reached, providing some evidence of the turbulence
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Figure 19. Turbulent Mach number field based on the resolved turbulent kinetic energy.

field alteration. As observed in figure 7, the recompression region represents the onset
of the velocity fluctuation decrease. The parameter quantifying the compressibility
influence on the turbulent fluctuations is the turbulent Mach number Mt which can
either be defined with a root-mean-square (RMS) value of the longitudinal velocity
fluctuation (u′2)1/2/a or with the resolved turbulent kinetic energy (k̃)1/2/a. Figure 19
displays the Mt distribution and in particular non-negligable values in the recirculating
area since Mt can reach values as high as 0.20. Moreover, its highest values are found
in the recompression region where Mt has values up to 0.36 or 0.40 depending on the
scaling. At the present Mt levels (Mt < 0.6) and according to Erlebacher et al. (1992),
the subgrid kinetic energy can be lumped with the pressure term as mentioned in
§ 3.2.

The longitudinal and radial fluctuation components exhibit the same behaviour
when passing through the recompression, allowing a constant value of the anisotropy
parameter (σu/σv)

2 approximately equal to 1.25 due to the domination of the
streamwise fluctuations (see figure 7 and figure 8). Thus, the turbulence field intensity
decreases while the anisotropy of the flow remains constant. This is a quite different
behaviour from that encountered in compressible turbulent reattaching free shear
layers such as in compression ramp configurations. On approaching the ramp, the free
mixing layer enters a compression region leading to a modification of the turbulence
field. The velocity fluctuations are immediately enhanced and maximum fluctuations
levels are reached just downstream of the mean reattachment point (Samimy, Petrie
& Addy 1986).

Finally, the pressure gradient resulting from the streamline curvature coupled
with density variations is responsible for another particular property of the present
configuration. One characteristic feature of compressible flows is the vorticity
generation due to the baroclinic term in the vorticity transport equation. In the present
case, the adverse pressure gradient is not aligned with the density variations across
the shear layer, which only appear in the radial direction. Thus, this area appears as
a source of vorticity through the compressible term of the equation. Iso-contours of
the baroclinic torque magnitude are compared to the vortex stretching/tilting term in
an instantaneous snapshot (figure 20). It is obvious that the compressibility acts not
only in the recompression region but also during the whole mixing layer development
and its effect on the vorticity generation is of the same order as the incompressible
source term, at least in the shear layer.
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The influence of the adverse pressure gradient and streamline curvature can also be
observed by scutinizing the production of the turbulent kinetic energy. The evolution
of its maximum has been tracked and is plotted in figure 21. A narrow peak can
be observed in the initial stage of the shear layer in accordance with the occurrence
of the instability process. As the mixing layer develops, the production magnitude
decreases. However, on entering the recompression region, a second and wider peak
can be seen, demonstrating the influence of the extra strain rates on the turbulent
production whereas the reattachement process and the wake involve a decrease of the
production term.

6.2. Coherent structures dynamics

The complexity of the recompression shock pattern has been highlighted in figure 4,
and so the unsteady properties of the foot shock have been assessed from an
animated movie. Five successive snapshots of the flow are displayed in figure 22,
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Figure 23. PDF of pressure signals for the three sensors: (a) S1, (b) S2, (c) S3 (solid line)
the Gaussian distributions (dotted line) have been added for reference.

�t = 2.64 × 10−5 s apart. These pictures present the longitudinal derivative of the
density, highlighting the high density gradient regions.

The last image, depicting the mean flow field, has been added to the compare
two points of view and show the shortcomings of the time-averaged one. On the
instantaneous pictures, two distinct zones can be highlighted: the shock foot which is
formed by several Mach waves and the recompression shock in the free stream. As
already observed for the Mach waves in figure 10, shocks emanate from the upper
side of the vortices and are convected at the same velocity through the recompression.
This is evidence of the supersonic speed of the eddies compared to the local speed of
sound a. On penetrating the free stream, they coalesce into an oblique shock which
appears quite steady.

Such observations have also been made in shock/boundary layer interaction (SBLI)
studies (see the review by Dolling 2001). The shock foot has been found to oscillate
due to shocks linked to the coherent structures of the incoming turbulent boundary
layer (Poggie & Smits 2001; Wu & Miles 2001). This particular behaviour involves a
high sensitivity of the foot region to the incoming flow disturbances.

To further investigate the behaviour of the shock pattern, the PDF of the pressure
has been assessed for several sensors located across the recompression shock (see
figure 22).

Figure 23 depicts the PDF of the pressure signals for the S1, S2 and S3 sensors and
the third- and fourth-order moments values have been added. S1 and S3 exhibit the
same behaviour with a quasi-perfect Gaussian shape. However, the S2 sensor displays
a quite different behaviour with a strong departure from the Gaussian reference. The
PDF is no longer symmetric, with a skewness coefficient equal to 0.74 (compared to
the 0 value of the classical Gaussian shape) while the kurtosis coefficient is slightly
less than 3. This finding may be evidence of a global motion of the shock and will be
further assessed with the use of a spectral analysis in the next section.

Both isentropic assumptions and two-point–two-time correlations have been used
to estimate the convection velocity of the structures on passing through the
recompression. The results have been plotted in figure 11. Both experimental and
numerical isentropic predictions agree extremely well. Mcis

decreases from 1.4 to
nearly 1 at location x/LR = 1. The estimated Ucis

is found to only increase by nearly
30%. The use of the correlation coefficients reveals a completely different trend. As the
fast mode dominates the instability process, the convective velocity of the incoming
vortices is higher than the isentropic value on entering the recompression but is found
to slightly decrease when passing through the recompression. Consequently for the
time-averaged investigation, magnitude of u′2 drops, leading to a decrease of k and
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Figure 25. PDF of the instantaneous shear stress angle Ψ along the mixing layer in the
recompression region.

thus to a deceleration of the eddies. This result underlines the shortcomings of the
isentropic model when a pressure gradient occurs in the flow field.

In addition to the side views previously described in figure 22, end views of iso-
Mach numbers are also presented in figure 24. As the enclosed area shrinks, the
number of mushroom-shape structures decreases as demonstrated in an experiment
(Bourdon & Dutton 1999) and in accordance with the observations during the mixing
layer analysis. The large-scale structures have a distorted shape allowing a great
amount of external fluid to be engulfed into the shear layer and the mixing process
is then enhanced due to the three-dimensionality of the fluctuations.

Additional knowledge of the turbulence structure can be obtained by plotting the
PDF of the instantaneous shear angle Ψ . Figure 25 presents the results for the
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recompression area. An identical shape is observed for three different points in the
recompression region. The PDFs exhibit a preferential Ψ angle of nearly 28◦. However,
the PDFs appear to be more broadband than those upstream of the pressure gradient
(see figure 15a). This is consistent with a loss of coherence when passing through the
recompression region.

6.3. Spectral analysis

The dynamics of the recompression shock pattern has been investigated with pressure
time series for several locations.

Figure 26 presents the pressure spectra for the three sensors S1, S2 and S3, already
used for the PDFs. The S1 spectrum exhibits a broadband high-frequency content.
At this location, the flow is dominated by the Mach waves emanating from the
convected large-scale structures of the shear layer as observed in figure 22. The S2
sensor is located above the shock foot region where all the pressure waves coalesce to
form an oblique shock. The low- and (mainly) mid-range frequency content increases.
However, a distinct peak is observed for a frequency, denoted fSH, equal to 2440 Hz.
This quite low frequency, compared to the turbulent scales of the mixing layer, defines
a large-scale shock motion. A rough estimate of the incoming shear flow frequency
can be made with the use of characteristic velocity and spatial scales. Thus, the
expression fML = Uc/δω leads to a frequency of nearly 34 kHz. The ratio fSH/fML

is found to be on the order of 0.07. It can be Note that large-scale shock motions
around this typical reduced frequency has also been reported by Dolling & Murphy
(1983) on a turbulent compression ramp flow.

To conclude the study of the recompression process, a spectral analysis along the
mixing layer has been performed. Figure 27 presents a characteristic longitudinal
velocity spectrum in the mixing layer under the constraint of an adverse pressure
gradient. A large high-frequency content, centred around 30–40 kHz, is observed.
However, although not shown here, the power spectral densities (PSD)s of sensors in
the recompression region all exhibit a peak at approximately 800 Hz in accordance
with the previous discussion dealing with the flapping motion.
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In summary, an investigation of the recompression process has shown that the
additional strain rate resulting from the lateral streamline convergence deeply alters
the turbulent field. The primary shear stress magnitude drops, as well as both the axial
and radial velocity fluctuations, whereas the (σu/σv)

2 ratio remains constant. From
an instantaneous point of view, the shock pattern is revealed to be complex, with the
shock foot formed by convected shocks emanating from the eddies contained in the
shear layer. The vortex velocity is found to be reduced through the recompression
in contradiction with the prediction of the isentropic model. Finally, evidence of the
existence of a large-scale motion of the shock has been presented. Attention will now
turn to the investigation of the developing wake.

7. Wake region
7.1. Mean flow analysis

The present section is focused on the transition region between the mixing layer and
the fully developed turbulent wake as far-field supersonic wakes are already known to
behave in a self-similar manner. As depicted in figure 7, velocity fluctuations continue
to decay in the near wake while the anisotropy ratio remains constant (figure 8).
Thus, the turbulent field seems to slowly evolve to an asympotic state corresponding
to a fully developed supersonic wake. This transition is accompanied by a reduction
of the compressibility level which can be shown with the relative Mach number Mr

parameter. Mr represents an estimation of the compressibility constraints of wakes
(similarly to Mc for shear layers) and is given by

Mr =
U∞ − Uaxis

a∞
. (7.1)

Figure 28 depicts the streamwise evolution of Mr in the developing wake after
the rear stagnation point. The Mr value quickly drops meaning that the centreline
velocity significantly accelerates over a short distance. Beyond x/R ∼ 5.5, Mr is less
than 1 and keeps decreasing. As Mr drops, the compressibility level decreases so that
the wake properties should rapidly tend to those of its incompressible counterpart
and reach a self-similar state.
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Figure 28. Evolution of the relative Mach number Mr in the developing turbulent wake.

7.2. Coherent structures dynamics

The decrease of the compressibility during the transition stage also appears in
the evolution of Mcis

(see figure 11). As Mcis
levels drop, Ucis

is found to slightly
increase. The measured convection velocity using two-time–two-point correlations
provides lower values than the isentropic estimation which is consistent with the
fluidic reattachment process. However, as Mr drops, Uc quickly increases until it
nearly reaches the isentropic value of 0.8U∞ at x/LR = 3.

Concerning the structure of the wake, experimental visualizations (Bourdon &
Dutton 1999, 2000) have demonstrated the highly convoluted nature of the developing
wake. To compare the experimental observations to the present simulation, the
streamwise evolution of the wake is depicted in figure 29 for five different stations
after the rear stagnation point.

On moving downstream, the number of azimuthal structures decreases in
accordance with the experimental observations. A high-mixing region can be seen
where the fluid is engulfed inside the wake thanks to the three-dimensionality of the
flow. As the wake develops, a lobbed structure can be seen for the farther stations in
addition to the large-scale hairpin eddies educed by an iso-surface of the Q criterion
depicted in figure 4.

According to the previous findings, the turbulence field organization is investigated
through the use of the instantaneous shear stress angle Ψ in the developing wake.
Figure 30 depicts the PDF of Ψ for two different streamwise stations in the wake.

Both stations exhibit identical trends. On the wake axis, no peak is observed in the
PDF of Ψ . However, a preferential Ψ value exists at the outer wake boundary. For the
radial location investigated here (r/R ∼ 0.37), an angle of 30◦ is observed involving an
organization of the turbulence field through the existence of the large-scale vortices.

7.3. Spectral analysis

The occurrence of large-scale structures in the far field of bi-dimensional supersonic
base flows has been highlighted in some experiments by Motallebi & Norbury (1981)
and by Gai, Hughes & Perry (2002) who have reported the existence of a shedding-
type phenomenon in the far field of the wake similar to the one observed in the
subsonic regime.
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Figure 30. PDF of instantaneous shear angle Ψ on the wake axis at respectively
(a) x/R ∼ 3.38 and (b) x/R ∼ 4.02.

The existence of such a phenomenon in the present flow has been shown by
investigating the spectral content for a ring of sensors located in the outer part of
the wake. As previously done by Fuchs et al. (1979) behind a circular disk, a mode
decomposition in the azimuthal direction has been performed.

Figure 31 depicts the spectra of the four first azimuthal modes. A contribution
of the first mode (m = 1), also called the helical mode, is found for a frequency
close to 2400 Hz. This frequency, scaled with the diameter of the trailing edge, leads
to a Strouhal number equal to StD ∼ 0.256. This value agrees well with the vortex
shedding behind bluff bodies observed in supersonic flows (Motallebi & Norbury
1981, Gai et al. 2002). Moreover, the helical mode is known to be responsible for
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Figure 31. Azimuthal modal decomposition spectra of longitudinal velocity fluctuations at
x/R ∼ 5.3 and r/R ∼ 0.37 for 47 azimuthal sensors (m = 1).

the shedding-type events in axisymmetric subsonic wakes. However, note that these
structures appear less coherent than in the incompressible regime as reported by Gai
(2002).

The present section is devoted to the study of the transition region between the
axisymmetric shear layer and the fully developed wake. The compressibility effects
are found to rapidly decrease with respect to the relative Mach number evolution.
This is confirmed by measurements of Uc which increases after the rear stagnation
point until reaching the isentropic model predictions. Finally, a modal decomposition
has revealed the existence of a periodic phenomenon at StD ∼ 0.256 for the helical
mode (m = 1). Such results corroborate previous findings reported for supersonic flows
past planar trailing edge. The next section will discuss the unsteady features of the
recirculating flow.

8. The recirculation zone
8.1. Backflow analysis

The recirculating bubble has been called a ‘dead water’ region. However, the
visualizations of the flow field depict an area exhibiting deep unsteady features in
the low-frequency as well as in the high-frequency regimes. As a result, the existence
of convective phenomena inside the recirculating area has been tracked with the use
of frequency–wavenumber spectra and the results, obtained with the use of all the
available sensors in the backflow (44 sensors), are presented in figure 32.

Both the axial and radial velocity spectra exhibit a downstream velocity convection
corresponding to the backflow disturbances; the velocity appears to be equal to
approximately 230 m s−1 for both spectra but lower convective speeds exist as Uc

varies depending on the location in the reverse flow (similarly to the mixing layer
where frequency–wavemunber spectra exhibit only one convective velocity unlike the
two-point–two-time correlations which reveal a varying speed of the eddies along
the layer). Moreover, an additional feature appears in the radial (and transverse)
fluctuation spectrum for the overall wavenumber range denoting a global motion of
the backflow. This particular behaviour occurs for frequencies in the range of 1100–
1200 Hz. Concerning the pressure evolution spectra for the both first (figure 32c) and
the second half of the sensors (figure 32d) have been investigated. Both upstream
and downstream travelling pressure waves are observed in (c) whereas only the
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Figure 33. (a) PSD surface of radial velocity fluctuations along the axis in the reverse flow
and (b) PSD of pressure fluctuations for the maximum backflow velocity location.

downstream travelling part is clearly visible in (d). The second half of the backflow
is dominated by the pressure waves emanating from the vortices of the mixing layer
which explains the downstream velocity. The upstream waves in (c) represent the
pressure disturbances of the reverse flow, as encountered for the velocity spectra. A
particular phenomena can be observed in figure 32(c) where a spot is clearly visible
in the spectrum around 8000 Hz.

To assess the frequency content of the reverse flow, the spectra of the whole series
of sensors located on the centreline have also been investigated by the use of PSD
surfaces. An example is plotted in figure 33(a) which addresses the frequency content of
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the radial velocity fluctuations. Despite the broadband fluctuating content around the
rear stagnation point, two lower frequencies can clearly be observed along the whole
reverse flow at respectively 1250 Hz and 2250 Hz. The first contribution is similar to
that previously observed in the frequency–wavenumber spectra of the radial velocity
(see figure 32b). Although not shown here, such a contribution is also observed in the
pressure spectra at the base, with maximum amplitude encountered around x/R ∼ 0.5.
This is consistent with a global motion of the whole reverse velocity axis around its
mean position for both the radial and transverse components and confirms the
previous observation made during the study of the frequency–wavenumber spectra.
Such further evidence for this is found when looking at the movies which depict
a slow oscillation of the reverse flow in the (x, y)-plane. Moreover, this motion
would be consistent with the displacement of the instantaneous recirculation core
centroid position observed in the experiment by Bourdon & Dutton (2000) and
would constitute a characteristic feature of separated flows past an axisymmetric blunt
trailing edge (opposite to backward-facing step configurations where any motion of
the reverse flow would be prevented by the solid boundary).

The pressure spectra have also been investigated. However, the complex system of
pressure waves inside the recirculation bubble made them quite difficult to discuss.
Pressure waves emanating from the lower side of the vortices in the mixing layer
travel downstream in the subsonic part of the flow whereas, at the same time,
pressure disturbances originating from the reverse flow travel upstream. Despite
such a complexity in the travelling wave pattern, a clear peak is observed on the
pressure spectra for a position corresponding to approximately the location of the
maximum backflow velocity (in a time-averaged sense). This behaviour is depicted in
figure 33(b) where it is obvious that a strong phenomenon, having a purely acoustic
nature with respect to the velocity fluctuations spectra, occurs at 8 kHz. Moreover,
cross-correlations of the pressure signals in the vicinity of the maximum reverse flow
underline the existence of a convective motion with velocity nearly equal to the local
speed of sound. This may be the signature of a resonant mechanism of the pressure
waves enclosed inside the sonic surface.

In addition to the motion of the reverse flow, some evidence of a pulsing motion
can be educed by plotting streamwise velocity fluctuation spectra just ahead and
downstream of the time-averaged stagnation point. An example is plotted in figure 34
where a location downstream of the rear stagnation point is considered.

The PSD spectrum reveals the existence of a sharp peak at approximately 500 Hz
(StD ∼ 0.053 or StL ∼ 0.072). This frequency, too low to represent the occurrence
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of convected large-scale structures, may be the signature of a global flow behaviour.
Although not shown here, a cross-spectra analysis (between the sensor located nearest
to the base and one located at the stagnation point) exhibits coherence level above the
onset of coherence required by the method, which corroborates the assumption about
large-scale unsteadiness. The existence of such a similar frequency in both experi-
mental (Janssen & Dutton 2004) and numerical pressure spectra at the base centre is
further evidence of a growing/contracting motion of the whole recirculating flow. In
the other part of the flow, the spectral signature of this motion may be lost among
stronger fluctuating contributions. It is interesting to note that Shvets (1979) has also
observed a low-frequency component in the vicinity of the rear stagnation point in the
near wake of a cone in the supersonic regime, consistent with his experimental visual-
izations of a global motion of the whole separated flow behind the base. Evidence of
the existence of such a low-frequency contribution exists in previous work dealing with
separated flow behind an axisymmetric trailing edge in the subsonic regime. Thus, both
Mabey (1972) and Deprés (2003) have respectively reported characteristic Strouhal
numbers StD equal to 0.06 and 0.068 at the base centre for axisymmetric base flows.

8.2. Feedback mechanism

As previously mentioned, the recirculating flow area exhibits a very complex physics
when focusing on its unsteady properties and may be responsible for the existence
of a feedback mechanism triggering the shear layer instability and the self-sustained
oscillations observed in the near wake. Two mechanisms are known to be involved in
such a feedback loop.

The first one concerns oscillations due to the impingement of pressure waves on a
solid surface, thus leading to a forcing of the shear layer instability (see the review
by Rockwell 1983). Such a mechanism may exist in the present flow as the pressure
waves radiating from the coherent vortices on their lower side and those emanating
from the reverse flow can be trapped in the subsonic area and can lead to a resonant
phenomenon inside the closed sonic surface.

Another mechanism which may be responsible for the appearance of self-sustained
oscillations is the existence of an absolute instability (see Huerre & Monkewitz
(1985) for a detailed analysis of convective/absolute instabilities). Monkewitz (1988)
has highlighted the absolutely unstable nature of the first helical mode in the near
wake of incompressible axisymmetric bluff bodies for a Reynolds number where self-
sustained oscillations are observed. The stability properties of the flow depend upon
the mean local velocity profile. Sevilla & Martinez-Bazan (2004) have demonstrated
that modifying the reverse flow component of the velocity profile can lead to a
shift from an absolute to a convective instability of the recirculating flow and thus
suppresses the vortex shedding occurring in the near wake. The concept of absolute
instability has also recently been applied to incompressible backward-facing step flows
by Wee et al. (2004) and to a flow behind a fence by Hudy, Naguib & Humphreys
(2003) and Naguib & Hudy (2003). Wee et al. (2004) perform a linear stability analysis
to highlight the existence of an absolute instability in the middle of the reverse flow
area with Sth ∼ 0.067 (h is the step height). Hudy et al. (2003) have also observed
the existence of an absolute instability as a source for upstream and downstream
travelling pressure waves in the recirculating flow. As the absolute nature of the flow
mainly depends on the time-averaged velocity profile, such an instability can exist in
the present flow despite its compressible nature, in accordance with the self-sustained
oscillations observed in the developing wake. Very recently, Sandberg & Fasel (2006b)
have investigated the transitional base flow at M∞ = 2.46 and have demonstrated the
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existence of an absolute instability for the axisymmetric mode at moderate Reynolds
number. This finding makes it highly likely that such an instability exists in the
present flow and could be related to the large-scale unsteadiness discussed in the
previous section.

Finally, the existence of a secondary vortex structure in the vicinity of the base
corner could play a significant role in the forcing of the shear layer. As in the
simulation of Larchevêque et al. (2004) concerning the compressible flow past a
cavity, a secondary vortex exists in both the time-averaged and instantaneous flow
fields. An animation focusing on this particular part of the flow reveals that the vortex
dynamics participates to a certain extent to the generation of large-scale structures
downstream in the mixing layer during a burst-like phenomenon.

9. Conclusions
A numerical simulation has been carried out of a compressible axisymmetric

shear layer for a Reynolds number near 2.9 × 106. The supersonic free-stream Mach
number before separation involves complex behaviour of the annular mixing layer
with the appearance of several characteristic features. Each part of the flow has been
successively discussed in the light of both time-averaged and unsteady data. The
development of the mixing layer has underlined the strong growth rate of the shear
layer ahead of recompression.

The peak Reynolds stresses increase until the onset of recompression. On entering
the adverse pressure gradient, the turbulent stresses immediately react to the extra
strain rate, in contrast to its incompressible counterpart. Despite the domination of
the axial velocity fluctuations, the anisotropy decreases along the shear layer until
a constant value of 1.25 is reached, denoting strong changes in the turbulence field
organization. Correlation functions have been used to demonstrate the failure of
the isentropic theory to properly predict the convection velocity of the vortices in
the axisymmetric mixing layer which corroborates previous findings dealing with
canonical planar compressible cases. In the present case, the fast mode dominates
due to supersonic convective Mach numbers levels. The pressure gradient then leads
to a deceleration of the eddies.

The lateral streamline convergence and the bulk compression involve a complex
shock pattern in which the foot shock appears to be constituted by shocks emanating
from the upper side of the vortices. Once the fluidic reattachement process is
achieved, the compressibility of the flow is quickly damped allowing a recovery
of the incompressible wake behaviour farther downstream. The use of numerous
sensors has allowed the characteristics frequencies of the flow to be found, which was
not possible during the experiment. A wide range of time scales has been highlighted,
from the instability process behind the base to the existence of a global motion of
the separated flow field at very low frequency denoting the very complex unsteady
features of such flows and the difficulties of capturing the whole physics. Thus, further
evidence of the existence of a flapping motion has been found and the oscillation of
the reverse flow has been underlined. Finally, an even lower frequency, which may be
due to the motion of the rear stagnation point, has been found.
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