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Measurement10. Measurements of Turbulent Flows

Fluid flows in nature and technology normally
depart from laminarity and are turbulent in the
majority of cases, including flows around bodies
such as airplanes, vehicles, ships, and in internal
flows such as in ducts, turbomachines, propulsors,
and even in blood circulation in the human body.
Laminarity is the anomaly and not the standard. As
will be shown in this chapter, the parameter which
is fundamental to the transition from laminarity to
turbulence is the Reynolds number, i.e., the ratio
of inertial to viscous forces. In Sect. 10.1 the statis-
tical Eulerian description of turbulent flows will be
developed followed by a section on Reynolds de-
composition and Reynolds equations. Section 10.1.3
finally surveys scales in turbulent flows.

In Sect. 10.2 the optical Lagrangian particle-
tracking technique, capable of producing robust,
single- and multiparticle Lagrangian measure-
ments, is presented. First the image-processing
algorithms used to determine the particle trajec-
tories are discussed and then the implementation
of the technique in the laboratory is described.
A brief presentation of results focusing on the sep-
aration of particle pairs in intense turbulence is
also given.

In Sect. 10.3 a novel type of random flow in
a dilute polymer solution of a flexible high-
molecular-weight polymer in two different flow
setups that share the same feature of high curva-
ture of the flow lines is discussed. In the first part
of this section the hydrodynamic description of
dilute polymer solution flows and the nondimen-
sional parameters that follow from these equations
to characterize these flows are presented. Varia-
tion of one of these control parameter responsible
for the elastic properties of a fluid can lead to
a new elastic instability in various flows that is
distinguished by the presence of curvilinear tra-
jectories. The theoretical criteria for this elastic
instability in three different flows together with
experimental verification are discussed. To com-
plete the basics, the rheometric properties of the
polymer solutions used and their relation to Boger
fluids are given.

The first observation of elastic turbulence, in the
flow between two plates, is described. Then the ex-
perimental measuring techniques used to charac-
terize the flow are given, and a complete descrip-
tion of the results of measurements together with
a discussion of the results is presented. Finally, the
role of elastic stress, a recent theory of elastic tur-
bulence, and comparative studies of elastic versus
hydrodynamic turbulence are discussed. The last
part of the section deals with the description of the
elastic turbulence in a curvilinear channel or Dean
flow, where a particularly detailed experiment on
mixing due to elastic turbulence was conducted.
A summary of the results is given finally.

Section 10.4 briefly reviews large-eddy simu-
lations (LES) and the specific data requirements
for LES (Sect. 10.4.1) and then describes the ex-
perimental methods that have been employed
to obtain such data starting with arrays of
point-measurement techniques (Sect. 10.4.2) and
optical planar velocimetry measurement methods
(Sect. 10.4.3). Sample results from the latter ap-
plied to studies of LES models are presented in
(Sect. 10.4.4). The application of optical volumet-
ric techniques for three-dimensional (3-D) velocity
measurements are described in Sect. 10.4.5. Scalar
fluctuation measurements using optical techniques
and their applications to the study of LES variables
of interest to scalar mixing and combustion are
reviewed in Sect. 10.4.6.
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10.1 Statistical Eulerian Description of Turbulent Flows

When dealing with fluid flows in nature and technology,
departure from laminarity and the presence of turbulence
are normally observed; in fact, flows are turbulent in the
majority of cases, such as in external flows around bodies
as aeroplanes, vehicles, ships, and in internal flows as
in ducts, turbomachines, propulsors, and even in blood
circulation in the human body. Laminarity is the anomaly
and not the standard.

10.1.1 Basics of Measurements
of Turbulent Flows

Differences Between Measurements
in Laminar and Turbulent Flows

As will be shown in the following, the parameter which
is fundamental to the transition from laminarity to tur-
bulence is the Reynolds number, i. e., the ratio of inertial
to viscous forces. Dimensionally,

Re =
∣
∣
∣
∣

ma

Fv

∣
∣
∣
∣
= mU2

L

1

τL2

= ρL3U2

L3µU/L
= ρUL
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= UL
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where m is the mass, a the acceleration, Fv the vis-
cous force, U a characteristic velocity, L a characteristic
length, τ the shear stress, µ the dynamic viscosity coef-
ficient, ν the kinematic viscosity coefficient, and ρ the
density.

The Reynolds number is a parameter which carries
information on the overall behavior of the flow field (re-
gardless of the fact that in many cases, for example in
near-wall flows, there could be differences between the

characteristic lengths in different regions of the field).
When the Reynolds number is below a critical value
ReC (where it would really be more correct to speak
about a range of critical values, which also depends on
boundary and initial conditions, BC and IC), the vis-
cous forces are high enough to smooth instabilities in
the flow (caused by unwanted small changes in BC and
IC). On the other hand, above ReC, the inertia of the flow
largely overcomes the dissipative viscous effects and ex-
ponential growth of instabilities occurs; the flow rapidly
becomes turbulent. The importance of the previous sen-
tence on anomalous laminar flows becomes clearer when
we consider that, owing to the small value of the kine-
matic viscosity of common fluids, the Reynolds number
is usually large. Therefore, it is very important to evalu-
ate the value ReC in each set of experimental conditions.
It is not straightforward to derive this value under general
assumptions. Empirically, it has been found that, in ex-
ternal flows where the reference length is the size of the
body, (ReC)L ≈ 3 × 105, whereas in internal flows where
the reference length is the radius of the duct (orthogo-
nal to the mean flow), (ReC)δ ≈ 3 × 103. It is interesting
to notice that, when considering the boundary layer over
a slender body, the ratio between the length of the body
(L) and the boundary-layer thickness (δ) from Prandtl
theory [10.1] scales as (Re)1/2

L ; therefore, the ratio of the
Reynolds number based on the size of the body over that
based on the transverse characteristic length δ, scales as
L/δ ≈ (Re)1/2

L . This leads to (Re)L/(Re)δ ≈ 102, which
is in remarkable agreement with empirical observations.
Whenever Re > ReC (external or internal), the flow will
start to exhibit all the features of developed turbulence.
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 747

These features establish the major differences be-
tween laminar and turbulent flows:

• extreme sensitivity to initial and boundary condi-
tions• unpredictability and randomness• wide range of structures (scales) in space and time• fully three-dimensional nature• higher diffusion compared to the laminar case• presence of cross-fluctuating terms among fluid-
mechanics variables.

The sensitivity to initial conditions is the key point
for the understanding of the behavior of turbulent flows;
it is not possible, even in principle, to control the BC
and IC to an arbitrarily small degree, especially if they
pertain to a turbulent flow field (such as the inlet con-
ditions for a channel). In comparison to laminar flow,
a turbulent flow will exhibit a substantial (not only ap-
parent due to our ignorance) unpredictable and random
nature at any point and any time which originates from
this high sensitivity to BC and IC; this also produces
correlated fluctuations among the fluid-mechanics vari-
ables. These complex behaviors seem to prevent the
possibility of an analytical approach when dealing with
turbulent flows; in fact, from the mathematical point
of view, there is still no theorem proving the exis-
tence and uniqueness of solutions to the Navier–Stokes
equations in fully three-dimensional conditions (as in
turbulent flows), for arbitrary time intervals, whatever
the Reynolds number [10.2]. Referring to Sir Horace
Lamb [10.3],

“I am an old man now, and when I die and go to
Heaven there are two matters on which I hope en-
lightenment. One is quantum electrodynamics and
the other is turbulence. About the former, I’m really
quite optimistic.”

there is still a lot to do in turbulence investigations (for
example consider the $1 000 000 prize being offered by
the Clay Mathematics Institute for a proof of the exis-
tence and uniqueness of solutions to the Navier–Stokes
equations, www.claymath.org/millennium). Nonethe-
less, some key point is quite clear; it is sure that the
fluid-mechanics equations are valid even in the turbulent
regime, remembering that they are derived from fun-
damental conservation principles (the relation between
turbulence and equations will be considered in de-
tail in Sect. 10.1.1). Moreover, simplified mathematical
descriptions of nonlinear systems reveals that unpre-
dictability and randomness are effectively derived from
deterministic equations [10.4].

The observation of a wide range of scales within
turbulent flows probably has the most important prac-
tical consequences when dealing with experiments in
turbulence. This has been recognized since Leonardo da
Vinci’s (1452–1519) famous pictures of the flowing wa-
ter of the Arno River and is summarized in poetic style
in the well-known verse by Richardson [10.5]:

“Big whorls have little whorls, which feed on their
velocity; And little whorls have lesser whorls, And
so on to viscosity (in the molecular sense).”

(even if for some turbulence quantity the range effec-
tively extends well below the size where viscosity effects
act). The previous description clearly points out the pres-
ence of several eddies, the interactions between them,
and the effect of viscous dissipation.

Flow scales will be considered in detail in
Sect. 10.1.2; as an introductory argument, for the ve-
locity field, larger scales in space are related to the
previously mentioned reference length L and time
τ0 = L/U , whereas smaller scales are given by the Kol-
mogorov scales (η = (ν3/ε)1/4, τη = (ν/ε)1/2, where ε

is the mean turbulent kinetic energy dissipation). From
a simple dimensional argument, considering the balance
between the inertial and dissipative terms in the turbu-
lent kinetic energy equation [10.6], it is possible to derive
that ε ∼ U3/L . Therefore, it is quite easy to obtain the
ratios

L

η
∼ L

(
U3 L

ν3

)1/4

= Re3/4 ,

τ0

τη

∼ τ0

(
U3

Lν

)1/2

= Re1/2 ,

i. e., the range between large and small scales (L −η)/η
(and similarly in time) increases as the Reynolds number
to the power 0.75 (or 0.5 for time scales). For a mod-
erate Reynolds number (104), this means that there are
almost three orders of magnitude between the large and
small space scales (and about two orders of magni-
tude in time); refer to Sect. 10.1.2 for further details
on this.

Considering the transformed domain in wavenumber
(k = 2π/�i , where �i is the generic length scale), which
allows one to derive the spatial distribution of energy or
the energy spectrum, the large and small scales bound
a range of interesting wavenumber scales in fluid me-
chanics from kL = 2π/L to kη = 2π/η. Similarly, the
distribution of energy among the different time scales
is investigated by means of the energy spectrum in fre-
quency ( f = 1/∆ti, where ∆ti is the generic time scale);
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748 Part C Specific Experimental Environments and Techniques

the frequency range is between f0 = 1/τ0 and fη = 1/τη

(note that while f0 is obtained as U/L , fη is different
from U/η; refer to the sections on Integral Scales and
Kolmogorov Scales).

In fact, from both the numerical and experimen-
tal points of view, the existence of a wide range
of scales determines the maximum and minimum di-
mensions (and times) to be resolved by a particular
method (in terms of the previous example, this means
that the experimental system should be able to mea-
sure over three orders of magnitude in space and two
orders in time). In theory, the whole range should
be detectable to allow a full description of the flow
field; in practice, researchers frequently concentrate
separately on intermediate–large or intermediate–small
scale ranges. This limitation depends on the fact
that, due to the large Reynolds numbers involved in
practical investigations, the range of scales is very
wide and exceeds the resolution capabilities of ex-
isting numerical codes and experimental methods (it
should also be considered that the previous range has
been evaluated for a one-dimensional space, while
in three-dimension investigations or numerical sim-
ulations, the range must be increased as the third
power).

The full three-dimensional nature of turbulent flows
derives from the presence of a large range of scales
which correspond to the presence of small and large ed-
dies with shapes and strength depending on the particular
flow field. These eddies also ensure more-effective dif-
fusion (of each fluid variable) within the flow field in
comparison to the laminar case in which only molecular
diffusion acts.

To summarize, it is quite difficult to define turbulence
univocally [10.7],

“What is turbulence? Turbulence is like pornogra-
phy. It is hard to define, but if you see it, you recognize
it immediately.”

Prerequisites for Measurements
in Turbulent Flows

Due to the previous considerations, from the point of
view of measurements, even though many techniques
can be used both in laminar and turbulent conditions,
there are some peculiar characteristics of a measuring
system to be considered when dealing with turbulent
flows experimentally:

• spatial resolution• time resolution

• the characteristic size of the system and duration of
a measurement• intrusiveness• statistical treatment

To resolve the wide range of scales observed in tur-
bulent flows, a measurement system should be able to
identify rapid changes in fluid-mechanics variables both
in space and time. To do this, the sensor (specifically
the probe) of the system, must be small enough com-
pared to the smallest spatial scale in the flow and must
respond at least as quickly as the smallest time scale
of the flow. The spatial resolution (SR), of a meas-
urement system gives information about the in-
verse of the minimum detectable length in the flow
field,

SR = 1

dmin
,

where dmin is usually closely related to the characteris-
tic size of the sensor, although for some experimental
method, there is not a physical sensor so that this
size should be referred to the region which contributes
to the measurement, the so-called measurement vol-
ume. A system with high spatial resolution is able to
perform a measurement over a small length (i. e., to
capture fluctuations of the considered fluid-mechanics
variable over short distances). For example, in hot-wire
anemometry (HWA, Sect. 5.2), the sensor is a thin wire
(diameter of a few micrometers) and SR ≈ 105 m−1

(the measurement unit is length−1), while in laser
Doppler anemometry (LDA), (Sect. 5.3) the sensor
consists of the region where the two laser beams
cross (with a characteristic size of 10−4 m) so that
SR ≈ 104 m−1 and a Pitot tube (Sect. 5.1, with a hole
diameter of about 3 × 10−3 m) has SR ≈ 3 × 102 m−1.
In this sense, we can say that HWA is able to de-
tect small moving spatial structures of the velocity
field better than LDA and much better than a Pitot
tube.

Similarly, the time resolution (TR), gives informa-
tion on the inverse of the minimum detectable time
interval in the flow field,

TR = 1

∆tmin
,

where ∆tmin is the maximum time among the time
interval requested by the whole measurement system
to perform a measure (measurement interval) and the
time interval for the sensor to respond to a variation of
the considered fluid-mechanics variable (the response
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 749

time, which is also connected to the size of the sen-
sor itself). A system with high time resolution is able
to take measurements separated by small time inter-
vals (i. e., to capture fast fluctuations of the considered
fluid-mechanics variable). For example, in HWA, due to
the small sensor size and the fast electronics, the sys-
tem takes a measurement quite rapidly (it is really an
analogue system which is resampled digitally) so that
TR ≈ 105 s−1 (the measurement unit is s−1 or Hz), for
LDA the value of ∆tmin depends on the seeding par-
ticle inter-arrival time, which can be reduced to 10−4 s,
so that TR ≈ 104 s−1, while for Pitot tubes the iner-
tia of the manometer fluid limits the time interval to
a fraction of a second, so that TR ≈ 10 s−1 (modern
pressure transducers are able to respond quite rapidly
to pressure changes but are still quite large, so that
TR ≈ 103 –104 s−1).

Spatial and temporal resolutions give an indication
of the achievable lower limit on the scale range. On the
other hand, the upper limit is related to the extension
(overall size) of the measurement system in space and to
the duration of the measurement in time. A single-point
measurement system (such as HWA, LDA or a Pitot
tube) cannot directly detect the scale spatial structure,
even in homogeneous and isotropic turbulence, unless
a hypothesis on the relation between behavior in space
and time is assumed (see the section on Taylor’s hy-
pothesis). The detection of large-scale spatial structures
can be accomplished by using multipoint systems such
as using light sheets in the particle image velocime-
try technique (PIV) (Sect. 5.3.2), which is then able to
determine the flow behavior over a length scale dmax
(for example, in PIV, dmax is the dimension of the light
sheet in the test section). From the temporal point of
view, in stationary flow conditions (when the large time
scales are closely connected to the large space scales
by Taylor’s hypothesis), by performing one measure-
ment over a time ∆tmax, it is possible to investigate
the evolution of the field up to such a time. On the
other hand, in unsteady conditions (when large time
scales are not simply attainable from the spatial ones),
it is necessary to acquire several time sequences over
a time ∆tmax to derive the large-time-scale behavior;
in this case various strategies can be employed (for ex-
ample, ensemble or phase averaging as illustrated in
Sect. 10.1.1).

The smallest (dmin, ∆tmin) and largest (dmax, ∆tmax)
measurable lengths and times must be evaluated prelim-
inarily for the measurement system under consideration
and compared to the expected flow scales (for exam-
ple starting from a simple evaluation in homogeneous

and isotropic turbulence) to know the effective range
that can be investigated. In small-scale investigations,
and in unsteady conditions, it is not possible to derive
the information in time from that in space by a sim-
ple transformation using the mean velocity (as stated
by Taylor’s hypothesis) so that both the information
in space and time are requested (consider the defini-
tions of the Kolmogorov time scale, or the Kolmogorov
frequency, which do not include the mean velocity,
as an example of this statement). On the other hand,
for large-scale investigations, and in stationary con-
ditions, the time and space behaviors are much more
closely related by means of the mean velocity (Taylor’s
hypothesis).

When considering the distribution of energy among
the different wavenumbers, the sampling theorem states
that the energy content can be effectively detected only
up to kmax = π/dmin (and not up to kmax = 2π/dmin
as expected). Similarly, for the distribution of energy
among the different frequencies, the sampling theorem
states that the energy content can be effectively detected
only up to fmax = 1/(2∆tmin) (and not up to fmax =
1/∆tmin as expected). In this sense, the spatial and tem-
poral resolutions correspond to two times the maximum
wavenumber and frequency which can be detected by
the measurement system. The situation is summarized
in Fig. 10.1, in physical space and wavenumber domains.

The intrusiveness of the sensor within the flow field
also seems to be a very important aspect of lami-
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Fig. 10.1 Minimum and maximum size of the measure-
ment system in comparison to flow structures in space and
wavenumber domains
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nar flow measurement. This is only partially true, due
to the fact that in the presence of turbulence the in-
sertion of a probe into the flow itself generates flow
structures that modify the previous (unknown) field,
whereas in laminar flow this effect is more local-
ized (at least far from the transition regimes); thus,
intrusiveness gains importance in turbulence flow mea-
surements. In principle, it is not possible to completely
avoid intrusiveness due to the requirement of interac-
tion between the measurement system (the sensor in
particular) and the fluid flow when performing exper-
iments. In practice, this interaction should be reduced
as much as possible and the effect must at least
be evaluated in each case; examples are the eval-
uation of the interactions between intrusive sensors
and boundaries in near-wall flows and the deter-
mination of spatial and temporal (wavenumber and
frequency) filtering of the tracers used in optical methods
(Sect. 5.3.3).

The problem of statistics is closely linked to the
random nature of turbulent flows; the reader is referred to
Sect. 10.1 for details of how statistics is performed. The
effect of statistical accuracy and the required number of
samples to attain such an accuracy are considered in the
sections on Statistical Accuracy and Chap. 23. However,
it is important to remark that instantaneous fields contain
information on both the spatial and temporal evolution of
the flow and that special care must be taken in averaging
procedures (such as in the case of stationary turbulence
or in homogeneous and isotropic turbulence).

Errors in experimental techniques will be not con-
sidered here because a general treatment of errors is
presented elsewhere (Chapter 23) and specific measure-
ment system errors derive from peculiar aspects of each
measurement method regardless of whether laminar or
turbulent conditions dominate.

Flow Variables Relevant
to Turbulence and their Measurement

Once the general characteristics of a system measuring
in turbulent flows have been established, it is necessary
to establish which fluid-mechanics variables have to be
determined for a complete description of the turbulent
field. Starting from equations (Chapter 1, Sect. 10.1.1),
the following fields are of interest:

• three velocity components• pressure• temperature• density• species concentration

Many other quantities are important in fluid mechan-
ics, such as the vorticity, strain rate, stresses, dissipation,
and enstrophy (which can be derived from the veloc-
ity field, although direct measurements are sometimes
possible). As mentioned in the introduction, interaction
terms among these variables are also of great interest
in turbulence (both from the fundamental and applied
points of view); these have to be determined by com-
bined simultaneous measurements of two or more of
them (examples will be given in Sect. 10.1.2).

It should also be pointed out that the equations them-
selves establish relations between flow variables so that
one can be derived from the others (even if we are dealing
with second-order partial differential equations which
set severe practical limits when computing derivatives
from noisy experimental data).

In these equations, other important quantities such
as viscosity and other diffusion coefficients are present.
Usually they are derived from constitutive relations and
inserted into the equations, and empirical laws are used
for their evaluation (Sect. 1.3).

For further information on the techniques and mea-
surements mentioned above, the reader can use the
following cross-references to part B of this Handbook:

• Velocity components
– Pitot and pressure based (Sect. 5.1)
– Thermal anemometry (Sect. 5.2)
– Laser Doppler anemometry (Sect. 5.3.1)
– Particle image velocimetry (Sect. 5.3.2)
– Sonic anemometers (Sect. 5.7)• Pressure
– Manometers and transducers (Chap. 4)• Temperature
– Thermocouples (Sect. 6.1)
– Resistive sensors (Sect. 6.1)
– Liquid crystals (Sect. 6.3)
– Other methods (Chap. 6)• Density
– Shadowgraph (Sect. 5.6)
– Schlieren (Sect. 5.6)
– Interferometry (Sect. 5.6)• Concentration
– Laser-induced fluorescence (LIF, Chap. 11)

It should be clear to experimentalists (and similarly
to people involved in numerical simulations), that the
large number of variables to be determined and the
many potentially interesting applications mean that there
are still hundreds of years’ worth of interesting mea-
surements in turbulent flows to be enjoyed. From the
experimental point of view, it is also clear that efforts
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must be given in developing almost-nonintrusive, mul-
tipoint systems for the simultaneous measurement of
various quantities in the flow field. Among others meth-
ods, this has almost been achieved for simultaneous
multipoint three-component velocity (stereo PIV, 3-D
particle tracking velocimetry (PTV) (Sect. 5.3.2), for
combined velocity–concentration (PIV LIF , Chap. 11),
velocity–temperature (liquid crystals (Sect. 6.3)) and
concentration–temperature (LIF–liquid crystals) mea-
surements.

Difficulties in measuring all of these quantities are
related to:

• the need to define, determine, and verify a common
measurement volume• crosstalk between probes or systems• simultaneous control and optimization of different
setups• the need for simultaneous triggering of data acqui-
sition• the need for a common space grid and time step
definition between the various measurement systems• the need for measurement errors of the same order
of magnitude• handling and storing large amounts of data.

To solve such problems great care and expertise
must be applied; this could be the reason why advanced
multipoint combined measurement systems are still on
a prototype level. However, as done in the past, detailed
standard procedures will be derived to achieve these
requirements to a reasonable degree of accuracy and
design relatively simple industrial systems.

Some additional comments should be given on
the possibility of measuring pressure and density
fields (of course we are still speaking about almost-
nonintrusive, multipoint measurement systems). For
pressure fields, high-temporal-resolution single-point
measurements are already possible on the surface of
bodies and on walls in general, but problems are en-
countered when performing such measurements with
high spatial resolution (due to the probe size) within the
field, i. e., far from the boundaries (due to intrusiveness
of the pressure probes) and in a multipoint approach
(due to the intrusiveness and interaction between the
probes themselves). At these locations, simultaneous
velocity–pressure correlations are also difficult to ob-
tain. The situation is just the opposite for density field
measurements, in which quite high spatial resolution
in multipoint conditions can be attained far from the
boundaries (albeit with low precision, i. e., with large

measurement errors due to the analysis of light in-
tensity fields), while it is quite difficult to measure
close to solid surfaces (due to light reflection), espe-
cially in complex geometrical configurations (due to
the almost two-dimensional nature of the measurement
methods).

Some other difficulties in the measurement of turbu-
lent flows are related to the evaluation of the derivatives
that appear in the equations. Provided that the measur-
ing system has a high spatial resolution, it is necessary
to obtain derivatives from finite differences in space
and time (such as those obtained as the output from
numerical simulations and/or experiments). This is
always a difficult task, which can be solved using in-
terpolation algorithms coupled with evaluations of the
finite differences over different grid spacings or time
steps.

The substantial equivalence of many problems en-
countered when dealing with turbulent flows (wide range
of scales, spatial and time resolution problems, errors
and statistics, grid and time step problems) in both nu-
merical simulations and experiments has already been
pointed out. Many experiments using well-established
measurement systems have been devoted to testing of
numerical models, especially in nonstandard conditions
and at high Reynolds numbers. On the other hand,
well-tested numerical codes can be used to verify the
quality of data obtained from advanced or nonstandard
application measurement techniques. This allows the
establishment of a mutual relationship between numer-
ical simulations and experiments; an example of this
is the evaluation of the turbulent kinetic-energy dis-
sipation rate ε, which can be derived from isotropic
theories (Sect. 10.1.1 and on How to measure length
and time scales) or from numerical simulations and be
used to derive dimensionless variables from measure-
ments. This quantity, which consists of a squared sum
of velocity gradients, is very difficult to evaluate from
the experimental point of view with the required high
spatial and temporal resolutions; on the other hand, it
is quite easy to derive values for ε from numerical sim-
ulations in homogeneous and isotropic turbulence (at
least at small Reynolds numbers). Thus, the numeri-
cal homogeneous and isotropic surrogate for ε can be
used as a preliminary indication to evaluate flow scales
and the required spatial and time resolutions in real
experiments (even in inhomogeneous and anisotropic
conditions).

There are large number of fields of common investi-
gations and partnerships between numerical simulations
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and experiments based on the advantages of investigat-
ing the same problem from different points of view.

Lagrangian and Eulerian Descriptions
The flow field variables mentioned so far are indepen-
dent of the frame reference due to Galilean invariance
(at least for flow velocities much less than that of light,
i. e., for all fluid-mechanics applications except for astro-
physics). This statement is true for flow variables (except
for the velocity itself) and their gradients, but is not true
for partial derivatives in time [10.4]. Therefore if we
consider all the flow at rest or in motion with a uniform
velocity; in fact, the flow is not a rigid body in motion
with uniform velocity and each flow element could have
a velocity different from the neighbors. The variation
of the fluid-mechanics quantities between different flow
elements could depend on their relative position and ve-
locity, and thus on the way in which such quantities are
evaluated. Therefore, it is not trivial to consider the dif-
ferences between the flow description obtained at a fixed
point and the one in motion with the considered flow el-
ement; the former is referred to as Eulerian description,
while the latter is known as the Lagrangian description
(Sect. 10.2).

Usually, the difference between those two descrip-
tions is clarified by considering a standing rock in
a river (Eulerian frame), a leaf carried away by the
flow (Lagrangian frame), and a fish moving on its
own (i. e., with its own velocity). Clearly, the former
undergoes variations of the fluid-mechanics quantities
both in time (unsteady conditions) and from point to
point (inhomogeneous conditions), while the other two
exhibit variations when moving along each trajectory
(a sequence of positions in time) or along different
trajectories at different times, thus only in time. Such
a statement can be clarified by considering the rela-
tion between the variations along a trajectory, x(x0, t),
(D/Dt, substantial or Lagrangian derivative) (where x0
is the fixed initial position) and those at a fixed point
in space, x0, (∂/∂t, the time partial or Eulerian deriva-
tive), of a fluid-mechanics variable A[x(x0,t), t] given
by Batchelor [10.1]

DA

Dt
= ∂A

∂t

∣
∣
∣
∣
x(x0,t)=const

= ∂A

∂t

∣
∣
∣
∣
x0=const

+
(

∂xi

∂t

∂A

∂xi

)∣
∣
∣
∣
x0=const

=
(

∂A

∂t
+ui

∂A

∂xi

)∣
∣
∣
∣
x0=const

,

where repeated indexes mean sum for i = 1, 3 (the sum
will be omitted hereafter). The second term on the right-
hand side of the last equivalence represents the transport
term, which accounts for variations in space due to the
motion of the fluid with velocity components ui .

The former relation also allows one to understand
how it is possible to derive one description from the
other; when it is possible to know the variation in
time of a fluid-mechanics variable at a given point
and simultaneously the variation of the same variable
between different points then we can derive the substan-
tial derivative. This is just the case of the Lagrangian
description in which the knowledge of the variables
along flow trajectories allows one to derive their varia-
tions in both time and space, and thus to compute the
overall variation (i. e., to derive the Eulerian descrip-
tion). On the other hand, given the overall variation
of a quantity, it is not possible, in general, to de-
rive the variation in time along a trajectory (i. e., to
derive the Lagrangian description); the Eulerian field
cannot be integrated to derive trajectories due to sen-
sitivity to the IC (in the laminar case this would be
possible). In particular, the possibility of interchange
between the two descriptions depends on the specific
flow field considered; the hypothesis of Tennekes [10.8],
generalizing Taylor’s hypothesis (Sect. 10.1.1, Taylor’s
hypothesis), establishes a direct connection between
the Lagrangian and Eulerian description in isotropic
turbulence, in which at large Reynolds numbers La-
grangian flow scales are larger than Eulerian flow scales
(Sect. 10.2 and [10.4]).

Thus, when possible, it would be much better to
attain a Lagrangian description rather than a Eulerian.
However, from the experimental point of view, it is not
simple to obtain fluid-mechanics variables along flow
trajectories; only a few techniques allow the Lagrangian
description to be obtained. Among the others, the PTV
technique (Sect. 5.3.2) is now well established to derive
tracer particle velocities (which under certain assump-
tions are representative of the flow element motions)
along trajectories.

The importance of the Lagrangian approach arises
in situations in which the determination of the spread-
ing and dispersion of the flow is required (for example
in pollutant dispersion or in mixing and combustion
investigations) or when the history of the same flow
element must be considered (for example when eval-
uating the deformation and stresses on blood cells in
haemodynamics).

The flow variables, the derived quantities (time and
space derivatives and so on), and the flow scales defined
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 753

in previous paragraphs must be considered separately in
the Eulerian or Lagrangian frameworks. More details on
this aspect will be given in the following (Sect. 10.1.3,
Sect. 10.2), but in general the evaluation of a variable in
the Eulerian frame requires an average (in the sense re-
ported in Sect. 10.1.1) at a fixed point in space or among
different fixed points; on the other hand, the evaluation
in a Lagrangian frame requires an average along trajec-
tories (separating the results on the basis of the starting
or arriving positions).

Alternative Approaches to Statistics
The practical consequence of the sensitivity of a turbu-
lent flow to BC and IC is that it exhibits fluctuations in
time and space. Within these fluctuations all the essen-
tial and interesting flow behaviors are embedded. Thus,
the value of a fluid-mechanics variable at a given point
and time (q) can be considered as the sum of a mean
term, 〈q〉 (the way in which this term is obtained will be
specified in the following of this section), plus a term
containing all the information on coherent structures (at
this stage coherent means with a well-defined pattern
in the flow field, Chap. 22) in the field (large and inter-
mediate scales) (q′)c, plus a random term containing all
incoherent fluctuations (small scales), (q′)n,

q = 〈q〉+ (q′)c + (q′)n ,

where q = q(x, t) is a function of the considered point
(x) and time (t), as are all terms on the right-hand side
of the previous relation. The goal of this description
is to try to separate the three contributions from each
other, i. e., to determine all possible effects to which
the flow variable is subjected under the influence of the
flow motion. Therefore, the problem is first to perform
an average of the flow variables preserving the coherent
and incoherent parts and secondly to separate these two.

Unfortunately, there is no unique solution to this
problem; the result depends on the criterion that is used
to quantify the coherence or incoherence character of
the flow variable, i. e., whether we treat them as indis-
tinguishable from each other (no criterion), to determine
the energy of the related structures, to evaluate the re-
semblance with sample structures defined a priori, to
minimize some difference in the least-squares sense,
and so on. To give an approximate idea of the problem,
the most important approaches used are described in the
following cross references:

• Direct averaging (Sect. 10.1.1, Sect. 10.1.2)• Proper orthogonal decomposition (POD) (Sect. 22.4)• Wavelets (Sect. 23.5)

• Linear stochastic estimation (LSE) (Sect. 22.6)

In this section, only direct averaging will be dis-
cussed; in this approach, all flow scales are considered
as equivalent (in a Fourier sense) so that it is possi-
ble only to separate the average term from the other
two in the previous decomposition, but it is not possi-
ble to distinguish between the coherent and incoherent
contributions.

Statistical Domain:
Ensemble Averaging, Time or Space Averaging

Once the approach to the analysis of a turbulent flow
has been defined, it is necessary to specify on what
domain the statistics are performed. For direct av-
eraging, the most general way to derive averaged
quantities is the ensemble average (indicated with tri-
angular brackets); therefore, the n-th statistical moment
of a fluid-mechanics variable q is given by

〈qn〉 =

+∞∫
−∞

qn p (q) dq

+∞∫
−∞

p (q) dq

,

where p(q) is the probability density function (PDF) of
the variable q (Sect. 23.1 for details) and n is the order
of the considered moment (Chap. 23 for details on the
evaluation of statistics). Each of the previous quantities
(included the PDF) is a function of the considered point
and time; for example p(q) = p(q)(x, t).

In principle, the integral of the PDF over all possible
values should be equal to 1; the integral is retained in the
previous definition to point out that a normalization is
required (especially when the integral is evaluated over
a discrete set of samples). The PDF could be obtained by
acquiring all possible values of the variable q at a given
point and time; in practice, this means repeating the
same experiment several times from the beginning (with
more or less the same IC and BC), evaluating the in-
vestigated variable at the same time and position (in the
general case of unsteady inhomogeneous phenomena).
Such a procedure is summarized in Fig. 10.2; different
values of the flow variable at the same point and time
are observed for each new experiment; the mean value
obtained by averaging over the different experiments is
different from the one derived by a time average over
a single experiment.

Two problems arise in this practical approach.
Firstly, the experiments are discrete and cannot be re-
peated indefinitely so that the statistical treatment to
determine the finite number of independent samples
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754 Part C Specific Experimental Environments and Techniques

must be considered (Chap. 23). In this case, the PDF
must be derived from a finite number of data (NT)
and the previous integral is replaced by the sum over
experiments with the same PDF

N∑

i
qn

i p (qi)∆qi

N∑

i
p (qi)∆qi

=

N∑

i
qn

i p (qi)∆qi

N∑

i
ni

(where ∆qi and ni are the width and number of data for
each bin of the N-bin histogram); if all events have the
same bin width and p(q), then the previous sum reduces
to the usual average

1

NT

NT∑

i

qn
i .

Secondly, the ensemble over which averaging is per-
formed is a set of several results of the same experiment;
thus, it will be necessary to repeat the same experiment
systematically several times, which is a difficult problem
for experimentalists. Therefore, although it is clear that
ensemble averaging would be the most general way of
performing averaging (without any a priori assumption
about the flow field), in practice, whenever possible,
it is necessary to perform the average in a much sim-
pler way. To this end, consider the following special
fluid-mechanics conditions (statistically)

• periodic flow field (in time or space)• stationary flow field• homogeneous flow field

for each one of which particular average procedures are
possible.
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Fig. 10.2 Ensemble average along the axis of repeated experiments
and time average along the time axis

In a statistically periodic flow field (period equal to
T0), the PDF is the same at time t and time t + T0

p(q) (x, t) = p(q) (x, t + T0)

(or equivalently in space at point x and x+X0), so that the
ensemble over which the average is performed reduces
to one period of the investigated periodic phenomenon.
The mathematical expressions are the same (for continu-
ous or discrete data), but the time (or space) dependence
of the results is limited to just one period. In prac-
tice, it is completely equivalent to run the experiments
over N different periods or to repeat ex novo the ex-
periments N times, providing that the BC and IC are
constant (it should be required that the characteristic
time, or length, scales of the phenomenon are less than
T0, Sect. 10.1.3). In this case, so-called conditional or
phase averaging (i. e., averaging the acquired signal over
different phases) allows one to limit the computation of
〈q〉 to times t0 +mT0, where m is an integer number
and t0 is the phase in time (and equivalently at positions
x0 +m X0). Examples of such averaging are encoun-
tered in the analysis of periodic signals in time (such as
for daily varying atmospheric data or for data acquired
close to propellers and other rotating devices) and of
periodic fields in space (such as in the wake of bluff
bodies or at the outlet of jets at relatively low Reynolds
numbers).

In the case of statistically stationary flow fields, the
PDF is completely independent of the considered time

p(q) (x, t) = p(q) (x)

so that, statistically, each instant over a set of the ensem-
ble should be equivalent to the others (mathematically
the equivalence would also require that the statistics of
the process is independent on the particular selected set
of the ensemble; this is a sufficient condition. See [10.9]
for further details on this argument). As depicted in
Fig. 10.2, in the computation of the n-moment this al-
lows one to replace the ensemble average by the average
over a single set (i. e., in time) indicated by qn ,

〈qn〉 =

∞∫
−∞

qn p (q) dq

∞∫
−∞

p (q)dq

=

∞∫

0
qn p (q) dt

∞∫

0
p (q)dt

= lim
T→∞

T∫

0
qn p (q)dt

T∫

0
p (q) dt

= lim
T→∞

1

T

T∫

0

qndt = qn
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 755

using the hypothesis that the PDF is not dependent
on time. All quantities can be functions of the spatial
positions (but not of time after averaging). This is a sim-
plified version of the ergodicity theorem, which states
the equivalence between the average over the different
sets of the ensemble and over time on a single set; the
theorem is valid for a random process that is stationary,
providing that all the statistics obtained from a set are
equal to that from the others; such a process is referred
as ergodic [10.9]. It must be emphasized that the simple
verification of stationarity does not imply the ergodic-
ity of a process, i. e., the replacement of the ensemble
average with the time average; it is also necessary to
verify that independent sets of the ensemble give the
same statistics (whereas an ergodic process is automati-
cally stationary). In practice, it is possible to divide the
set into subsets and to verify the equivalence of statis-
tics over the subsets. The widespread class of random
processes that satisfy ergodicity is known as the class
of Gaussian random processes with continuous power
spectral density functions, i. e., without infinite-density
peaks [10.9].

It is of interest to show examples of ergodic and
non-ergodic processes. Consider the following unsteady
non-ergodic (to be proved) periodic set

q (t) = Q sin (ωt +ϕ)

in which the amplitude Q and phase ϕ are constant over
the ensemble. Ensemble averaging, at a fixed time, gives
the following values for the first two statistical moments
and for the correlation function (Chap. 22, Chap. 23)

〈q(t)〉 =
+∞∫

−∞
Q sin (ωt +ϕ) p(q)dq

= Q sin (ωt +ϕ) ,

〈q2(t)〉 =
+∞∫

−∞
Q2 sin2 (ωt +ϕ) p(q)dq

= Q2 sin2 (ωt +ϕ) ,

〈q(t)q(t + τ)〉 =
+∞∫

−∞
Q2 sin (ωt +ϕ)

× sin [ω (t + τ)+ϕ] p(q)dq

= Q2 sin (ωt +ϕ) sin [ω (t + τ)+ϕ] ,

which depends on time t (i. e., the process is unsteady).
On the other hand, the average in time gives (for the

same quantities)

q = lim
T→∞

1

T

T∫

0

Q sin (ωt +ϕ) dt = 0 ,

q2 = lim
T→∞

1

T

T∫

0

Q2 sin2 (ωt +ϕ) dt

= Q2

2
,

q(t)q(t + τ) = lim
T→∞

1

T

T∫

0

Q2 sin (ωt +ϕ)

× sin [ω (t + τ)+ϕ] dt

= Q2

2
cos (ωτ) ,

which are of course independent on the set, but are
different from the values obtained from the ensemble
averaging; therefore, the process is non-ergodic. Note
that, if in the time average the data are collected at the
same time and phase (ωt +ϕ = constant), i. e., condi-
tional or phase averaging is performed, the following
results are obtained

q = lim
T→∞

1

T

T∫

0

Q sin (ωt +ϕ)constdt

= Q sin (ωt +ϕ)const ,

q2 = lim
T→∞

1

T

T∫

0

Q2 sin2 (ωt +ϕ)constdt

= Q2 sin2 (ωt+ϕ)const ,

q(t)q(t + τ) = lim
T→∞

1

T

T∫

0

Q2 sin (ωt +ϕ)const

× sin [ω (t + τ)+ϕ]const dt = Q2

× sin (ωt +ϕ)const

× sin [ω (t + τ)+ϕ]const ,

which are identical to the results of the ensemble aver-
aging, so that phase averaging can be used as a surrogate
of ensemble averaging.

A similar result is obtained for periodic sets with
different amplitudes Q(k) for each set k (all with the
same phase)

qk (t) = Q(k) sin (ωt +ϕ) .
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For the same moments as before, ensemble averag-
ing gives

〈q(t)〉 =
+∞∫

−∞
Q(k) sin (ωt +ϕ) p(qk)dqk

= 〈Q〉 sin (ωt +ϕ) ,

〈q2(t)〉 =
+∞∫

−∞
Q2(k) sin

2
(ωt +ϕ) p(qk)dqk

= 〈Q2〉 sin2 (ωt +ϕ) ,

〈q(t)q(t + τ)〉 =
+∞∫

−∞
Q2(k) sin (ωt +ϕ)

× sin [ω (t + τ)+ϕ] p(qk)dqk

= 〈Q2〉 sin (ωt +ϕ)

× sin [ω (t + τ)+ϕ] ,

which depend on time t (i. e., the process is unsteady).
The average in time gives

q = lim
T→∞

1

T

T∫

0

Q(k) sin (ωt +ϕ)dt = 0 ,

q2
k = lim

T→∞
1

T

T∫

0

Q2(k) sin2 (ωt +ϕ)dt

= Q2(k)

2
,

q(t)q(t + τ) = lim
T→∞

1

T

T∫

0

Q2(k) sin (ωt +ϕ)

× sin [ω (t + τ)+ϕ] dt

= Q2(k)

2
cos (ωτ) ,

which depend on the set (except the mean value),
so they are different from the values obtained from
the ensemble averaging; therefore, this process is also
non-ergodic.

On the other hand, if we consider the following sta-
tionary ergodic (to be proved) periodic sets with different
phases ϕ(k) for each set (all with the same amplitude)

qk (t) = Q sin [ωt +ϕ(k)] .

The ensemble averaging gives

〈q〉 =
+∞∫

−∞
Q sin [ωt +ϕ(k)] p(qk)dqk

= 0 ,

〈

q2
〉

=
+∞∫

−∞
Q2 sin2 [ωt +ϕ(k)] p(qk)dqk

= Q2

2
,

〈q(t)q(t + τ)〉 =
+∞∫

−∞
Q2 sin [ωt +ϕ(k)]

× sin [ω (t + τ)+ϕ(k)] p(qk)dqk

= Q2

2
cos (ωτ) ,

which do not depend on time t (i. e., the process is
stationary). The average in time gives

q = lim
T→∞

1

T

T∫

0

Q sin [ωt +ϕ(k)]dt = 0 ,

q2 = lim
T→∞

1

T

T∫

0

Q2 sin2 [ωt +ϕ(k)]dt

= Q2

2
,

q(t)q(t + τ) = lim
T→∞

1

T

T∫

0

Q2 sin [ωt +ϕ(k)]

sin [ω (t + τ)+ϕ(k)] dt

= Q2

2
cos (ωτ) ,

which are independent of the set and equal to the values
obtained from the ensemble averaging; therefore, this
process is ergodic.

Lastly, consider the stationary non-ergodic (to
be proved) periodic sets with different uncorrelated
amplitudes and phases [Q(k) and ϕ(k)] for each
set [10.9]

qk (t) = Q(k) sin [ωt +ϕ(k)] .
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The ensemble averaging gives

〈q〉 =
+∞∫

−∞
Q(k) sin [ωt +ϕ(k)] p(qk)dqk

= 0 ,

〈

q2
〉

=
+∞∫

−∞
Q2(k)sin2 [ωt +ϕ(k)] p(qk)dqk

= 〈Q2〉
2

,

〈q(t)q(t + τ)〉 =
+∞∫

−∞
Q2(k) sin [ωt +ϕ(k)]

sin [ω (t + τ)+ϕ(k)] p(qk)dqk

= 〈Q2〉
2

cos (ωτ) ,

which does not depend on time t (i. e., the process is
stationary). The average in time gives

q = lim
T→∞

1

T

T∫

0

Q(k) sin [ωt +ϕ(k)]dt

= 0 ,

q2 = lim
T→∞

1

T

T∫

0

Q2(k) sin
2

[ωt +ϕ(k)] dt

= Q2(k)

2
,

q(t)q(t + τ) = lim
T→∞

1

T

T∫

0

Q2(k) sin [ωt +ϕ(k)]

× sin [ω (t + τ)+ϕ(k)] dt

= Q2(k)

2
cos (ωτ) ,

which are dependent on the set and therefore dif-
ferent from the values obtained from the ensemble
averaging (note that the values obtained for the corre-
lation coefficients using ensemble (〈q(t)q(t + τ)〉/〈q2〉)
or time (qk(τ)/q2) averaging are both equal to cos(ωt)):
the process is therefore non-ergodic. Thus, mathemat-
ical examples of an unsteady non-ergodic process,
a steady ergodic process, and a steady non-ergodic
process have been given. In practice, the previous
examples could correspond to several realizations of
an oscillatory behavior as in measurements around

propellers (or other rotating devices) and in the at-
mosphere; amplitudes and phases can change from
one sample of the ensemble to the other due to
changes in trim at each revolution (propeller) or mod-
ifications of weather conditions from day to day
(atmosphere).

Returning to the possible ways in which an average
can be performed, for homogeneous flow fields, the same
arguments used for stationary flows can be converted
from time to space. The PDF is independent of the spatial
position

p(q) (x, t) = p(q) (t)

and the ensemble average can be replaced by the average
in space

qn = lim
V→∞

1

V

∫

V

qndV

(all quantities can be function of time after averaging).
The same considerations given before are valid in this
case. Nevertheless, the assumption of homogeneity in
practical fluid flow conditions is much farther from
reality than that of stationarity; to this end, it is im-
portant to stress that, from the Navier–Stokes equations,
it is impossible to have simultaneous homogeneity and
stationarity of a flow except for a fluid at rest.

Relevant Statistical Quantities in Turbulence
By performing the average over the ensemble (when
possible), in time or space, it is possible to derive all the
statistics for the considered fluid-mechanics variable;
see Chap. 22, 23 for further information on the eval-
uation of mean values, higher statistical moments and
cross-moments (in turbulence, cross-moments are fun-
damental quantities appearing in the averaged equations,
Sect. 10.1.2).

Particularly interesting are the statistics related to
recurrences in space and time domains (correlation func-
tions, Sect. 22.2) or in transformed wavenumber and
frequency domains (spectral functions that are related to
the former by Fourier-transform operations, Sect. 22.1).
In particular, it is important to point out that the general
definitions of correlation and spectral functions between
two points at x (time t) and x′ = x+r (time t + τ) are
the following

Rqi q j (x, r, t, τ) = 〈qi (x, t) q j (x+r, t + τ)〉 ,

Fk
qi q j

(x, k, t, τ) =��{�k[Rqi q j (x, r, t, τ)]} ,

F f
qi q j (x, r, t, f ) =��{� f [Rqi q j (x, r, t, τ)]} ,

(10.1)
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where ��{·} means the real part of the argument, and
� f [·] and �k[·] mean the Fourier transform in the
frequency and three-dimensional wavenumber domain
of the quantity in brackets, respectively. The inverse
Fourier-transform relations hold when passing from the
spectral to the correlation functions (Wiener–Khintchine
theorem, Chap. 22 [10.9]). These quantities are vectors
if the two variables qi and q j are scalars, second-order
tensors if one of the two is a vector (i. e., the flow ve-
locity) and third-order tensors if both are vectors (i. e.,
if all velocity components are considered); this depends
on the fact that three projections along the reference axis
of the previous quantities can be derived. For example,
for the correlation function, the quantity

Rui u j (x, rx, t, τ) = 〈ui (x, t) u j (x +rx, t + τ)
〉

is the correlation function tensor between the velocity
components ui and u j at the points x and x +rx along
the x axis of the reference system; varying i and j from 1
to 3, nine of these functions are to be evaluated in a gen-
eral flow field. Of course, each one of these functions is
dependent on the initial spatial position (x), the separa-
tion distance (r), the initial time (t), and the separation
in time (τ).

Each one of these correlation functions reduces to
the single-point cross-statistical moments (covariance)
when the same point (r = 0) and time (τ = 0) are con-
sidered

Rqi q j (x, 0, t, 0) = 〈qi (x, t) q j (x, t)
〉

. (10.2)

These quantities (when obtained for the fluctuating
fluid-mechanics variables of a turbulent flow field) are
of fundamental importance in turbulence investigations
(Sect. 10.1.2); in particular, for the velocity field, these
represent the Reynolds stress symmetric tensor

Rui u j =
⎛

⎜
⎝

u2
1 u1u2 u1u3

u2u1 u2
2 u2u3

u3u1 u3u2 u2
3

⎞

⎟
⎠ .

As a consequence of the previous single-point limit
for correlation functions, the inverse Fourier transform
gives for the spectral functions in the wavenumber and
frequency domains

∞∫

0

Fk
qi q j

(x, k, t, 0) dk = Rqi q j (x, 0, t, 0) = 〈qiq j〉 ,

∞∫

0

F f
qi q j (x, 0, t, f ) d f = Rqi q j (x, 0, t, 0) = 〈qiq j〉 ,

in which, as usual in transformed domains, the single-
valued limit in the correlation functions becomes an
integral value for the spectral functions. For i = j, the in-
tegral of the spectral function just gives the mean square
value of the variable under consideration.

Returning to Sect. 10.1.1, the situation is simpler
when the hypothesis of a stationary flow field can be
assumed; in this case, the dependence on the initial time
is avoided so that

Rqi q j (x, r, τ) = lim
T→∞

1

T

T∫

0

qi (x, t) q j

· (x+r, t + τ) dt ,

Fk
qi q j

(x, k, τ) =��{�k[Rqi q j (x, r, τ)]} ,

F f
qi q j (x, r, f ) =��{� f [Rqi q j (x, r, τ)]} .

Similarly, for the case of homogeneous flow field the
dependence on initial position is avoided

Rqi q j (r, t, τ) = lim
V→∞

1

V

∫

V

qi (x, t) q j

· (x+r, t + τ) dx ,

Fk
qi q j

(k, t, τ) =��{�k[Rqi q j (r, t, τ)]} ,

F f
qi q j (r, t, f ) =��{� f [Rqi q j (r, t, τ)]} .

The situation is also simplified when purely spatial
variation are considered

Rqi q j (x, r, t) = 〈qi (x, t) q j (x+r, t)〉 ,

Fk
qi q j

(x, k, t) =��{�k[Rqi q j (x, r, t)]} ,

(which can be further simplified if stationary or homo-
geneous flow fields are assumed, so that the dependence
on t or x is avoided and averages in time or space are
employed), and for the purely temporally varying case

Rqi q j (x, t, τ) = 〈qi (x, t) q j (x, t + τ)〉 ,

F f
qi q j (x, t, f ) =��{� f [Rqi q j (x, t, τ)]} ,

(which also can be further simplified if stationary or
homogeneous flow fields are assumed so that the depen-
dence on t or x is avoided and averages in time or space
are employed).

Is it also possible to define autocorrelation and
autospectral functions by performing the previous eval-
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uations for qi = q j (i = j); for the x axis, this is

Rq2
i
(x, rx, t, τ) = 〈qi (x, t) qi (x +rx, t + τ)〉 ,

Fkx

q2
i

(x, kx, t, τ) =��

{

�kx

[

Rq2
i
(x, rx, t, τ)

]}

,

F f
q2

i
(x, rx, t, f ) =��

{

� f

[

Rq2
i
(x, rx, t, τ)

]}

,

(10.3)

and similarly for the other two axes. In this case, there
are always three independent correlation functions to be
determined (i. e., the projections along the three axes)
for each scalar variable qi , so that there are nine in-
dependent functions for the three components of fluid
velocity. The functions in (10.3) are also known as
one-dimensional correlation and spectral functions. Nor-
malizing these quantities by the zero-separation (r = 0)
or zero-time-delay (τ = 0) single-point values ((10.2)
with i = j), the so-called correlation coefficients are ob-
tained. Relations between one- and three-dimensional
correlation and spectral functions can be derived in gen-
eral flow fields and in the case of isotropy [10.1, 4,
10].

Combined space–time and higher-order correlation
and spectral functions can also be defined. In particu-
lar, it is interesting for the following (see the Sect. on
multipoint equations), to consider the triple-point corre-
lation functions between different velocity components
at two points; one of those for the case of purely spatial
correlation is written as

Rui u j ,uk (x, r, t) = 〈ui (x, t) u j (x, t) uk (x+r, t)〉 ,

Fk
ui u j ,ul

(x, k, t) =��{�k[Rui u j ,ul (x, r, t)]} ,

(10.4)

where the comma separates the quantity evaluated at the
first point from those at evaluated at the second point.

Other important multipoint high-order functions
are the spatial structure functions (see also Sect. 22.2
and [10.4, 11])

Sn
qi q j ...qk

(x, r, t) = 〈[qi (x+r, t)−qi (x, t)]

×
[

q j (x+r, t)−q j (x, t)
]

× [qk (x +r, t)−qk (x, t)]〉 .

Equivalently, temporal structure functions can be de-
fined. The purely longitudinal and transversal n-th-order
velocity structure functions

Sn
uL

(x, r, t) = 〈[uL (x+r, t)−uL (x, t)]n 〉 ,

Sn
uN

(x, r, t) = 〈[uN (x+r, t)−uN (x, t)]n 〉 ,

(where uL and uN are the velocity components parallel
and orthogonal to r, respectively) can be defined. These
functions are often indicated by DL and DN, see Monin
and Yaglom [10.12]. For n = 2, there is a simple relation
between the spatial second-order structure function of
the same variable and the purely spatial autocorrelation
function

S2
qi

(x, r, t) = 〈[qi (x+r, t)−qi (x, t)]2〉

= 〈q2
i (x+r, t)

〉+ 〈q2
i (x, t)

〉

−2Rq2
i
(x, r, t)

= 2
[〈

q2
i (x, t)

〉− Rq2
i
(x, r, t)

]

= 2
[

Rq2
i
(x, 0, t)− Rq2

i
(x, r, t)

]

using (10.2) (and similarly in time). Note that the last two
equivalences hold in homogeneous turbulence (steady
turbulence for the time functions). Thus, the follow-
ing relation exists between the second-order structure
function and spectral function (using (10.3))

S2
qi

(x, rx, t) = 2

( ∞∫

0

Fkx

q2
i

(x, kx , t)dkx

−��{�kx [Fkx

q2
i

(x, kx, t)]}
)

= 2��

[ ∞∫

0

(1− eikxrx )

Fkx

q2
i

(x, kx, t) dkx

]

(10.5)

using (10.2) (and similarly in time). It is important to
notice that from the previous relation if a region in which
a power-law wavenumber spectrum exists (F ∼ Ak p

x ),
then the structure function also exhibits a power-law
region (S ∼ Brq

x ), with the following relation among
exponents

p = −(q +1) , (10.6)

and vice versa (see Frisch [10.11] and Pope [10.4] for
the details and limitations of this relation).

It is interesting to notice two limiting behaviors for
second-order structure functions; firstly, from the fact
that the derivatives of a fluid-mechanics variable must be
finite when the separation goes to zero (in practice, this
means for separations on the order of the Kolmogorov
microscale or less), it results that

Sn
qi

(x, r, t) = Arn for r → 0 .
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Note that this result is derived for the n-th-order moment
of the same variable and that for n = 2 this can also be
derived from properties of the autocorrelation functions
for r → 0 (Sect. 10.1.3). With proper normalization, i. e.,
using Kolmogorov length and velocity scales, this re-
sult can be written in an exact form (for example, for
the longitudinal component of velocity with n = 2 it
is A = 1/15 [10.12, 13]). For the case of large separa-
tion, i. e., r → ∞, which in practice means separations
larger than the integral scale beyond which the auto-
correlation function is almost null (see the Sections on
the behavior of correlation functions and integral scales)
one obtains

S2
qi

(x, r, t) = 2
〈

q′2
i

〉

for r → ∞ ;
similar relations can be obtained for higher-order struc-
ture functions [10.12, 13]).

From the point of view of how statistical quantities
are obtained, it is important to point out that in the pre-
vious definitions the acquired data are assumed to be
continuous while in practice, frequently, discrete data
are obtained and the integrals must be replaced by sums.
Moreover, it is usually assumed that the data are reg-
ularly sampled; in some circumstances this is not the
case and irregularly sampled data (in time or space) are
encountered (such as in LDA and PTV, see Sect. 5.3.1,
5.3.2). In this case, the problem is how to derive the
statistics for such a data set; the simplest solution is the
use of interpolation procedures (Sect. 25.1). Other inter-
esting approaches, such as maximum-entropy methods,
Kalman filters, and advanced correlation computation
are possible; (see Chap. 25, van Maanen [10.14], for
details).

Relevant Statistical Quantities in Turbulence:
Isotropic Flows

In isotropic homogeneous flow conditions the single-
point statistical moments of each fluid-mechanics
variable are independent of the position and direction
of the considered point; therefore fluctuation statistics
(and PDFs) are the same in all directions

〈

q′2
1

〉= 〈q′2
2

〉= 〈q′2
3

〉

.

Moreover, all the centered statistical moments of
each velocity component are equal and the cross-
moments of a fluid variable with the velocity are zero
independent of the velocity component involved (ex-
cept the case when mean square velocity fluctuations
are considered)

〈

u′
1q′

i
〉= 〈u′

2q′
i
〉= 〈u′

3q′
i
〉= 0 .

It is important to point out that equivalence of statisti-
cal moments implies isotropy, especially at large scales,
but not necessarily at small scales (usually referred to as
local isotropy). On the other hand, variable derivatives
mainly depend on small scales; thus, the following re-
lations between derivatives are a more-stringent test for
local isotropy of the velocity field [10.12]

〈(
∂u′

1

∂x1

)2
〉

=
〈(

∂u′
2

∂x2

)2
〉

=
〈(

∂u′
3

∂x3

)2
〉

,

2

〈(
∂u′

1

∂x1

)2
〉

=
〈(

∂u′
1

∂x2

)2
〉

=
〈(

∂u′
2

∂x1

)2
〉

=
〈(

∂u′
1

∂x3

)2
〉

=
〈(

∂u′
3

∂x1

)2
〉

=
〈(

∂u′
3

∂x2

)2
〉

=
〈(

∂u′
2

∂x3

)2
〉

,

〈
∂u′

1

∂x2

∂u′
2

∂x1

〉

=
〈
∂u′

1

∂x3

∂u′
3

∂x1

〉

=
〈
∂u′

2

∂x3

∂u′
3

∂x2

〉

= −1

2

〈(
∂u′

1

∂x1

)2
〉

,

and for the scalar field
〈(

∂q′

∂x1

)2
〉

=
〈(

∂q′

∂x2

)2
〉

=
〈(

∂q′

∂x3

)2
〉

.

For multipoint quantities, the definitions presented
in the previous section become quite simple in isotropic
homogeneous flow conditions where only one correla-
tion function is necessary for a complete description
of a scalar field and only two independent correlation
functions for a vector field. For the latter, in the case
of the velocity field, these two independent functions
are referred to as the longitudinal ( f ) and transverse
(g) correlation functions (usually the correlation coeffi-
cients are employed); referring to (10.3), for the purely
spatial correlation, considering the velocity components
parallel (u1) and orthogonal (u2) to the direction of sep-
aration (it is now possible to take r along the direction
x)

f (r, t) = Ru2
1
(r, t)/Ru2

1
(0, t)

= 〈u1(x, t)u1(x+r, t)
〉

/
〈

u2
1(x, t)

〉

,

g(r, t) = Ru2
2
(r, t)/Ru2

2
(0, t)

= 〈u2(x, t)u2(x+r, t)
〉

/
〈

u2
2(x, t)

〉

. (10.7)
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Thus, each correlation among the velocity components
in any direction can be expressed as a function of the
previous two functions [10.10]

Rui u j (r, t) ≡ 〈ui (x, t) u j (x+r, t)〉
= 〈u2

i

〉
[

f (r, t)− g(r, t)

r2

× xi x j + g(r)δij

]

, (10.8)

where δij is the Kronecker delta and xi and x j are the co-
ordinates along the reference axis of the first and second
point (separated by a distance r).

For an incompressible fluid, it is also possible to
derive a relation between the longitudinal and transverse
correlations [10.10]

g (r, t) = f (r, t)+ r

2

∂ f (r, t)

∂r
. (10.9)

i. e., the longitudinal correlation can be derived from the
transverse, so that only one function is required for the
description of velocity correlations. The verification of
the previous relation is a stringent test for isotropy in
incompressible fluids.

Similarly, it is possible to greatly reduce the number
of independent triple-point correlation functions (fourth-
order tensors); only three of those 27 (each one along
three axis) are different from zero in isotropic homoge-
neous flow [10.10]. Again, by considering the velocity
components aligned with the separation distance (r taken
along x), these three functions are

k(r, t) =
Ru2

1,u1
(r, t)

Ru3
1
(0, t)

=
〈

u2
1 (x, t) u1 (x +r, t)

〉

〈

u3
1 (x, t)

〉 ,

h(r, t) =
Ru2

2,u1
(r, t)

Ru3
1
(0, t)

=
〈

u2
2 (x, t) u1 (x +r, t)

〉

〈

u3
1 (x, t)

〉 ,

q(r, t) = Ru2u1,u2 (r, t)

Ru3
1
(0, t)

=
〈

u2 (x, t) u1 (x, t) u2 (x +r, t)
〉

〈

u3
1 (x, t)

〉 .

For an incompressible fluid, a further reduction
to only one independent triple correlation is possi-
ble [10.10]

h(r, t) = −k(r, t)

2
,

q(r, t) = 1

4r

∂

∂r
[r2k(r, t)] . (10.10)

Regarding the structure functions in homogeneous
and isotropic flow conditions it is possible to derive
a relation similar to (10.8), relating the second-order
structure function among two velocity components sep-
arated in a generic direction to the longitudinal and
transverse second-order structure functions

S2
ui u j

(r, t) = S2
u2

(r, t) δij

+ [S2
u1

(r, t)− S2
u2

(r, t)
] xi x j

r2 .

As for correlation functions, for incompressible
fluid, it is possible to derive a relation similar to (10.9)
between longitudinal and transverse second-order struc-
ture functions

S2
u2

(r, t) = S2
u1

(r, t)+ r

2

∂

∂r
S2

u1
(r, t) ,

so that only one scalar structure function is required
for a complete description of second-order velocity
differences along arbitrary directions.

According to the Kolmogorov similarity hypothe-
sis [10.11], it is possible to derive a functional form for
the second-order structure functions in isotropic homo-
geneous turbulence for separations within the so-called
inertial range (i. e., for separations much larger than the
Kolmogorov scale and much smaller than the integral
scale, η 	 r 	 Λ) (Sect. 10.1.3),

S2
u1

(r, t) = C2(εr)2/3 , (10.11)

where C2 is a constant (in theory not dependent on
Reynolds number). Generalizing the previous power-
law dependence to n-th order, it is possible to write

Sn
u1

(r, t) = Cn(εr)n/3 . (10.12)

The previous equation has been tested numerically
and experimentally in several flow fields. Although the
question of effective isotropy to be obtained is raised
(i. e., large enough Reynolds numbers), it appeared that
departures from Kolmogorov theory due to intermit-
tency of small scales are present; several models have
been proposed to account for the nonlinear structure
function exponent behavior but none is able to explain
the behavior of n-th-order structure functions over the
entire range of separations (see Frisch [10.11] for details
of this argument).

For the spectral functions, using (10.6) and (10.11),
it is possible to obtain the following prediction for the
behavior in the inertial range

Fkx

u2
1
(kx, t) = CKε2/3k−5/3

x , (10.13)
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which is the well known −5/3 power law for the inertial
range in velocity spectrum of turbulence.

Relation Between Quantities Evaluated
in Space and Time: Taylor’s Hypothesis

It is important to point out again the differences be-
tween statistics obtained at a single point and at different
points. Let us take the example of purely spatial or
purely time correlation functions of a fluid-mechanics
variable (see the previous two sections for details). Of
course, from the experimental point of view, the for-
mer can only be evaluated by performing multipoint
measurements of the variable, while the latter are ob-
tained by measuring the evolution of the same variable
in time at a single point. As already pointed out, in
general, these are not uniquely linked to one another,
especially when considering small vortical structures
of the flow field (Sect. 10.1.3). In many circumstances,
however, it is much simpler to perform measurements
at a single point rather than simultaneously at sev-
eral points. Therefore, it is important to establish if
a relation between the behaviors in space and time
holds and the degree of validity of such an approxi-
mation.

J. T. Taylor [10.15], devised an hypothesis (since
then known as Taylor’s hypothesis) in which time and
space behaviors (along the mean direction of motion)
of a fluid-mechanics variable q are simply related by
the convection velocity Uc (along the same mean direc-
tion)

∂q

∂t
+Uc

∂q

∂x1
= 0 . (10.14)

This hypothesis is equivalent to vanish the mean
substantial derivative, i. e., to ignore in the equations of
motion the transport of q along directions orthogonal to
the mean flow and its diffusion in space (when q is the
velocity, the pressure term is also not considered). The
hypothesis seems to be a rather coarse approximation
with a poor degree of validity in practical conditions;
surprisingly, this is not the case and the hypothesis holds
quite well in many flow conditions.

Before considering the range of validity of Taylor’s
hypothesis, it is important to specify in more detail the
experimental meaning of the convection velocity and
how the hypothesis is applied in practice. The simplest
way (as in the original formulation) to apply the hypoth-
esis is to consider the convection velocity as a constant
for all flow scales, for example assuming

Uc = U0 ;

this means that the flow pattern is simply frozen at a given
instant and convected over the observation point in time
(this is why Taylor’s hypothesis is also known as the
frozen-field hypothesis). Thus, the developments in time
and space are simply related by a translation from the
space to the time axis and vice versa. The purely spatial
autocorrelation function is evaluated through the purely
time autocorrelation function

Rq2
i
(x1, rx = τUc, t, 0) = Rq2

i
(x1, 0, t, τ) .

This relation is obtained by considering that integration
of (10.14) from t to t − τ , assuming Uc to be a constant,
gives

qi (x1, t + τ) = qi (x1 −Ucτ, t) ,

(when dealing with wavenumber spectral functions,
Taylor’s hypothesis allows the replacement of the
wavenumber along the mean flow direction with the fre-
quency and vice versa, k1 = 2π f/Uc, i. e., to replace the
wavenumber with the frequency spectra).

Experiments have demonstrated that this simple ap-
plication of the hypothesis is not effective and that in
many circumstances the convection velocity is differ-
ent from the mean velocity. For example, in near-wall
flows, to allow Taylor’s hypothesis properly, the con-
vection velocity should be selected between 0.7U0 and
0.9U0 depending on the distance from the wall [10.16].
Thus, the idea of a frozen field at all flow scales (i. e.,
regardless of the value of the local convection velocity
for each flow scale) is only a first-order approximation.
By performing simultaneous time correlation (at a sin-
gle point) and space correlation (at several points), it is
possible to show how valid the hypothesis of constant
Uc is.

In Fig. 10.3, a comparison between time and
space autocorrelation coefficients is given (see Ro-
mano [10.16] for details); these results are obtained by
performing velocity measurements in a turbulent chan-
nel flow at different near-wall locations and different
Reynolds numbers by means of two independent LDA
systems separated along the streamwise direction (at
a separation of r). The spatial correlation is transformed
into a time correlation by using the local mean velocity
(Ul , i. e., the velocity at the considered location) of each
data set (with a constant value of convection velocity).
It can be observed that near the centreline (y+ = 200,
where the plus indicates nondimensional wall units, refer
to Chap. 12) and at the largest Reynolds number (top of
Fig. 10.3), the spatial and time correlations agree reason-
ably well especially in the range between the Taylor and
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 763

integral scales (indicated by the vertical dotted lines in
the figure; see Sect. 10.1.3 for the definitions of turbulent
scales). On the other hand, close to the wall (y+ = 20,
y+ = 10) and at low Reynolds numbers (at the bottom of
the figure), the space correlation overestimate the time
correlation; this means that the convection velocity used
to transform space into the time correlation (i. e., the lo-
cal mean velocity) is too small. A better evaluation of
the convection velocity, presented in the following, al-
lows one to obtain space correlations (dashed curves)
that are quite close to the time correlations. Note that,
even with this correction, for scales smaller than the Tay-
lor microscale there is a definite departure between the
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Fig. 10.3 Comparison between time
autocorrelation (continuous lines) and
space autocorrelation (symbols) coef-
ficients at different Reynolds numbers
and distances from the wall. Vertical
dotted lines show Taylor and integral
time scales. Longitudinal velocity
fluctuations normalized by local mean
velocity are also indicated. Dashed
curves show space autocorrelation
coefficients with time lag obtained
using measured convection velocity
rather than local mean velocity (after
Romano [10.16])

space and time correlations (as for the cases at the cen-
treline and higher Reynolds numbers). Note also that,
the larger the turbulence intensity (indicated at the bot-
tom left corner of each plot), the greater the difference
between the space and time correlations.

A possible way to evaluate the correct convection ve-
locity from data is to compute the time delay between the
time autocorrelation and the envelope of shifted space
cross-correlations between two points separated by r.
Such a time delay is given in Fig. 10.4, on the left for
a space cross-correlation shifted by r/U0 (i. e., using the
centreline mean velocity) and on the right by r/Ul (i. e.,
using the local mean velocity).
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When the centreline mean velocity shift is used, the
time delay increases almost linearly; an increase in time
delay with separation between points means that the
effective convection velocity of turbulent structures is
smaller than the centreline mean velocity. A linear in-
crease means that this effective convection velocity is
constant (for the separation between points considered);
the convection velocity is just the inverse of the slope
of the line. Thus, the effective convection velocity is
approximately equal to the mean flow velocity at the
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Fig. 10.4 On the left: dimensionless time delay (using the integral time scale) between the measured time autocorrelation
and the envelope of the space cross-correlation shifted by r/U0 (where U0 is the mean flow velocity) versus the
dimensionless separation (using the integral length scale). Different Reynolds numbers (a) and different distances from
the wall (b). On the right: dimensionless time delay (using integral time scale) between measured the time autocorrelation
and the envelope of the space cross-correlation shifted by r/Ul (where Ul is the local mean flow velocity) versus the
dimensionless separation (using the integral length scale). Different Reynolds numbers (a) and different distances from
the wall (b) (after Romano [10.16])

centreline, while it decreases when moving towards the
wall (plot at the bottom left); on the other hand, in com-
parison to the mean centreline velocity, it is smaller
for larger Reynolds numbers (plot at the top left; note
that data at the same Reynolds number are acquired at
y+ = 20, i. e., close to the wall). When the local mean
velocity shift is used (plots on the right), the time de-
lay is almost zero for large Reynolds numbers and far
from the wall (indicating that the convection velocity
is almost equal to the local mean velocity), whereas
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 765

it decreases almost linearly for the smallest Reynolds
numbers and very close to the wall (indicating that the
effective convection velocity is larger that the local mean
velocity).

The previous observations lead to a practical crite-
rion for the application of Taylor’s hypothesis which
connects the variability of the entire flow field (which is
usually valuable) to the variation of the convection ve-
locity over the different flow scales (which is not simply
valuable):

Uc =

⎧

⎪⎨

⎪⎩

Λ/τ0 ∼ U0 large scales

λ/τλ ∼ U0 f (I) intermediate scales

η/τη = vη ∼ U0Re1/4 small scales

(order Λ , τ0)

(order λ, τλ)

(order η, τη)

⎫

⎪⎬

⎪⎭

,

(see Sect. 10.1.3) where f (I) is a function of the turbu-
lence intensity I (the ratio between the root-mean-square
fluctuations and mean velocity) and the Reynolds num-
ber is based on the large scales. Thus, while large scales
are convected by the mean flow velocity and small
scales with a much lower velocity (which depends on
the Reynolds number), the convection velocity of in-
termediate scales depends on the turbulent intensity.
A practical criterion for Taylor’s hypothesis to hold
for intermediate scales is to have a turbulent inten-
sity less than 20%. Many investigations have confirmed
this limit (even if the hypothesis is used up to turbu-
lent intensities as high as 30%) in a variety of flow
conditions [10.16]. Figure 10.4 shows an example of
the degree of validity of the hypothesis. The reader is
also referred to Sect. 10.1.3 for further details on the
application of Taylor’s hypothesis at the different flow
scales.

10.1.2 Reynolds Decomposition
and Equations

Generalities
The statistical Eulerian description of turbulent flows
considers the previously defined domains to perform
averaging (in particular, in this section we will refer to
ensemble averaging) and the decomposition into average
and fluctuating terms as introduced in Sect. 10.1.1.

The decomposition in terms of two contributions (av-
erage and fluctuations) was introduced by O. Reynolds
in 1894; it is substituted into the equation of motion
for each fluid-mechanics variable to derive the averaged

equations of motion in the presence of turbulence. This
may appear a rather strange way to proceed when con-
sidering that the equations themselves do not contain
any reference to laminar or turbulent conditions. There-
fore, the equation of fluid mechanics, as an instantaneous
representation of the flow field, must be considered fully
valid for a turbulent flow (whatever the Reynolds num-
ber). The direct numerical simulation (DNS) approach
effectively considers and solves the equations of fluid
mechanics without any additional treatment (at least
for moderate Reynolds numbers due to resolution prob-
lems on the small scales). In DNS, instantaneous fields
are computed and their evolution in time and space is
evaluated. A similar approach can be adopted for exper-
imental data by measuring the instantaneous flow fields,
especially when interest is focused on the generation, in-
teraction, and dissipation of coherent vortical structures
in turbulent flow fields. Even in this case, some sort of
averaging is required to distinguish between casual and
repetitive events. On the other hand, the instantaneous
representation is not useful when we are interested in
the average behavior of the fluid-mechanics variables
(not only for mean values but for higher-order moments
also) and on the average contribution of each term in the
equations of motion, for example in the evaluation of
energy balances in flow fields; in these cases, averaging
procedure are required.

Hypothesis and Useful Relations
The essential point of Reynolds decomposition is the
aforementioned separation between the mean and fluc-
tuating parts for a fluid-mechanics variable q,

q = 〈q〉+q′ ,

where triangular brackets (i. e., ensemble averaging) will
be used unless otherwise specified. The fluctuating part
q′’ averaging the previous relation has a vanishing mean
value

〈q′〉 ≡ 0 .

The other relations that have to be used before per-
forming averaging of the equations is concerned with the
properties of space and time derivatives when averaging
(which is a linear operator),

∂nq

∂xn
i

=
〈
∂nq

∂xn
i

〉

+ ∂nq′

∂xn
i

,

∂nq

∂tn
=
〈
∂nq

∂tn

〉

+ ∂nq′

∂tn
,
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766 Part C Specific Experimental Environments and Techniques

where we should note that the exchange between av-
erage and space (or time) derivatives is strictly valid
only if ensemble averaging is performed, while it is
not valid for the case of space (or time) averaging;
in these cases, great care must be used when con-
sidering the average turbulent equations, i. e., each
term should be reconsidered separately. The following
also hold:
〈
∂nq′

∂xn
i

〉

= ∂n

∂xn
i
〈q′〉 = 0 ,

〈
∂nq′

∂tn

〉

= ∂n

∂tn
〈q′〉 = 0 .

For cross-moments

q1q2 = 〈q1〉 〈q2〉+〈q1〉 q′
2 +〈q2〉 q′

1 +q′
1q′

2 ,

which when averaged gives (due to the vanishing mean
value of the fluctuating part)

〈q1q2〉 = 〈q1〉 〈q2〉+ 〈q′
1q′

2

〉

.

This result is not true for three or more variables cross-
moments, where additional terms are present.

For cross-moment derivatives
〈
∂n(q1q2)

∂xn
i

〉

= ∂n

∂xn
i

(〈q1〉 〈q2〉)+ ∂n

∂xn
i

(〈

q′
1q′

2

〉)

,

〈
∂n(q1q2)

∂tn

〉

= ∂n

∂tn (〈q1〉 〈q2〉)+ ∂n

∂tn

(〈

q′
1q′

2

〉)

.

and similarly for cross-moments second-order deriva-
tives.

Derivation of the Equations
for Turbulent Flows: Single-Point Results

The equations we are dealing with are those of fluid
mechanics (Chap. 1), i. e., the equations of mass con-
servation, balance of momentum and energy, and the
equation of state. In the case of a species in the flow, the
equation for species concentration conservation must
also be added.

Let us start with the conservation of fluid mass for
compressible fluid flows

∂ρ

∂t
+ ∂(ρui )

∂xi
= 0 ,

where ρ is the density and ui the i-th velocity compo-
nent. It is assumed that the flow variables are continuous
functions within the control volume (i. e., discontinu-
ities have to be considered in an integral rather than

a differential approach [10.1]). Applying Reynolds de-
composition to both the density and velocity components
yields

∂(〈ρ〉+ρ′)
∂t

+ ∂

∂xi

[

(〈ρ〉+ρ′)
(〈ui〉+u′

i

)]= 0

and evaluating the average equation (i. e., the average
of all terms in the equation due to the linearity of the
averaging operations)

∂ 〈ρ〉
∂t

+ ∂

∂xi
(〈ρ〉 〈ui〉)+ ∂

∂xi

〈

ρ′u′
i

〉= 0 ,

which is different from the starting equation (even if
average values are considered rather than instantaneous
one) due to the presence of the cross-terms 〈ρ′ui

′〉; these
terms must be considered as new variables in turbulent
flows; in principle they cannot be derived from the other
unknowns. This equation is valid for all flows with den-
sity changes (also temperature changes as in convective
flows or in the presence of flows with different den-
sities). For flows in which density fluctuations can be
neglected, this reduces to

∂ 〈ρ〉
∂t

+ ∂

∂xi
(〈ρ〉 〈ui〉) = 0 ,

which is formally equivalent to the original equation
for the conservation of mass, if we replace the veloc-
ity components and density with their mean values. If
the density is also constant over space and time, as in
incompressible fluid flows,

∂ 〈ui〉
∂xi

= 0 .

As the divergence of the instantaneous and average
velocity fields is equal to zero, the Reynolds decomposi-
tion means that the divergence of the fluctuating velocity
field must also vanish

∂u′
i

∂xi
= 0 .

Thus, for the case of small density fluctuations, the
equation of mass conservation for the turbulent field does
not add another unknown to the list of fluid-mechanics
variables.

The equation for the balance of momentum for
a Newtonian fluid (i. e., the Navier–Stokes equations)
is given by (under the hypothesis of constant dynamic
viscosity coefficient for a perfect gas, while for liquids
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the last term on the right-hand side vanishes)

ρ

(
∂ui

∂t
+u j

∂ui

∂x j

)

= − ∂p

∂xi
+ρ fi +µ

∂2ui

∂x2
j

+ µ

3

∂

∂xi

(
∂u j

∂x j

)

.

where p is the pressure, µ is the viscosity coefficient,
and fi are the components of the external mass forces
(as the gravity force). The terms on the left-hand side
of the equation can be grouped to form the substantial
derivative. Let us assume that the viscosity coefficient
and the mass forces are constant with respect to turbulent
fluctuations, and apply the Reynolds decomposition to
the velocity components, pressure, and density. After
averaging, the previous equation becomes

〈ρ〉 ∂ 〈ui〉
∂t

+
〈

ρ′ ∂u′
i

∂t

〉

+〈ρ〉 〈u j〉∂ 〈ui〉
∂x j

+〈ρ〉
〈

u′
j
∂u′

i

∂x j

〉

+〈u j〉
〈

ρ′ ∂u′
i

∂x j

〉

+ 〈ρ′u′
j

〉∂ 〈ui〉
∂x j

+
〈

ρ′u′
j
∂u′

i

∂x j

〉

= −∂ 〈p〉
∂xi

+〈ρ〉 fi +µ
∂2 〈ui〉
∂x2

j

+ µ

3

∂

∂xi

(
∂〈u j〉
∂x j

)

,

where the right-hand side of the equation, which con-
tains linear terms, is the same as in the original case (if
we replace the variables with their mean values), while
the left-hand side contains many cross-terms. Again, if
we assume that the density is constant over the ensemble
(i. e., no turbulent fluctuations in the density), we obtain

〈ρ〉 ∂ 〈ui〉
∂t

+〈ρ〉 〈u j〉∂ 〈ui〉
∂x j

+〈ρ〉
〈

u′
j
∂u′

i

∂x j

〉

= −∂ 〈p〉
∂xi

+〈ρ〉 fi +µ
∂2 〈ui〉
∂x2

j

+ µ

3

∂

∂xi

(
∂〈u j〉
∂x j

)

,

where only the cross-term between the velocity fluc-
tuations is different from the original case. For the
constant-density case (over space and time), using the
conservation of mass for the fluctuating part, we can
write the above cross-term as

〈ρ〉
〈

u′
j
∂u′

i

∂x j

〉

= 〈ρ〉 ∂

∂x j

〈

u′
iu

′
j

〉

which better highlights that, when compared to the start-
ing equations, the new variable ρ〈ui

′u′
j〉 is added (the

Reynolds stress). As before, in principle, this variable

cannot be obtained from other variables unless a new
equation is written for it.

Applying the conservation of energy (total energy,
including thermal and kinetic contributions, from the
first law of thermodynamics), the following equation is
obtained

ρ
DU

Dt
+ρui

Dui

Dt
= −∂(pui )

∂xi
+ρ fiui

+ ∂

∂x j

(

σ ji ui
)+ρQ − ∂qi

∂xi
,

where U is the internal energy (= cVT for a perfect gas,
where cV is the specific heat at constant volume and
T the temperature), σ ji = µ

[(
∂u j
∂xi

+ ∂ui
∂x j

)

− 2
3

∂uk
∂xk

δ ji

]

is
the viscous part of the stress tensor, Q and q are the
heat fluxes exchanged by radiation and conduction, re-
spectively, (q is usually given in terms of the Fourier
constitutive relation qi = −k ∂T

∂xi
, where k is the fluid

thermal conductivity). This equation contains an inde-
pendent (from the other equations) part that is purely
a balance of thermal energy

ρ
DU

Dt
= −p

∂ui

∂xi
+σ ji

∂ui

∂x j
+ρQ − ∂qi

∂xi
,

which can also be given in terms of entropy, and a part
that contains the balance of kinetic energy

ρui
Dui

Dt
= −ui

∂p

∂xi
+ρ fiui +ui

∂σ ji

∂x j
,

which is not independent of the other equations of
fluid mechanics, being derivable from the balance of
momentum by scalar multiplication with the velocity.

When applying the Reynolds decomposition to the
thermal energy balance, the following equation is ob-
tained

ρcV

(
∂ 〈T 〉
∂t

+〈ui〉 ∂ 〈T 〉
∂xi

+
〈

u′
i
∂T ′

∂xi

〉)

= −〈p〉 ∂ 〈ui〉
∂xi

−
〈

p′ ∂u′
i

∂xi

〉

+µ

[

∂
〈

u j
〉

∂xi

∂ 〈ui〉
∂x j

+
〈

∂u′
j

∂xi

∂u′
i

∂x j

〉

+
(

∂ 〈ui〉
∂x j

)2

+
〈(

∂u′
i

∂x j

)2
〉

− 2

3

(
∂ 〈uk〉
∂xk

)2

−2

3

〈(
∂u′

k

∂xk

)2
〉]

+ρ 〈Q〉+ k
∂2 〈T 〉
∂x2

i

,
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assuming that cV, µ, k, and Q are constant, and that the
density has no fluctuations over the ensemble. Under the
assumption of a zero-divergence flow field, this reduces
to

ρcV

(

∂ 〈T 〉
∂t

+〈ui〉 ∂ 〈T 〉
∂xi

+ ∂
〈

u′
i T

′〉

∂xi

)

= µ

[

∂
〈

u j
〉

∂xi

∂ 〈ui〉
∂x j

+
〈

∂u′
j

∂xi

∂u′
i

∂x j

〉

+
(

∂ 〈ui〉
∂x j

)2

+
〈(

∂u′
i

∂x j

)2
〉]

+ρ 〈Q〉+ k
∂2 〈T 〉
∂x2

i

,

which (apart from the average terms, which are sim-
ilar to the original equation) contains the cross-term
〈u′

i T
′〉 similarly to the previous equations, plus the

cross-derivative terms

〈
∂u′

j

∂xi

∂u′
i

∂x j

〉

,

〈(
∂u′

i

∂x j

)2
〉

.

The same procedure applied to the pure kinetic-
energy equation leads to

ρ 〈ui〉
(

∂ 〈ui〉
∂t

+〈u j〉∂ 〈ui〉
∂x j

+
〈

u′
j
∂u′

i

∂x j

〉)

+ρ

(〈

u′
i
∂u′

i

∂t

〉

+〈u j〉
〈

u′
i
∂u′

i

∂x j

〉

+ 〈u′
iu

′
j

〉∂ 〈ui〉
∂x j

+
〈

u′
iu

′
j
∂u′

i

∂x j

〉)

=ρ fi 〈ui〉−〈ui〉 ∂ 〈p〉
∂xi

−
〈

u′
i
∂p′

∂xi

〉

+

µ

[

1

3
〈ui〉 ∂2〈u j〉

∂xi∂x j
+ 1

3

〈

u′
i

∂2u′
j

∂xi∂x j

〉

+〈ui〉 ∂2 〈ui〉
∂x2

j

+
〈

u′
i
∂2u′

i

∂x2
j

〉]

under the assumptions of constant µ, fi , and ρ (with
respect to the ensemble). For constant density, this
equation reduces to

ρ 〈ui〉
(

∂ 〈ui〉
∂t

+〈u j〉∂ 〈ui〉
∂x j

+ ∂〈u′
iu

′
j〉

∂x j

)

+ρ

(〈

u′
i
∂u′

i

∂t

〉

+ 〈u j
〉
〈

u′
i
∂u′

i

∂x j

〉

+ 〈u′
iu

′
j

〉∂ 〈ui〉
∂x j

+1

2

∂
〈

u′2
i u′

j

〉

∂x j

)

=ρ fi 〈ui〉− ∂ 〈ui〉 〈p〉
∂xi

− ∂
〈

p′u′
i

〉

∂xi

+µ

[

〈ui〉 ∂2 〈ui〉
∂x2

j

+
〈

u′
i
∂2u′

i

∂x2
j

〉]

Under the previous hypothesis, sometimes the third
and sixth terms on the left-hand side are grouped into
the term [10.17]

∂ 〈ui〉
〈

ui
′u j

′〉

∂x j
,

which can be further separated into a part for the aver-
age kinetic energy, i. e., the kinetic energy of the mean
flow (〈K〉 = 〈ui〉〈ui〉/2), which can also be obtained
directly from the Navier–Stokes equations by scalar
multiplication by 〈ui〉,

ρ

(

∂ 〈K〉
∂t

+〈u j〉∂ 〈K〉
∂x j

+〈ui〉
∂
〈

u′
iu

′
j

〉

∂x j

)

=ρ fi 〈ui〉− ∂ 〈ui〉 〈p〉
∂xi

+µ 〈ui〉 ∂2 〈ui〉
∂x2

j

,

plus a part for the fluctuating kinetic energy, i. e., the
turbulent kinetic energy (TKE), K ′ = 〈ui

′ui
′〉/2, which

is obtained by subtracting the equation for the mean from
the total kinetic-energy equation and averaging [10.10,
17]

ρ

(

∂K ′

∂t
+〈u j〉∂K ′

∂x j
+ 〈u′

iu
′
j

〉∂ 〈ui〉
∂x j

+ ∂
〈

K ′u′
j

〉

∂x j

)

=− ∂
〈

p′u′
i

〉

∂xi
+µ

〈

u′
i
∂2u′

i

∂x2
j

〉

.

The equation for kinetic energy of the mean motion
contains cross-terms already recognized from the other
equations for turbulent motions (〈ui

′u j
′〉). On the other

hand, the second term on the right-hand side of the TKE
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equation can be rewritten as

µ

〈

u′
i
∂2u′

i

∂x2
j

〉

= µ

(
∂

∂x j

〈

u′
i
∂u′

i

∂x j

〉

−
〈
∂u′

i

∂x j

∂u′
i

∂x j

〉)

= µ

(
1

2

∂2
〈

u′2
i

〉

∂x2
j

−
〈(

∂u′
i

∂x j

)2
〉)

,

where the quantity ε = ν
〈( ∂u′

i
∂x j

)2〉
is usually referred to

as the homogeneous TKE dissipation rate. Therefore,
using the previous relations, the TKE equation can be
written as (dividing by the density)

∂K ′

∂t
+〈u j〉∂K ′

∂x j

+〈u′
iu

′
j

〉∂ 〈ui〉
∂x j

+ ∂
〈

K ′u′
j

〉

∂x j

=− 1

ρ

∂
〈

p′u′
i

〉

∂xi
+ν

∂2 K ′

∂x2
j

− ε

which contains cross-terms (〈ui
′u j

′〉, 〈K ′u j
′〉, 〈ui

′ p′〉)
and cross-derivatives terms in ε. Note that in homo-
geneous turbulence the previous equation reduces to
dK ′/dt = −ε.

The quantity ε in the previous equation is only a part
of the whole dissipation rate, so that the total dissipation
rate is given by

εT = 1

2
ν

〈(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)2〉

= ν

[〈

∂u′
j

∂xi

∂u′
i

∂x j

〉

+
〈(

∂u′
i

∂x j

)2
〉]

= ν

[

∂

∂x j

〈

u′
i

∂u′
j

∂xi

〉

+
〈(

∂u′
i

∂x j

)2
〉]

,

although strictly speaking the first term on the right-
hand side is not a dissipation, but rather a diffusion
term. In this relation, the first part in the second square
brackets (which contains three diagonal square terms
plus three cross-terms) is different from zero only in
imhomogeneous turbulence, where [10.12, 18]
〈
∂u′

1

∂x2

∂u′
2

∂x1

〉

+
〈
∂u′

1

∂x3

∂u′
3

∂x1

〉

= −
〈(

∂u′
1

∂x1

)2
〉

,

〈
∂u′

2

∂x1

∂u′
1

∂x2

〉

+
〈
∂u′

2

∂x3

∂u′
3

∂x2

〉

= −
〈(

∂u′
2

∂x2

)2
〉

,

〈
∂u′

3

∂x1

∂u′
1

∂x3

〉

+
〈
∂u′

3

∂x2

∂u′
2

∂x3

〉

= −
〈(

∂u′
3

∂x3

)2
〉

,

while the second part (which contains nine square terms)
is different from zero in homogeneous turbulence and is
just the quantity referred to as ε in the previous equa-
tions. In isotropic turbulence, the second part reduces to
(refer to Sect. 10.1.1 on isotropy)

ε = 15ν

〈(
∂u′

1

∂x1

)2
〉

,

where the derivative of the axial velocity component is
performed along the same direction of the velocity. Refer
to Sect. 10.1.3 for how to measure the scales for further
expressions of the TKE dissipation rate (Sect. 10.1.3).

The TKE dissipation rate is one of the most difficult
quantities to derive in turbulence velocity measurements
due to the requirement for three simultaneous velocity
derivative measurements.

The final equation required to close the set of fluid-
mechanics equations is the equation of state, i. e., an
equation relating the thermodynamic variables p, ρ, and
T . For an ideal gas, this law is

p = ρRT

where R = 287 JK/kg for air is the ideal gas constant.
Applying Reynolds decomposition and averaging this
equation, one obtains

〈p〉
R

= 〈ρ〉 〈T 〉+〈ρ′T ′〉 (10.15)

for constant density (or temperature) over the ensemble,
the last term can be neglected. Subtracting the previous
equation from the instantaneous equation one obtains

p′
〈p〉 = ρ′T ′

〈ρ〉 〈T 〉+〈ρ′T ′〉
+ T ′

〈T 〉+ 〈ρ′T ′〉
〈ρ〉

+ ρ′

〈ρ〉+ 〈ρ′T ′〉
〈T 〉

− 1

1+ 〈ρ〉〈T 〉
〈ρ′T ′〉

≈ ρ′T ′
〈ρ〉 〈T 〉 + T ′

〈T 〉 + ρ′
〈ρ〉 ,

where the last relation holds if 〈ρ′T ′〉 	 〈ρ〉〈T 〉. In such
a condition, the first term in the previous relation can also
be neglected and the linear perturbation ideal gas law is
obtained [10.14]. In this case no additional cross-terms
are present in the equations of turbulence, while density–
temperature cross-terms were present in (10.15).

In the case of a species present in the flow (say
a pollutant, smoke or dye), a conservation for the mass
of the species (concentration equation) must be added to
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the previous set of equations in the form of

∂c

∂t
+ ∂

∂x j
(cu j ) = D

∂2c

∂x2
j

,

where D is the species diffusivity into the fluid (which
is assumed constant), and c is the species concentration.

Applying Reynolds decomposition and averaging

∂ 〈c〉
∂t

+ ∂ 〈c〉 〈u j〉
∂x j

+ ∂
〈

c′u′
j

〉

∂x j
= D

∂2 〈c〉
∂x2

j

which, in the case of constant density (zero velocity
divergence), reduces to

∂ 〈c〉
∂t

+〈u j〉∂ 〈c〉
∂x j

+ ∂
〈

c′u′
j

〉

∂x j
= D

∂2 〈c〉
∂x2

j

,

where the cross-term 〈c′u j
′〉 is including in addition to

the original equation, together with the substitution of
instantaneous with average variables.

The derived equations are all those required to de-
scribe a turbulent flow; they contain terms similar to
those encountered in laminar flows (providing that av-
erage rather than instantaneous variables are used) plus
cross-terms between fluctuating variables that retain the
effect of turbulence. Such cross-terms represent turbu-
lent kinematic fluxes (of mass, momentum, energy or
concentration) that are added to the fluxes due to the
mean motions. While mean kinematic fluxes are driven
by the advection velocity, for turbulent fluxes positive
and negative instantaneous values are usually in balance
unless a correlation between velocity and the variable
fluctuation under consideration holds. Thus, a turbu-
lent flux different from zero at a point indicates a net
relation between velocity and the variable fluctuation
fields. Mathematically, the cross-terms are additional
unknowns to the averaged values of the fluid-mechanics
variables. They cannot be derived from other fundamen-
tal principles; however, there are several possibilities to
derive additional equations for these cross-terms, as will
be shown in the following sections.

Derivation of the Equations
for Turbulent Flows: Multi-Point Results

The preceding equations were obtained at a single-point
(i. e., for statistics computed at a point). From the equa-
tions of motions it is possible to derive equations for
multipoint statistics (refer to Sect. 10.1.1 for details on
these statistical quantities). Following Hinze [10.10], as-
suming a zero-divergence velocity field, it is possible to

obtain for double-point correlation (10.1)

∂

∂t
Ru′

i u′
j −

∂

∂xk
Ru′

i u′
k,u′

j +
∂

∂xk
Ru′

i ,u′
ku′

j

= − 1

ρ

(
∂

∂x j
Ru′

i p′ − ∂

∂xi
Rp′u′

j

)

+2ν
∂2

∂x2
k

Ru′
i u′

j ,

(10.16)

where the correlations are computed between velocity
component fluctuations or between velocity and pressure
fluctuations. In the previous equation, as in the single-
point equations, higher-order terms (triple correlations)
are introduced and the solution should involve some
additional constraints. In isotropic incompressible turbu-
lence, the pressure–velocity correlations vanish [10.10],
the double correlation functions can be expressed as
in (10.8), using (10.7) (and similarly for triple correla-
tions), and the previous equation reduces to (considering
two points separated by a distance r)

∂

∂t

(〈

u′2〉 f
)− 〈u′2〉3/2 1

r4

∂

∂r
(r4k)

= 2ν
〈

u′2〉 1

r4

∂

∂r

(

r4 ∂ f

∂r

)

, (10.17)

which is known as the Karman–Howarth equation
(where fluctuating variables are used). Double and triple
correlation ( f and k, respectively) functions depend on
time t and separation r. This is the fundamental equation
for two-point statistics in isotropic incompressible turbu-
lence; the presence of derivatives makes it very difficult
to compute terms of the equation from experimental
data.

An equation equivalent to the Karman–Howarth
equation can be derived between second- and third-order
structure functions,

∂

∂t
S2

u1
+ 1

3r4

∂

∂r

(

r4S3
u1

)= 2ν

r4

∂

∂r

(

r4 ∂S2
u1

∂r

)

− 4

3
ε ,

(10.18)

where the second- and third-order structure functions
depend on time t and separation r. The integral of the
previous equation (over r) is known as the Kolmogorov
equation [10.11]; for the stationary case,

S3
u1

= 6ν
∂S2

u1

∂r
− 4

5
εr .

Kolmogorov himself realized that in isotropic ho-
mogeneous stationary turbulence, the term containing
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second-order structure function is almost zero and thus
the 4/5 law holds

S3
u1

= −4

5
εr ,

a result which justifies (10.12)
Similarly, an equation for cross scalar-velocity

structure functions (for the stationary case) has been
derived [10.12]

S3
u1T2 = 2α

∂S2
T

∂r
− 4

3
εTr ,

where εT and α are the energy dissipation rate and the
diffusivity of the scalar field, respectively. For isotropic
homogeneous stationary turbulence, the previous equa-
tion reduces to

S3
u1T2 = −4

3
εTr .

Recently, some researchers have tried to derive equa-
tions for longitudinal and transverse correlation and
structure functions in more-general flow conditions to
generalize the Karman–Howarth results (10.17) and
(10.18); see Zhou et al. [10.19], Anselmet et al. [10.20]
and Danaila et al. [10.21] for details.

Similar equations can be derived in the wavenumber
domain using Fourier transforms of the double and triple
correlation functions (10.1) and (10.4); for isotropic
incompressible turbulence one can derive [10.10]

∂

∂t
Fk

u′
i u′

j
= T k −2νk2 Fk

u′
i u′

j
,

where the nonlinear spectral transfer function T k is re-
lated to the third-order spectral function Fk

u′
i u′

j ,u′
l
; the

previous equation is known as the Lin equation. Integra-
tion over wavenumber in the first term in the previous
equation gives

∂

∂t

∞∫

0

Fk
u′

i u′
i
dk = ∂

∂t

〈

u′2
i

〉

.

On the other hand, integration of the last term in the
previous equation gives [10.4, 10]

ε = 2ν

∞∫

0

Fk
u′

i u′
i
k2dk , (10.19)

which can be also proved starting from the spectral
transform of the velocity related to that of the veloc-
ity derivative. Considering the −5/3 law (10.13), from

these relations it is also possible to obtain the wavenum-
ber behaviors of the TKE and TKE dissipation in the
inertial range

K ′ ≈ CKε2/3k−2/3 , ε ≈ νCK ε2/3k4/3 ,

i. e., in the inertial range, the TKE content decreases
as the wavenumber increases (and the slope is nega-
tive), whereas the TKE dissipation continues to increase
with wavenumber (and the slope is positive). As a conse-
quence, the peak for TKE is at much lower wavenumbers
in comparison to that of TKE dissipation.

The Problem of Closure of Equations;
Hierarchy of Turbulence Equations

As shown in previous sections, the equations of fluid
mechanics for a turbulent flow field retain terms simi-
lar to the original equations (using averaged variables)
plus cross-terms containing the turbulent flux effects.
These cross-terms are unknowns and the so-called prob-
lem of closure of turbulence equations arises; to solve
the turbulent field, it is necessary to balance the number
of equations with the number of unknowns. In so-called
Reynolds-averaged Navier–Stokes (RANS) modeling,
additional constraints on the turbulent fluxes are in-
cluded into the system of equations. The zeroth-order
closures simply equate the cross-terms to a constant;
this is practically unsuitable for all flow field conditions.
Thus, referring to first-order closures, usually known as
eddy viscosity or Boussinesque closures, the turbulent
kinematic fluxes of the generic fluid-mechanics vari-
able q is given in terms of the gradient of the variable
itself

−〈u′
iq

′〉= Kq
T
∂ 〈q〉
∂xi

,

where Kq
T is the turbulent diffusion coefficient of the

considered variable, which in general is unknown and
could depend on the point considered. Algebraic or dif-
ferential models aim to give useful expressions for the
quantity Kq

T.
Before considering in some detail these models, let

us consider the previous relation in detail for each cross-
term in the equations of motion. In the equation for mass
conservation the previous relation gives

− ∂

∂xi

〈

u′
iρ

′〉= ∂

∂xi

(

Kρ
T
∂ 〈ρ〉
∂xi

)

,

where Kρ
T is the turbulent diffusion coefficient for the

density. Thus, the turbulent diffusion (which is usually
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unknown) is related to the molecular (laminar) diffusion
(which is measurable). For the equation of momentum

− ∂

∂xi

〈

u′
iu

′
j
〉= ∂

∂xi

[

νT

(
∂〈u j〉
∂xi

+ ∂ 〈ui〉
∂x j

)]

,

where νT is the turbulent kinematic viscosity (eddy
viscosity). In the equation of thermal energy

− ∂

∂xi

〈

u′
i T

′〉= ∂

∂xi

(

αT
∂ 〈T 〉
∂xi

)

,

where αT is the turbulent thermal diffusivity. In the
equation of species concentration

− ∂

∂xi

〈

u′
i c

′〉= ∂

∂xi

(

DT
∂ 〈c〉
∂xi

)

,

where DT is the turbulent species diffusivity. A similar
result holds for the cross-terms appearing in the TKE
equation.

Returning to the estimation of the eddy viscosity
coefficient, it is necessary to point out that characteristic
scales for turbulence are usually considered; for example
for the momentum [10.4, 22],

νT ∼ ucLc ,

where uc and Lc are characteristic velocity and length
scales for turbulence to be specified by modeling.

In pure algebraic models (zero-equation or eddy-
viscosity models), the velocity and length scales are
given algebraically; for example in Prandtl mixing
length (lm) theory [10.1]

Lc = lm , uc = lm

∣
∣
∣
∣

∂ 〈u〉
∂x2

∣
∣
∣
∣

,

where x2 is taken orthogonal to the direction of the
average velocity, so that

νT = l2
m

∣
∣
∣
∣

∂ 〈u〉
∂x2

∣
∣
∣
∣

.

Another possibility, due to Smagorinsky [10.4], re-
lates eddy viscosity to the mean rate-of-strain tensor
〈sij〉 = 1

2

(
∂〈ui 〉
∂x j

+ ∂〈u j 〉
∂xi

)

,

νT = l2
m(2〈sij〉〈sij〉)1/2 ,

which reduces to the Prandtl mixing length theory for
unidirectional flows. The problem of these models is
related to the evaluation of a proper mixing length; for
example, in near-wall turbulence lm = κy, where y is the

distance from the wall and κ is the von Karman constant,
can be assumed, so that a logarithmic law for the wall
is obtained, while in other flow conditions there are few
arguments for guiding this choice.

In mixed algebraic–differential models (one-
equation models), both the velocity and length scales
are given in terms of the TKE, K ′

Lc = K ′3/2

ε
, uc = √

K ′ ,

so that

νT = K ′2

ε
,

where coefficients have been omitted. The TKE is ob-
tained by solving the corresponding equation, while ε is
obtained from Lc under mixing-length arguments (with
similar limitations).

In pure differential models (two-equation models),
the expression for eddy viscosity is the same as be-
fore, with both TKE and TKE dissipation equations
to be solved by proper equations; the latter is ob-
tained from the momentum equation by differentiation
and multiplication by fluctuating derivatives so that the
inertial term on the left-hand side of the equation rep-
resents the variation of homogeneous TKE dissipation,
ε [10.17]

∂ε

∂t
+〈u j〉 ∂ε

∂x j
= −2ν

〈
∂u′

j

∂xi

∂u′
j

∂xk

〉
∂ 〈ui〉
∂xk

−2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
∂ 〈ui〉
∂x j

−2ν

〈

u′
k
∂u′

i

∂x j

〉
∂2 〈ui〉
∂xk∂x j

−2ν

〈
∂u′

i

∂xk

∂u′
i

∂x j

∂u′
k

∂x j

〉

−2ν
∂

∂xi

〈
∂p′

∂x j

∂u′
i

∂x j

〉

−ν
∂

∂xk

〈

u′
k
∂u′

i

∂x j

∂u′
i

∂x j

〉

+ν
∂2ε

∂x2
j

−2ν2

〈(
∂2u′

i

∂x j∂xk

)2〉

.

These models are also known as k–ε models (or clo-
sures). Note, that, as for the equation for fluctuating
TKE, the previous equation adds other unknowns in the
form of triple cross-derivatives terms so that the prob-
lem is still not closed (even if applied to higher order).
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This is an example of the first step of a hierarchy of
equations; further equations can be derived for the triple
cross-terms which would contain quadruple cross-terms
and so on (similar hierarchies exist in many nonlin-
ear systems described statistically). Numerically, this
hierarchy can be truncated at some order by an approxi-
mation similar to that of Boussinesque (i. e., by relating
higher-order cross-terms to lower-order terms) or with
algebraic models. Another possibility is to assign initial
values to the unknowns and try to find a solution itera-
tively, although it is not proven that this solution exists
and is unique (seePope [10.4], for further details).

The last equation is simplified in the case of homo-
geneous isotropic turbulence [10.17] to

∂ε

∂t
+〈u j〉 ∂ε

∂x j
= − ε3/2

ν1/2

7

3
√

15
S∂u1/∂x1 − ε2

K

7

15
G ,

where the skewness of the derivative field,

S ∂u1
∂u1

=

〈(
∂u1
∂x1

)3
〉

[〈(
∂u1
∂x1

)2
〉]3/2 ,

and the quantity (known also as the palenstrophy coef-
ficient),

G =

〈(

∂2u1
∂x2

1

)2
〉

[〈(
∂u1
∂x1

)2
〉]2

,

have been introduced. Even in this case, there are higher-
order terms (contained in S and G) so that the importance
of experimental verification is raised again.

The other possible approach to the closure problem is
to derive an exact equation for the Reynolds stress cross-
term Ru′

i u′
j = 〈u′

iu′
j
〉

; by manipulating the momentum
equation, according to which we obtain [10.17]

∂Ru′
i u′

j

∂t
+〈uk〉

∂Ru′
i u′

j

∂xk

= −Ru′
i u′

k

∂〈u j〉
∂xk

− Ru′
j u′

k

∂ 〈ui〉
∂xk

−2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉

− ∂

∂xk

〈

u′
iu

′
ju

′
k
〉

− 1

ρ

(
∂

∂x j

〈

p′u′
i
〉+ ∂

∂xi

〈

p′u′
j
〉
)

+ 1

ρ

〈

p′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)〉

+ν
∂2 Ru′

i u′
j

∂x2
k

, (10.20)

which, as expected, contains higher-order terms causing
a hierarchy to exist even in this case; it can be closed with
iterative solutions or with further constraints similar to
those already considered (but at a higher order).

Similar equations can be derived for the other
turbulent fluxes, for example in the presence of
species [10.17].

Let us now consider the validity of the Boussinesque
hypothesis; it is important to point out that the relation
itself cannot be retained as valid for at least three reasons.
Firstly, if we consider the term 〈u′

iu′
i〉 and we sum

from i = 1 to i = 3 (which is basically the TKE), for
incompressible fluid we obtain:

− 〈u′
iu

′
i
〉= 2νT

∂ 〈ui〉
∂xi

= 0 ,

i. e., the turbulence should have null TKE, which makes
no sense. This point can be overcome by the follow-
ing modified expression of the Boussinesque hypothesis
using the TKE,

− 〈u′
iu

′
j
〉= νT

(
∂〈u j〉
∂xi

+ ∂ 〈ui〉
∂x j

)

− 2

3
K ′δij .

Secondly, the turbulent diffusion coefficients are not
of the fluid itself but pertain to each particular flow field
and also depend on the point and instant considered.
Thirdly, the Reynolds and velocity deformation tensors
are not aligned, i. e., their principal directions are not
the same. In practice, the hypothesis is valid only if the
velocity–velocity correlations are small, i. e., if we look
at the phenomenon on scales that are much larger than
the largest turbulent scale (Sect. 10.1.3). Nonetheless,
there are several numerical codes that use the Boussi-
nesque hypothesis; this explains why it is important to
verify the hypothesis experimentally in different flow
conditions.

Closure schemes have also been developed for the
multipoint equations, such as the Karman–Howarth
equation (10.17). It is interesting to note that the dou-
ble correlation equation for the multipoint description
(10.16) reduces to (10.20) when the two points coin-
cide. The reader is referred to Mc Comb [10.23] for
details of this argument.

It is also important to consider that, in numerical
codes based on large-eddy simulation (LES), the stress
tensor must also be modeled on subgrid scales while di-
rect solution of the equations is performed at grid levels;
models such as that of Smagorinsky are frequently used.
Even in this case, experiments can help in evaluating the
effectiveness of the models considered (Pope [10.4]).
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Further Equations for Derived Quantities:
Vorticity and Enstrophy

In many circumstances, it is useful from the concep-
tual and numerical points of view to consider equations
for derived quantities rather than the conventional equa-
tions of fluid mechanics. In particular, it is of interest for
special numerical approaches (such as vorticity–stream
function methods) and for vortex dynamics to consider
an equation for the vorticity. This can be derived by tak-
ing the vector product of the Navier–Stokes equations;
for the case of incompressible flows

∂ωi

∂t
+u j

∂ωi

∂x j
= ω j

∂ui

∂x j
+ν

∂2ωi

∂x2
j

,

which allows one to eliminate the pressure term (as not
in Navier–Stokes equations; this is a big advantage of
vorticity-based methods). Note that a Poisson equation
for the pressure can be derived by considering the scalar
product of the Navier–Stokes equations [10.1]. Per-
forming Reynolds averaging on the previous equation
yields

∂ 〈ωi〉
∂t

+〈u j〉∂ 〈ωi〉
∂x j

= 〈ω j〉∂ 〈ui〉
∂x j

+
〈

ω′
j
∂u′

i

∂x j

〉

+ν
∂2 〈ωi〉

∂x2
j

− ∂

∂x j

〈

u′
jω

′
i

〉

,

which also contains higher-order terms such as the turbu-
lent vorticity flux (the last term on the right-hand side),
and vortex stretching by the fluctuating field (the sec-
ond term on the right-hand side); these must be modeled
by zero- or higher-order closures as for other turbulent
fluxes. Consider also that, due to the solenoidal vorticity
field, the second of these terms reduces to a form similar
to the first.

Another derived quantity is the enstrophy (i. e., the
square of the vorticity ζ = 〈ω′

iω
′
i〉), which is related to

the vorticity as TKE is to the the velocity. Enstrophy is
also closely related to the TKE dissipation rate

νζ = ν

〈(
∂u′

i

∂x j

)2
〉

−ν

〈
∂u′

i

∂x j

∂u′
j

∂xi

〉

= ε−ν

〈
∂u′

i

∂x j

∂u′
j

∂xi

〉

,

which in homogeneous turbulence reduces to νζ = ε.
An equation for the enstrophy can be derived as for

TKE dissipation rate [10.17]

∂ζ

∂t
+ 〈u j

〉 ∂ζ

∂x j
= 2

〈

ω′
iω

′
k

〉 ∂ 〈ui〉
∂xk

+2

〈

ω′
i
∂u′

i

∂xk

〉

〈ωk〉

−2
〈

u′
kω

′
i

〉 ∂ 〈ωi〉
∂xk

+2

〈

ω′
iω

′
k
∂u′

i

∂xk

〉

− ∂

∂xk

〈

u′
kω

′
iω

′
i

〉+ν
∂2ζ

∂x2
j

−2ν

〈
∂ω′

i

∂xk

∂ω′
i

∂xk

〉

,

which does not contain pressure terms, while still
containing higher-order terms. The modeling of the
enstrophy equation is similar (although not exactly
the same) as that of the TKE dissipation rate equa-
tion [10.17].

The Experimental Evaluation
of Turbulent Fluxes and High-Order Closures

It should be clear from the previous sections that ac-
curate numerical modeling of turbulent flows requires
the determination of the cross-terms representing turbu-
lent fluxes and cross-derivative terms. The relations and
equations derived for these cross-terms shift the problem
to higher order; at some point of the hierarchy a closure
approximation is required. A given closure can be valid
for a specific region of the flow field, but not everywhere,
and also requires changes when moving to a different
flow field. Numerically, a possible solution to this prob-
lem is to give initial values to the unknowns and try to
converge to a solution of the system of equations for
a given flow field [10.4]. Otherwise, advanced numeri-
cal methods as direct numerical simulation (DNS) and
large-eddy simulation (LES) are able to find solutions
on a wide range of scales; however, the former (DNS)
is still limited to low-Reynolds-number flows with quite
poor resolution in time, whereas the latter (LES) also
requires a sort of closure for the small scales [10.4].

Therefore, experiments must answers the question of
to what extent and approximation the closure hypothesis
is valid in each flow field. To do this, direct measure-
ments of the cross and cross-derivatives terms must be
performed. Let us recall those terms for the single-point
equations

〈

ρ′u′
i
〉

,
〈

u′
iu

′
j
〉

,
〈

p′u′
i
〉

,
〈

T ′u′
i
〉

,
〈

K ′u′
i
〉

,
〈

T ′ρ′〉 ,
〈

c′u′
i
〉

〈
∂u′

i

∂x j

∂u′
j

∂xi

〉

,

〈(
∂u′

i

∂x j

)2
〉
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and for the multipoint case

〈

u′
iu

′
j , u′

k
〉

,

and similarly for the correlation and spectral functions.
It is clear that the evaluation of the former single-point
terms requires the simultaneous determination of the
two fluctuating variables or velocity derivatives. This
is one of the challenges for modern experimental fluid
mechanics. While it is reasonable to measure multi-
ple velocity components simultaneously (refer Sect. 5.3
on HWA, Sect. 5.3.1 on LDA, and Sect. 5.3.2 on PIV),
it is not straightforward to measure multiple velocity
derivatives with sufficient resolution in space (or time
if Taylor’s hypothesis is used). Refer to the papers by
Browne et al. [10.24], Antonia and Mi [10.25], Bene-
dict [10.26], Romano and Bagnoli [10.27] for details.
It is also difficult to measure simultaneous fluctuations
of velocity and temperature (or species concentration)
in a global sense, unless special tracers are used (as
in LIF, or liquid crystals techniques, Sect. 6.3). On
the other hand, to date it is practically impossible to
perform simultaneous measurements of velocity and
density (or velocity and pressure) fluctuations at any
point of the flow field (Sect. 5.6). In any case, advanced
measurement techniques with high spatial and tempo-
ral resolutions are required for such measurements. To
this point, it is important to emphasize that the determi-
nation of the velocity derivatives at one point requires
measurements of the velocity at two points that are
close but finitely spearated. In practice, this means
two measurement systems separated by one or a few
Kolmogorov lengths (∆r = 2−3η), which can easily
interfere with one another unless special precautions

Table 10.1

Mean values
〈ui 〉 , 〈K〉 , 〈p〉 , 〈T 〉 , 〈ρ〉 , 〈c〉 ��

���
��

��
��

��
� Primary numerical codes validation

Turbulent fluxes (cross-terms)
〈

ρ′u′
i
〉

,
〈

u′
i u′

j
〉

,
〈

p′u′
i
〉

,
〈

T ′u′
i
〉

,
〈

K ′u′
i
〉

,
〈

c′u′
i
〉

,
〈

u′
iω

′
j

〉 ��

������������

���
��

��
��

��
��

��
� Turbulence models testing

Dissipation, cross-derivative terms,
higher-order correlation, and spectra

ε,
〈

∂p′
∂xk

∂u′
i

∂xk

〉

,
〈
∂u′

i
∂xk

∂u′
i

∂x j

∂u′
k

∂x j

〉

,
〈
∂u′

i
∂xk

∂u′
i

∂xk

〉

,
〈

u′
j
∂u′

i
∂xk

∂u′
i

∂xk

〉

,

〈

u′
i u′

j , u′
k
〉

,
〈

ω′
iω

′
k

〉

,

〈
∂ω′

i
∂xk

∂ω′
i

∂xk

〉

��

����������������
Model refinement and novel developments

are taken (see Antonia and Mi [10.25], or Romano and
Bagnoli [10.27] for details of the effect of spatial res-
olution and for experimental measurements of velocity
derivatives).

The use of Taylor’s hypothesis (Sect. 10.1.1) al-
lows the replacement of velocity derivatives along the
direction of motion with velocity derivatives in time
〈(

∂u′
i

∂x1

)2
〉

= 1

Uc

〈(
∂u′

i

∂t

)2
〉

,

which does not require measurements at two close points
but only in time. However, even in this case the re-
quired resolution in time is high (of the order of a few
Kolmogorov time scales) and noise problems arise.

Regarding derived quantities such as vorticity and
enstrophy, the cross-terms to be measured are velocity–
vorticity fluctuations and velocity–vorticity derivative
fluctuations. The direct measurement of vorticity itself
is not straightforward due to the requirements of high
resolution, which are similar to highlighted previously
for velocity derivatives in general. For simultaneous
measurements of velocity and vorticity (and derivatives)
very complex systems with multiple probes are required
(see Browne et al. [10.24], Antonia and Mi [10.25] for
details).

In summary, Table 10.1 holds [10.22] for the differ-
ent quantities.

The experimental evaluation of turbulent fluxes and
higher-order closures is the subject of a lot of papers
in the recent literature on turbulence. There is a huge
amount of work on this argument, and the reader is re-
ferred to Pope [10.4], and Bernard and Wallace [10.17],
for details (as well as Sect. 10.4 of this book).
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776 Part C Specific Experimental Environments and Techniques

Statistical Accuracy and Number of Samples
A few words must be dedicated to the accuracy re-
quired for the determination of higher-order statistics;
roughly speaking, to evaluate the variance of the n-th-
order statistical moment of the variable q, σ2(〈qn〉), it is
necessary to know the value of the 2n-th-order moment,
〈q2n〉, (see Chap. 23, and Benedict and Gould [10.28],
for details). Experimentally, these higher-order moments
are particularly difficult to obtain, especially when cross-
moments and cross-derivative moments are involved.
Therefore, approximations of the variance estimation
(for example, assuming a Gaussian distribution of the
data) that use lower statistical moments are employed
(see Chap. 23). A useful relation for the relative error on
the n-th-order moment is

σ (〈qn〉)
〈qn〉 =

[

Aσn(〈q2〉)]1/2

N1/2 〈qn〉 ,

where σ(〈q2〉) is the standard deviation of the variable
q. The factor A depends nonlinearly on the considered
moments (approximately, it is A = 1 for n = 1, A = 2 for
n = 2, A = 6 for n = 3, A = 100 for n = 4, and so on).
Therefore, for a given moment (fixed n) the relative error
estimation goes as the inverse square root of the number
of samples. On the other hand, the error for a given
number of samples (N) increases as the moment order
increases (there is a factor equal to about 8 passing from
n = 1 to n = 2 and a factor of 2.5 passing from n = 2 to
n = 4).

Another important point, related to the way in which
the statistics is obtained, is concerned with the statistical
independence of the acquired data. For the previous re-
lations concerning the accuracy of statistical moments to
hold, it is necessary to ensure effective independence of
the acquired data. In ensemble averaging, this is ensured
by the fact that a new experiment is repeated starting
from more or less the same boundary and initial con-
ditions (Sect. 10.1.1). For time (or space) averaging, it
is necessary to verify that the data are separated by at
least one characteristic time (or space) scale of the phe-
nomenon under investigation; therefore, a preliminary
evaluation of such a scale is required (see Sect. 10.1.3
for details on flow scale evaluation). Nevertheless, when
recurrence in time, space or transformed domains are
considered (i. e., when correlation or spectral functions
are evaluated), what is really under investigation is the
relation (i. e., the dependence) between one piece of data
and the others; in this case, the acquired data must be
dependent [i. e., acquired on time (or space) intervals
much lower than the characteristic time (or space) scale
of the phenomenon].

10.1.3 Scales in Turbulent Flows

Generalities
The term scale indicates the characteristic size along
one direction (if the behavior in space is considered) or
duration in time (for the behavior in time) of a fluid-
mechanics event that partially preserves itself in space
and time. In this sense, these events could be related to
the vortical structures embedded in a turbulent flow field
(refer to the beginning of Chap. 10). The determination
of the scales (in length and time) is an objective both for
fundamental research in fluid mechanics and for many
practical applications; indeed, the values of such scales
allow one to derive the size, shape, and traveling times
of turbulent vortical structures. From the experimental
point of view, in addition to the previous goals, there is
also the requirement for a practical way to determine the
optimal resolutions in space or time and extension or the
duration of data acquisition (see Sect. 10.1.2). Regarding
the resolution of the measurement systems, the link is to
the smallest space and time scales of the phenomenon.
For the extension and duration of data acquisition, in the-
ory, time or space averaging should be performed over
an infinite duration or extension; in practice, the acqui-
sition time or the volume extension will be limited by
two factors:
• they should be sufficiently larger that the largest

time (or space) scale of the phenomenon (by at least
a factor 100);• they should be sufficiently smaller than the
characteristic scale for possible unsteady (or inho-
mogeneous) phenomena (by at least a factor 10).

In the second case all the considerations mentioned for
phase averaging in Sect. 10.1.1 should also be taken into
account. Thus, a preliminary knowledge of the time and
space scales of the phenomenon is required.

Overall Behavior of Correlation Functions
As will be shown later, turbulent flow scales are derived
by analysis of correlation functions (in particular of au-
tocorrelation coefficients). Referring to purely spatial or
temporal autocorrelation coefficients, the following def-
initions hold where, in respect to Sect. 10.1.1, we now
specify that only the fluctuating part of the variable (q′

i )
is used,

ρq′2
i
(x, r, t) =

〈

q′
i (x, t) q′

i (x+r, t)
〉

〈

q′2
i (x, t)

〉1/2〈
q′2

i (x+r, t)
〉1/2 ,

ρq′2
i
(x, t, τ) =

〈

q′
i (x, t) q′

i (x, t + τ)
〉

〈

q′2
i (x, t)

〉1/2〈
q′2

i (x, t + τ)
〉1/2 .
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Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 777

Therefore, it follows that

ρq′2
i
(x, 0, t) = 1 ,

ρq′2
i
(x, t, 0) = 1 ,

i. e., the value of the correlation function at the origin is
just the mean-square value of the fluctuating part, so that
the correlation coefficient is just equal to one. Note that
this is not the case for the cross-correlation coefficient
between two variables, which at the origin attains the
value

ρq′
i q′

j
(x, 0, t) =

〈

q′
i (x, t) q′

j (x, t)
〉

〈

q′2
i (x, t)

〉1/2〈
q′2

j (x, t)
〉1/2

.

It is also important to point out that the maximum
degree of correlation of the variable q′

i with itself is
obtained when

q′
i (x+r, t) = q′

i (x, t)

for all data used in the average. On the other hand, the
maximum anticorrelation is obtained when

q′
i (x+r, t) = −q′

i (x, t)

and similarly for time separation. Thus, considering that
〈

q′2
i (x, t)

〉≥ 0

we obtain the Schwartz inequality

−1 ≤ ρq′2
i
(x, r, t) ≤ 1 ,

−1 ≤ ρq′2
i
(x, t, τ) ≤ 1 .

For the case of homogeneous flow field, the
spatial autocorrelation coefficients (as the autocorre-
lation functions) are also even functions of the space
separation r,

ρq′2
i
(x,−r, t) =

〈

q′
i (x, t) q′

i (x −r, t)
〉

〈

q′2
i (x, t)

〉

=
〈

q′
i (x

′ +r, t)q′
i (x

′, t)
〉

〈

q′2
i (x′, t)

〉

= ρq′2
i
(x, r, t) ,

�����
�

�

Fig. 10.5 Characteristic shape of a generic autocorrelation
coefficient

where the hypothesis of homogeneity is used in the last
equivalence, where the replacement x′ = x−r → x was
made.

Similarly, for the case of stationary flow field, the
time autocorrelation coefficients (and the autocorrela-
tion functions) are even functions of the time interval τ ,

ρq′2
i
(x, t,−τ) = ρq′2

i
(x, t, τ) .

The limiting behavior of the autocorrelation coeffi-
cients for space separation (or time interval) going to
infinity can be retrieved from the following consider-
ations. Unless the phenomenon is laminar (which in
the stationary case is equivalent to a constant value,
for which the autocorrelation coefficient is always one)
or periodic in space or time (which gives an oscilla-
tory autocorrelation coefficient), it is expected that for
r → ∞ the samples are statistically independent and
fluctuations at a point are independent of the other point
(and similarly in time separation for τ → ∞). Thus,
when one of the two is positive the other could be posi-
tive or negative; statistically, the average value of these
negative and positive contributions vanishes (as for the
case of pure noise). Therefore the limiting values of the
autocorrelation coefficients are

ρq′2
i
(x, r → ∞, t) = 0 ,

ρq′2
i
(x, t, τ → ∞) = 0 .

In practice, this limit to infinity is understood to apply
for separations much larger than the largest scale in
the flow field. The overall shape of an autocorrelation
coefficient is given in Fig. 10.5 for the case of a purely
space function in homogeneous flow conditions (note
that the fact that the tangent is zero at the origin has not
been strictly demonstrated).

Integral Scales
At this point, it is possible to specify in greater de-
tail the scales introduced at the beginning of Sect. 10.1,
starting from the largest towards the smallest. Consider

��

�
�����

�

Fig. 10.6 A simple meaning for the integral scale

Part
C

1
0
.1



778 Part C Specific Experimental Environments and Techniques

the purely spatial autocorrelation coefficient evaluated
along the longitudinal (rx) direction; flow scales referred
to two different flow variables can be similarly intro-
duced starting from cross-correlation coefficients. The
longitudinal integral length scale of the variable qi is
defined as

Λxqi (x, t) =
∞∫

0

ρq′2
i
(x, rx, t) drx ,

which is independent of position along the axis x only in
the case of a homogeneous flow field and is independent
of time t only in the stationary case (note that this integral
scale has dimensions of a length and can be defined
even in inhomogeneous or unsteady conditions when
the correlation coefficient is not symmetric).

Similarly, it is possible to define transverse integral
length scales of the same variable along the directions
ry and rz . Therefore, as for the number of independent
autocorrelation functions (Sect. 10.1.1), if q is a scalar
there are three independent integral length scales, while
if q is a vector (with scalar components qi , as for the
flow velocity) there are nine integral length scales.

These scales are a measure of the largest structures in
a flow field, i. e., of those structures that maintain a high
degree of relation with themselves. For points separated
by distances larger than the integral length scale there is
no longer any dependence of the velocity at one point
on the velocity at another. In Fig. 10.6, this is explained
by considering that the previous definition of integral
length scale required equivalence between the shaded
areas; therefore, points separated by a distance much
larger than Λx are practically uncorrelated (ρ ≈ 0).

The evaluation of the integral length scales along dif-
ferent directions (and of different velocity components)
gives information on the form of the largest structures
in the flow field; for example, if the vertical and trans-
verse integral length scales are approximately equal and
smaller than the longitudinal one, the turbulent struc-
tures will appear on average in axisymmetrical elongated
forms. On the other hand, if the longitudinal and trans-
verse scales are almost equal and much higher than the
vertical one, the turbulent structures have the form of
disks, and so on.

In the case of a homogeneous and isotropic field,
the independent autocorrelation functions reduce to just
one for a scalar field and two for the velocity field [ f (r)
and g(r), described before] along arbitrary directions.
Therefore, the integral length scales also reduces to one
for the scalar and two for the velocity field

Λq (t) =
∞∫

0

ρq (r, t) dr ,

Λ f (t) =
∞∫

0

f (r, t) dr , Λg (t) =
∞∫

0

g (r, t) dr ,

where the dependence on the position along the axis is
avoided and the dependence on time is avoided in the
stationary case (note that in this case the autocorrelation
function is symmetric). Using (10.9), it is easy to show
that for incompressible homogeneous and isotropic fluid
flows the following holds

∞∫

0

g (r, t) dr =
∞∫

0

f (r, t) dr +
∞∫

0

r

2

∂ f (r, t)

∂r
dr

=
∞∫

0

f (r, t) dr + fr

2

∣
∣
∣
∣

∞

0

− 1

2

∞∫

0

f (r, t) dr

= 1

2

∞∫

0

f (r, t) dr ,

that is

Λ f = 2Λg ,

i. e., the transverse integral length scale is one half of the
longitudinal one.

For a general flow field, from the purely temporal
autocorrelation coefficient, it is also possible to define
an integral time scale as

τ0qi (x, t) =
∞∫

0

ρq′2
i
(x, t, τ) dτ ,

which is independent of position along the axis (x1) only
for the homogeneous case and is independent of time t
in the stationary case. There is only one integral time
scale for each scalar variable: three integral time scales
for the velocity, one for each component.

Using Taylor’s hypothesis for the large integral
scales it is possible to write

τ0qi (x, t) = Λxqi (x, t)

Uc
,

where Uc is the convection velocity along the axis of
mean motion. This relation is a reasonable connection
between the spatial and time scales, which allows the
derivation of one from the other.

Part
C

1
0
.1



Measurements of Turbulent Flows 10.1 Statistical Eulerian Description of Turbulent Flows 779

Taylor Microscales
An evaluation of the intermediate scales is given by con-
sidering a Taylor series expansion of the autocorrelation
coefficient near the origin; for the pure spatial case with
separation along the longitudinal axis this yields

ρq′2
i
(x, rx, t) = ρq′2

i
(x, 0, t)+

(
∂ρ

∂rx

)

rx=0
rx

+
(

∂2ρ

∂r2
x

)

rx=0

r2
x

2
+ O

(

r3
x

)

, (10.21)

where ρq′2
i
(x, 0, t) ≡ 1, and similarly for the other axes

ry and rz .
Neglecting the terms of order higher than r2

x ,
a parabolic approximation to the autocorrelation co-
efficient is obtained. The separation at which the
autocorrelation coefficient vanishes (i. e., the intersec-
tion of the parabola with the horizontal rx axis) defines
the so-called Taylor’s microscale λxqi (x, t),

1+
(

∂ρ

∂rx

)

rx=0
λxqi (x, t)+

(
∂2ρ

∂r2
x

)

rx=0

λ2
xqi

(x, t)

2

= 0 , (10.22)

which is a quadratic relation with unknown λxq , given
the first and second derivative of the autocorrelation
coefficient in the origin. This is explained graphically
in Fig. 10.7; the Taylor’s microscale gives indications
of the size of intermediate (i. e., lower than the integral
length scales) flow structures.

Even for the Taylor’s microscale in space, there are
three scales (one along each axis) for a scalar variable
and three scales for each component of a vector.

The evaluation of Taylor’s microscale is simpler
when the hypothesis of a homogeneous flow field is as-
sumed; in this case, the first-order term in the previous
expansion vanishes. This can be shown by consider-
ing relation (10.21) for negative rx values as well and

�

��

�����

�

Fig. 10.7 Meaning of the Taylor microscale

subtracting and adding the two terms

ρq′2
i
(rx, t)−ρq′2

i
(−rx, t)

≡ 0 = 2

(
∂ρ

∂rx

)

rx=0
rx + O

(

r3
x

)

,

ρq′2
i
(rx, t)+ρq′2

i
(−rx, t)

= 2+
(

∂2ρ

∂r2
x

)

rx=0
r2

x + O
(

r4
x

)

.

In the last relation, as the two left-hand terms are equal,
it is then possible to obtain

(
∂ρ

∂rx

)

rx=0
= O

(

r2
x

)

(
∂2ρ

∂r2
x

)

rx=0
= 2

r2
x

[

ρq′2
i
(rx, t)−1

]

+o
(

r2
x

)

,

i. e., the first-order derivative vanishes and the second-
order derivative is always nonpositive. In this case, from
(10.22), the Taylor’s microscale results as

λ2
xqi

(t) = −2
(

∂2ρ
/

∂r2
x

)

rx=0

or equivalently

ρq′2
i
(rx → 0, t) ≈ 1−

(
rx

λxqi

)2

and similarly for the other axes ry and rz; for the station-
ary case the scales are not dependent on time. Regarding
third-order correlations, it is possible to show that they
are odd functions of the separation distance and that in
isotropic turbulence the values of the function and its
derivative for zero separation vanish [10.10]. Thus, for
the function k, it is possible to write (10.10)

k (r → 0, t) = r3

6

(
∂3k

∂r3

)

r=0

+ r5

120

(
∂5k

∂r5

)

r=0
+ O(r7) .

Another useful expression is obtained by considering
that for a homogeneous flow
(

∂2ρ

∂r2
x

)

rx=0

=
⎡

⎣
∂2

∂r2
x

(〈

q′
i (x, t) q′

i (x +rx, t)
〉

〈

q′2
i (t)
〉

)]

rx=0

= −

〈(
∂q′

i (t)
∂rx

)2
〉

〈

q′2
i (t)

〉 (10.23)

Part
C

1
0
.1



780 Part C Specific Experimental Environments and Techniques

so that

λ2
xqi

(t) = 2
〈

q′2
i (t)

〉

〈(
∂q′

i (t)
∂rx

)2
〉 (10.24)

and similarly for the other axes ry and rz (for the
stationary case the scales are not dependent on time).

For homogeneous isotropic flows, the previous Tay-
lor’s microscales reduce to only one in the case of a scalar
and two for the velocity field (longitudinal and transverse
Taylor’s microscales)

λ2
q (t) = −2

(∂2ρ
/

∂r2 )r=0
,

λ2
f (t) = −2

(∂2 f
/

∂r2 )r=0
,

λ2
g(t) = −2

(∂2g
/

∂r2 )r=0

or equivalently

λ2
q (t) = 2

〈

q′2 (t)
〉

〈(
∂q′(t)
∂x1

)2
〉 ,

λ2
f (t) = 2

〈

u′2
1

〉

〈(
∂u′

1
∂x1

)2
〉 ,

λ2
g (t) = 2

〈

u′2
2

〉

〈(
∂u′

2
∂x1

)2
〉 , (10.25)

where x1 is taken as reference axis. Note that in these re-
lations the two numerators are the same due to isotropy,
〈u′2

1〉 = 〈u′2
2〉.

Regarding the velocity field, note that, even without
the assumption of isotropy, for the case of incompress-
ible fluid flows, it is possible to show (10.9) that

∂g

∂r
= 3

2

∂ f

∂r
+ r

2

∂2 f

∂r2
,

∂2g

∂r2
= 2

∂2 f

∂r2
+ r

2

∂3 f

∂r3
.

The second equation, for r = 0, gives
λ2

f (t) = 2λ2
g (t) . (10.26)

while in the same limit the first equation gives equiva-
lence of first-order derivatives at the origin.

Recalling the expressions for the TKE dissipation ε

for the case of homogeneous isotropic incompressible
turbulence (refer to Sect. 10.1.2), the longitudinal and
transverse Taylor microscales (10.25) in terms of ε are

λ2
f (t) = 30ν

〈

u′2
1

〉

ε
,

λ2
g (t) = 15ν

〈

u′2
2

〉

ε
. (10.27)

where again relation (10.26) is retrieved. The reverse
relations allow one to derive the TKE dissipation rate
from Taylor’s microscales

ε = 30ν
〈

u′2
1

〉

λ2
f (t)

= 15ν
〈

u′2
2

〉

λ2
g (t)

. (10.28)

This result also implies that ε is related to the
correlation coefficient by

ε = −15ν
〈

u′2
1

〉
(

∂2 f

∂r2

)

r=0

= −15

2
ν
〈

u′2
2

〉
(

∂2g

∂r2

)

r=0
;

thus, using relations (10.3) between the autocorrelation
and spectral functions and (10.7), it is also possible to
write

ε = 2ν

∞∫

0

Fk
u′

i u′
i
k2dk ,

which has already been obtained (10.19). Lastly, us-
ing the Karman–Howarth equation (10.17) for zero
separation (r = 0), the properties of third-order corre-
lations, and (10.28), the simplified equation for TKE is
obtained [10.4]

d

dt
u′2

1 = −10ν
u′2

λ2
g

= −2

3
ε , (10.29)

which is equivalently obtained from the TKE equation.
Returning to (10.24) and (10.25) for the case of

a variable different from the velocity that possesses a dis-
sipation term (for example the temperature and its mean
square value, or the species concentration), it is possible
to consider the limit for the isotropic case. In particu-
lar, the temperature or species dissipation rates can be
written as (see Sect. 10.1.2)

εT = α

〈(
∂T ′

∂x j

)2
〉

= 3α

〈(
∂T ′

∂x1

)2
〉

,

εc = D

〈(
∂c′

∂x j

)2
〉

= 3D

〈(
∂c′

∂x1

)2
〉

,

where, as usual, sums over repeated indexes are used and
α and D are the thermal and species diffusivities). Thus,
similarly to (10.27), it is possible to write the Taylor’s
microscales for the temperature or concentration fields
for the isotropic case as

λ2
T (t) = 6α

〈

T ′2〉

εT
,

λ2
c (t) = 6D

〈

c′2〉

εc
,
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which can also be inverted to derive the dissipation rates
from Taylor’s microscales.

For the time autocorrelation coefficient, the previous
arguments can be repeated exactly, so that

1+
(

∂ρ

∂τ

)

τ=0
τλqi (x, t)+

(
∂2ρ

∂τ2

)

τ=0

τ2
λqi

(x, t)

2

= 0

defines the Taylor’s microscale in time τλqi (only one for
each scalar variable), where the dependence on position
and time vanishes for homogeneous and stationary tur-
bulence. For stationary flow field, the previous definition
reduces to

τ2
λqi

(x) = −2

(∂2ρ
/

∂τ2 )τ=0
= 2

〈q′2
i 〉

〈(
∂q′

i
∂t

)2
〉 ,

i. e., the autocorrelation time coefficient close to the
origin is given by

ρq′2
i
(x, τ → 0) ≈ 1−

(
τ

τλqi

)2

.

For the velocity field, recalling the relations for the
TKE dissipation rate in the isotropic case, we obtain (in
agreement to what was previously done for the spatial
separation)

τ2
λ (x) = 30ν

〈

u′2
1

〉

εU2
c

,

where Uc is the convection velocity, and the reverse,
which allows ε to be derived from Taylor’s microscale
in time. Thus, from the relation between the space and
temporal derivatives derived from Taylor’s hypothesis
(Sect. 10.1.1), we obtain for the velocity component
along the mean flow direction

τλ ≈ λ f

Uc
,

which is a reasonable, although not exact, relation be-
tween time and space microscales.

Kolmogorov Scales
As already described in Sect. 10.1, the smallest scales
are defined in terms of the TKE dissipation rate ε. For
such small scales, it is necessary to distinguish clearly
between the flow variables, as the definition for large
and intermediate scales was based on correlation func-
tions, while smallest scales are based on dissipation
rates, which depend on the flow variable under con-
sideration. Consider first the flow velocity, for which the

smallest scales are known as the Kolmogorov length and
time scales, defined as

η =
(

ν3

ε

)1/4

, τη =
(ν

ε

)1/2
.

Note that the previous definition of the space scale
does not contain any information on the velocity com-
ponent or the reference axis. Therefore, the assumption
of isotropy is implicit in its definition; at these scales,
flow structures have the same size, η, along all the axes,
although the anisotropies are contained in the way in
which the TKE dissipation rate is computed. It is simple
to show using the above definition that a Kolmogorov
velocity scale can be defined as

vη = η

τη

= (εν)1/4 . (10.30)

The Reynolds number obtained using the Kol-
mogorov length and velocity is identically equal to
1

Reη = vηη

ν
≡ 1 ,

thus confirming that for flow structures with character-
istic size η and velocity vη, inertial forces are balanced
by viscous forces; smaller structures will be rapidly
dissipated by viscosity (with a characteristic Reynolds
number less than 1).

These scales can also be retrieved in another
way [10.29]. Let us consider a vortical structure (eddy)
with characteristic rotational velocity vr and size r; the
eddy turnover time is defined as

te = r

vr
; (10.31)

(for large scales the relation leads to Λ/〈u′2〉1/2 [10.6]).
If it is assumed that this eddy loses almost all of its
energy during a turnover time, then the TKE dissipation
rate will be given by

ε ∼ energy density

turnover time
≈ v2

r

(r/vr)
= v3

r

r
.

(The eddy turnover time can also be defined in terms
of the TKE and TKE dissipation te = K ′/ε, so that
the Reynolds number based on the velocity scale√

K ′ and on the length scale te
√

K ′ = K ′3/2
/ε will be

ReT = K ′2/νε.) From the previous relation, we obtain

vr ≈ (εr)1/3 .

By assuming as the characteristic velocity vr = vη

and as the characteristic size r = η, it is possible to obtain
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a first relation between these two quantities related to the
TKE dissipation rate

vη ≈ (εη)1/3 . (10.32)

This relation, when applied to large scales, leads to ε ≈
(E[u])3/Λ, as described in the next section.

A second relation between those two quantities is
obtained from

ε = 15ν

〈(
∂u′

1

∂x1

)2
〉

≈ ν

(
vη

η

)2

,

that is,

vη ≈
( ε

ν

)1/2
η . (10.33)

From (10.32) and (10.33), we obtain

vηη ≈ ν , η ≈
(

ν3

ε

)1/4

, vη ≈ (εν)1/4 ,

so that the eddy turnover time for these structures is
[from (10.31)]

τη ≈ η

vη

≈
(ν

ε

)1/2

as defined before.
In the case of isotropic flow field, the useful ex-

pression for TKE dissipation rate can be used in the
definitions of the scales to obtain

η =
⎡

⎣
ν2

15
〈(

∂u′
1
/

∂x1
)2
〉

⎤

⎦

1/4

,

τη =
⎡

⎣
1

15
〈(

∂u′
1
/

∂x1
)2
〉

⎤

⎦

1/2

,

vη =
[

15ν2
〈(

∂u′
1
/

∂x1
)2
〉]1/4

,

which can be used as approximate evaluations of
the microscales (see Sect. 10.1.3 for different possi-
ble evaluations of ε to be used in the measurement of
microscales).

As a consequence of the definition of the space and
time microscales, the relation between the two is not
derivable using mean flow (or convection) velocities

τη = η

Uc

so that they have to be evaluated separately.
The different flow scales are summarized in

Fig. 10.8 [10.30].
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Fig. 10.8 The different flow scales

Consider now flow variables different from the ve-
locity; in particular, for temperature or concentration
fields, equations for the temperature or concentration
gradients similar to those for TKE dissipation and en-
strophy can be derived (see Sect. 10.1.2, Vorticity and
Enstrophy). In comparison to the velocity, due to the fact
that both temperature (or species concentration) and ve-
locity fields are involved, there are four (rather than two,
kinematic viscosity ν, and TKE dissipation rate ε) quan-
tities that can be used to derive the smallest temperature
or species scales; the kinematic viscosity, the TKE dis-
sipation rate, the thermal diffusivity α (or the species
diffusivity, D), and the temperature dissipation rate εT
(or the species dissipation rate εc) [10.6].

In analogy with the velocity (following the argu-
ments from (10.31)), it is possible to derive an expression
for the latter variable from the definition of a temperature
(or species) diffusion eddy with characteristic size (ηT),
velocity (vηT), time (ηT/vηT), and temperature square
fluctuation 〈T ′2〉

εT ≈ vηT
〈

T ′2〉

ηT
(10.34)

and similarly for the species concentration.
Moreover, from the definition of εT (refer to Tay-

lor’s microscales for the temperature and concentration
fields), it is possible to write in the isotropic case

εT = 6α

〈(
∂T ′

∂x1

)2
〉

≈ α
〈

T ′2〉

η2
T

, (10.35)

and similarly for the concentration field.
Combining (10.34) and (10.35), we obtain

vηTηT ≈ α , (vηcηc ≈ D , for the species,)

which is analogous to the result for the velocity field. So
far, independently of the definition of the smallest scales
for the temperature or species concentration, we always
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Table 10.2 Summary of scales for velocity and scalar fields in homogeneous and isotropic turbulence in which the

dissipation terms can be expressed as ε = 15ν

〈(
∂u′

1
∂x1

)2
〉

and εT = 3α

〈(
∂T ′
∂x1

)2
〉

Integral Taylor Kolmogorov

Length Velocity field Λ f =
∞∫

0
f (r) dr λ2

f = 30ν
〈

u′2
1

〉

ε

Λg =
∞∫

0
g (r) dr λ2

g = 15ν
〈

u′2
2

〉

ε
η ≈

(
ν3
ε

)1/4

Λ f = 2Λg λ2
f = 2λ2

g

Scalar field Λq =
∞∫

0
ρq (r) dr λ2

T = 6α
〈

T ′2〉

εT
Pr > 1ηT =

(
α2ν
ε

)1/4

Pr < 1ηT =
(

α3
ε

)1/4

Time Velocity field τ0qi =
∞∫

0
ρqi (τ) dτ τ2

λu = 2

〈

u′2
1

〉

〈(

∂u′
1

∂t

)2
〉 τη = ( ν

ε

)1/2

Scalar field τ0q =
∞∫

0
ρq (τ) dτ τ2

λu = 2

〈

T ′2
1

〉

〈(

∂T ′
1

∂t

)2
〉 Pr > 1τηT = ( ν

ε

)1/2

Pr < 1τηT = ( α
ε

)1/2

have

ReηT Pr = 1 , (Reηc Sc = 1, for the species) ,

where the Prandtl (Pr) and Schmidt (Sc) numbers have
been used [i. e., the ratio of momentum to thermal (or
species) diffusivities]. These relations confirm the defi-
nition of the smallest scales in the context of temperature
or species diffusion. The product Re Pr (or Re Sc) is often
reported as the Peclet number.

In contrast to the velocity field, due to the pres-
ence of temperature (or species concentration), it is not
possible to obtain unique relationships for the length, ve-
locity, and time scales. It is necessary to consider another
equation for the temperature (or species) fluctuation gra-
dients; in analogy with the vorticity gradient equation,
it is possible to obtain [10.6]
〈(

∂T ′

∂x j

∂T ′

∂xi

)(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉

≈ α

〈(
∂2T ′

∂x j∂xi

)2〉

where, for the species concentration, α is replaced by D
and T ′ by c′. This equation can be roughly evaluated as

〈

T ′2〉

η2
T

s′
ij ≈ α

〈

T ′2〉

η4
T

,

where

s′
ij = 1

2

〈(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)2
〉1/2

;

thus

ηT ≈
(

α

s′
ij

)1/2

,

and similarly for the concentration. Once s′
ij has been

specified for the particular range involved, the smallest
length scale for the temperature (concentration) field are
derived from the previous relation, and in the same way
for velocity and time scales.

Two main situations hold [10.6]. When α < ν (or
D < ν), i. e., when Pr > 1 (or Sc > 1), the fluctuating
temperature dissipation is expected to occur at scales ηT
smaller than η (temperature fluctuations are sensible to
all possible fluctuations of velocity down to the smallest
velocity scale). In this case, the quantity s′

ij entirely
depends on the kinematic viscosity and TKE dissipation,
i. e.,

s′
ij ≈

〈(
∂u′

i

∂x j

)2
〉1/2

≈
( ε

ν

)1/2
,

so that [10.6, 31]

ηT =
(

α2ν

ε

)1/4

, τηT =
(ν

ε

)1/2
,

vηT =
(

α2ε

ν

)1/4

, (10.36)

with α replaced by D for species concentration. Note
that the smallest time scale for temperature is the same
as that for velocity.
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On the other hand, when α > ν (or D > ν), i. e., when
Pr < 1 (or Sc < 1), the smallest eddies for temperature
fluctuations (size of order ηT) are larger than the smallest
eddies for velocity (size of order η) as not all possible
fluctuations of velocity are involved in the temperature
fluctuations. In this case, an evaluation of the strain rate
at scales of order ηT differs from above and is smaller
than (ε/ν)1/2. In particular, for scales ηT > η, s′

ij must be
independent of the kinematic viscosity, but will depend
on the specific value of ηT; this gives

s′
ij ≈

〈

u′2〉1/2

ηT
≈ ε1/3

η
2/3
T

,

using (10.32), so that [10.6]

ηT =
(

α3

ε

)1/4

, τηT =
(α

ε

)1/2
,

vηT = (αε)1/4 , (10.37)

with α replaced by D for concentration. In this case,
in comparison to the velocity, at the smallest scales the
thermal (or concentration) diffusivity replaces the kine-
matic viscosity. The reader is referred to Chap. 17, 18
for details of cases in which temperature does not act as
a passive flow variable (convective flows). In Table 10.2,
some of the previous evaluations of turbulent scales for
the velocity and scalar fields are summarized.

Relations Between Flow Scales
and Reynolds or Prandtl Numbers

As shown in the previous section, there are at least
three classes of characteristic lengths (and times); for
the velocity field, these are the integral, Taylor, and
Kolmogorov scales. The first argument of this section
concerns the relations among these scales; this topic was
preliminary considered at the beginning of Sect. 10.1.1
with the aim of quantifying the range of flow scales.
We first consider the velocity field and the possible re-
lation between the integral and Taylor scales. From the
Navier–Stokes equations, balancing inertial and viscous
terms for incompressible stationary flow without exter-
nal forces (i. e., neglecting the effect of pressure gradient
and external forces), we obtain (see Sect. 10.1.2)

〈ui〉 ∂〈u j〉
∂xi

≈ ν
∂2〈u j〉
∂x2

i

; (10.38)

cross-terms between velocity fluctuations can be con-
sidered in terms of fluctuating velocities, but are usually
much smaller than the term containing the average
velocity gradient even for high fluctuations levels. Con-
sidering orders of magnitude, the previous equation can

be rewritten as

〈u〉2

Λ
∼ ν 〈u〉

λ2
,

where 〈u〉 is the characteristic velocity of the problem, Λ
is the characteristic large-scale length (i. e., the integral
scale that drives the inertial term), and λ is the char-
acteristic length scale for small-scale derivatives (i. e.,
Taylor’s microscale). Thus,

Λ

λ
∼
(

Λ 〈u〉
ν

)1/2

= Re1/2 , (10.39)

where Re is the Reynolds number based on the integral
scale, which shows that the Taylor microscale is much
smaller than the integral scale, the larger the Reynolds
number.

Defining the Reynolds number based on the Taylor
microscale

Reλ = λ
〈

u′2〉1/2

ν
,

it is possible to rewrite this relation between the inte-
gral and Taylor scales (10.39) as a connection between
Reynolds numbers

Reλ ∼ IRe1/2 , (10.40)

where I = 〈u′2〉1/2/〈u〉 is the turbulence intensity. Thus,
the Reynolds number based on the Taylor microscale
is proportional to the square root of the large-scale
Reynolds number. Using the definition of Reλ, we find

Λ

λ
∼ Reλ

I
.

Considering that, to a reasonable approximation,
both the integral and Taylor microscales in time can
be simply derived by the corresponding lengths using
Taylor’s hypothesis (see the previous section), it is pos-
sible to state that this relation between length scales also
holds for time scales, i. e.,

τ0

τλ

∼ Re1/2 . (10.41)

Another relation between the integral and Kol-
mogorov scales can be derived by equating the total
kinetic-energy production and dissipation rates (i. e.,
for the stationary, without external forces, case neglect-
ing contributions from pressure and from fluctuating
cross-terms, see Sect. 10.1.2)

〈ui〉 ∂
(〈u j〉〈u j〉

)

∂xi
≈ ε ,
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which can be evaluated, as an order of magnitudes, in
the form

〈u〉3

Λ
∼ ε . (10.42)

As already stated, this relation is useful in evaluating the
TKE dissipation rate from the large-scale variable 〈u〉
and Λ.

Introducing the latter approximation into the defi-
nition of the Kolmogorov scales for length, time, and
velocity (see previous section), it is possible to write

Λ

η
∼ Re3/4 ,

τ0

τη

∼ Re1/2 ,
〈u〉
vη

∼ Re1/4 ,

(10.43)

which give approximate evaluations of almost the entire
observable range of scales in a turbulent flow from the
large-scale Reynolds number.

By comparing the previous relations with those ob-
tained between integral and Taylor scales, the ratios of
the Taylor to Kolmogorov scales are also obtained

λ

η
∼ Re1/4 ,

τλ

τη

∼ 1 . (10.44)

The behavior of the flow length scales as a func-
tion of Reynolds number is summarized in Fig. 10.9.
While the large scale is almost constant (depending on
the boundaries of the flow field), the microscales de-
creases with the Reynolds number so that turbulence,
corresponding to the fact that turbulence has been re-
ported having the same appearance when observed for
long with different enlarging factors.

More-precise relations among the flow scales can be
derived under the assumption of isotropy; considering
(10.28) for ε inserted into (10.42), we obtain for the
ratios of the integral to the Taylor length and time scales

Λ

λ f
∼ Re1/2

301/2 I
,

τ0

τλ

∼ Re1/2

301/2 I
, (10.45)
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Fig. 10.9 Turbulence scales as a function of Reynolds num-
ber

where in the second relation Taylor’s hypothesis has
been used. These relations replace (10.39) and (10.41)
in the case of isotropic flow. On the other hand, inserting
the isotropic expression for ε (10.8) into the definitions
of the Kolmogorov length, time, and velocity scales (see
previous section), we obtain

η = λ f

301/4 Re1/2
λ

, τη = λ f

301/2
〈

u′2
1

〉1/2 ,

vη = 301/2 I 〈u〉
Re1/2

λ

. (10.46)

Using these relations, the connection between
Reynolds numbers based on large and microscale
(10.40) and Taylor’s hypothesis (to convert the Taylor
length microscale to time) we obtain for the ratios of the
Taylor and Kolmogorov scales

λ f

η
= 301/4 Re1/2

λ ∼ 301/4 I1/2 Re1/4 ,

τλ

τη

∼ 301/2 I , (10.47)

which replace (10.44) in the case of isotropy. Consid-
ering together (10.45) and (10.47) (and using (10.46)
for the velocity), it is possible to write the ratio of the
integral to Kolmogorov scales for the isotropic case as

Λ

η
∼ Re3/4

301/4 I1/2 ,
τ0

τη

∼ Re1/2 ,

〈u〉
vη

∼ Re1/4

301/4 I1/2
, (10.48)

which replace (10.43).
Consider now a flow variable different from the ve-

locity (see also the previous section). For the temperature
and species concentration, it is possible to repeat ar-
guments similar to those involved in deriving (10.37)
(considering energy and concentration equations in this
case) to obtain the ratio between the integral and Taylor
scales for the temperature

ΛT

λT
∼ (ReT Pr)1/2 , (10.49)

where the Reynolds number based on the integral length
scale for the temperature, ReT, has been used (for the
concentration field, the Schmidt number instead of the
Prandtl number will appear). The result is similar to that
for the velocity scales with a multiplication factor given
by the Prandtl (or Schmidt) number.

For time scales, as for the velocity, assuming that
Taylor’s hypothesis holds, we find

τ0T

τλT

∼ (ReT Pr)1/2 . (10.50)
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786 Part C Specific Experimental Environments and Techniques

Table 10.3 Summary of scale ratios as functions of the Reynolds and Prandtl (or Schmidt) numbers

Integral Integral Taylor

Kolmogorov Taylor Kolmogorov

Length Velocity field Re3/4 Re1/2 Re1/4

Scalar field Pr > 1 , Re3/4 Pr1/2 (RePr)1/2 Pr > 1 , Re1/4

Pr < 1 , (RePr)3/4 Pr < 1 , (RePr)1/4

Time Velocity field Re1/2 Re1/2 1

Scalar field Pr > 1 , Re1/2 (RePr)1/2 Pr > 1 , Pr−1/2

Pr < 1 , (RePr)1/2 Pr < 1 , 1

By considering (10.42) in the definition of smallest
length and time scales for temperature (or concentration)
(10.36) and (10.37)), the ratios of large to small scales
for the Pr > 1 (Sc > 1) case (assuming integral length
and time scales for temperature, or concentration, equal
to that for velocity) are evaluated as

ΛT

ηT
∼ Re3/4

T Pr1/2 ,
τ0T

τηT

∼ Re1/2
T (10.51)

and for the Pr < 1 (Sc < 1) case

ΛT

ηT
∼ (ReT Pr)3/4 ,

τ0T

τηT

∼ (ReT Pr)1/2 (10.52)

with the Schmidt number replacing the Prandtl number
for concentration. These relations show how the range
of scale for temperature (or concentration) is enhanced
or restricted depending on the value of the Prandtl (or
Schmidt) number. The case Pr > 1 (Sc � 1) is typical
of water (in which Pr ≈ 7, and Sc > 103 when a dye is
used), thus exhibiting a larger (for temperature) or much
larger (for concentration) range of scales in comparison
to those of velocity. For a gas, Pr ≈ 1 and Sc ≤ 1, so
that the range of scales for temperature (or concentra-
tion) is more or less the same as for the velocity. These
considerations have a correspondence in the spectral be-
haviors of temperature (or concentration) fluctuations in
comparison to those of the velocity [10.6].

By combining (10.48) and (10.49) with (10.51) or
(10.52), the ratios of the Taylor to the smallest tempera-
ture (or concentration) scales can be derived; for Pr > 1
(or Sc > 1), we find

λT

ηT
∼ Re1/4

T ,
τλT

τηT

∼ 1

Pr1/2
,

while for Pr < 1 (or Sc < 1), this reads

λT

ηT
∼ (ReT Pr)1/4 ,

τλT

τηT

∼ 1 ,

with the Schmidt number replacing the Prandtl number
for concentration.

Let us also consider the ratios of temperature (or con-
centration) to velocity scales. For Taylor’s microscales,
considering (10.39) and (10.48) for lengths, and (10.41)
and (10.49) for times, we obtain

λ f

λT
∼ Pr1/2 ,

τλ

τλT

∼ Pr1/2 ,

where the Schmidt number would replace the Prandtl
number for the concentration result, assuming that the
integral scales for temperature (or concentration) and
velocity are almost equal, which is a reasonable approx-
imation as both are convected by the mean velocity field.
Thus, for gases, Taylor’s microscales of temperature (or
concentration) and velocity are almost equal, while for
water Taylor’s microscale for temperature is about three
times smaller than that for velocity, and for dye concen-
tration, Taylor’s microscale is about a factor 30 smaller
than that of the velocity.

For the smallest time scale, from the definitions
(10.36), i. e., for the Pr > 1 (Sc > 1) case, we obtain

η

ηT
∼ Pr1/2 ,

τη

τηT

∼ 1 ,
vη

vηT

∼ Pr1/2 ,

and from (10.37), for the Pr < 1 (Sc < 1) case,

η

ηT
∼ Pr3/4 ,

τη

τηT

∼ Pr1/2 ,
vη

vηT

∼ Pr1/4 ,

where the Schmidt number would replace the Prandtl
number for the species concentration result. These rela-
tions confirm the findings already noted in Sect. 10.1.3
about the Kolmogorov scales for Pr > 1: the smallest
scales for temperature are smaller than those for ve-
locity (and those for concentration are much smaller
when Sc � 1), whereas for Pr ≤ 1 the smallest scales
are similar. In Table 10.3, the different scale ratios for
the velocity and scalars as functions of the Reynolds and
Prandtl numbers are summarized.
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How to Measure Length and Time Scales
in a Turbulent Flow

The practical measurement of turbulent scales in flow
fields leads to some potential difficulties, which are con-
sidered in this section. At the outset, it is necessary to
evaluate the correlation coefficient of the flow variable
under consideration in space, which requires the mea-
surement of data at different spatial positions, and/or in
time, which requires long sequences of data in time. As
mentioned in Sect. 10.1.1, to derive such coefficients it
is necessary to perform data sampling in space and/or
time with small spatial or time separations (i. e., at high
resolution); thus, the data must be correlated and not
independent as required for single-point statistics (see
Chap. 23).

For the evaluation of the integral scale, the integral
to be performed is theoretically defined up to infinity;
in practice, it is limited. One possibility is to stop at the
first zero crossing, i. e., at the first space or time separa-
tion, rmax or τmax, for which the correlation coefficient
vanishes. However, in many cases the correlation coef-
ficients start to exhibit oscillations before this zero is
attained, as shown in Fig. 10.10; this is due to poor
statistics (due to the fact that the number of cross-
products is reduced for increasing separations) and to
the random nature of the phenomenon. In this case,
a second, more-convenient possibility is to define rmax
or τmax as the values for which the correlation coeffi-
cient reaches its first minimum. Another possibility is to
estimate the integral scale as the value for which the cor-
relation coefficient attains 1/e of its maximum (equal
to 1 for zero separation), i. e., to the value expected
if an exponential decay of the correlation coefficient
is assumed. These three possibilities are summarized
in Fig. 10.10.

For the case of a periodic phenomenon, the inte-
gral scale is related to the period (in space or time),
which can be evaluated by the position of maxima in the
correlation coefficients; in this case, a reasonable esti-
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Fig. 10.10 Different evaluations for the integral length scale

mation can only be performed when the first of these
maxima exceeds a value of 0.3–0.4 in the correlation
coefficient.

For the Taylor microscale, it is necessary to dis-
tinguish between several possibilities. The first is
connected to the determination of the microscale from
the second-order derivative of the correlation coeffi-
cient at the origin. It is quite difficult to evaluate such
a derivative and especially to determine how many cor-
relation points near the origin must be used for such
evaluation. An equivalent procedure is to fit a parabola
to the data close to the origin and to determine the
intersection with the horizontal axis (see the section
on Taylor microscales and to Fig. 10.4). However, the
presence of noise in the measurements adds a Dirac
delta at the origin, thus preventing the determination
of such a parabola; a plot of the correlation coeffi-
cient versus the square of the separation can support
the evaluation of the effective number of points near
the origin required for the fit to the parabola (Romano
et al. [10.32]). For homogeneous (or stationary) flows
the second-order derivative of the correlation coeffi-
cient can be replaced by the mean square derivative
of the variable fluctuations (10.23). The evaluation of
the mean square derivatives is itself not straightfor-
ward due to the increasing contribution of noise (see
Chap. 23–Chap. 25 and sections devoted specifically to
measurement systems); this procedure avoids the evalu-
ation of the correlation coefficient and its second-order
derivative.

For the velocity field, it is also possible to use the
TKE dissipation rate, ε, in particular for the simplest
case of isotropic flows if only a preliminary estimate
of the Taylor microscale is required (see Sect. 10.1.3).
The quantity ε can be evaluated from the mean square
fluctuating velocity derivatives, from relatively simple
estimates such as (10.42), or be evaluated from the spec-
tra. In the following, several possible estimations of ε

are given.
Another evaluation of the Taylor’s microscale in

time is derived from the analysis of the rate of
zero-crossing of the fluctuating signal (the number of
zero-crossing for unit time,

·
N0) [10.10]; the evaluation

is given by

τλ ≈
√

2

π
·

N0

. (10.53)

The Taylor length microscale can be derived by using
Taylor’s hypothesis (Sect. 10.1.1). The previous rela-
tion can be derived exactly for a sinusoidal oscillating
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signal [10.10]

q′ = A sin

(
2πt

T0

)

for which

〈

u′2〉= A2

2
,

〈(
du′

dt

)2
〉

= 2A2π2

T 2
0

,
·

N0 = 2

T0
,

so that (10.53) holds exactly.
For practical evaluation of the smallest scales, it is

necessary to consider that the evaluation of the TKE
dissipation rate ε is required (Sect. 10.1.2). As already
reported for the evaluation of the Taylor’s microscale, ε

can be derived in various ways. However, it is important
to stress that, for general flow fields, the correct eval-
uation of ε requires the measurement of several mean
square derivatives along different directions, which is
also a challenging objective of experimental verification
of advanced turbulence closure models (see Sect. 10.1.1,
higher-order closures).

Here, some possible evaluations of dissipation rates
are summarized (Monin and Yaglom [10.12], George and
Hussein [10.18], Pope [10.4], Antonia et al. [10.33]).

For homogeneous turbulent flows, we find for veloc-
ity

ε = ν

〈
∂u′

i

∂x j

∂u′
i

∂x j

〉

,

and for temperature

εT = α

〈
∂T ′

∂x j

∂T ′

∂x j

〉

,

with D replacing α for concentration. For inhomoge-
neous flows, additional cross-terms are involved (see
Sect. 10.1.1, single-point equations). Another expres-
sion is for exactly homogeneous flows (i. e., flows in
which fluctuations of a velocity component are indepen-
dent of the considered point)

εhom = 3ν

[〈(
∂u′

1

∂x1

)2
〉

+
〈(

∂u′
2

∂x1

)2
〉

+
〈(

∂u′
3

∂x1

)2
〉]

.

For local homogeneous axisymmetric turbulence,
useful expressions are

εaxi = ν

[

−
〈(

∂u′
1

∂x1

)2
〉

+2

〈(
∂u′

1

∂x2

)2
〉

+2

〈(
∂u′

2

∂x1

)2
〉

+8

〈(
∂u′

2

∂x2

)2
〉]

,

εTaxi = α

[〈(
∂T ′

∂x1

)2
〉

+2

〈(
∂T ′

∂x2

)2
〉]

.

For the isotropic case (see Sect. 10.1.1 on isotropy)

εiso = 15ν

〈(
∂u′

1

∂x1

)2
〉

,

εTiso = 3α

〈(
∂T ′

∂x1

)2
〉

.

For decaying isotropic turbulence, from (10.29),
converting time derivatives into time, it is possible to
derive the TKE dissipation from the fluctuating TKE
decay (the same is obtained from the TKE equation)

εdec = −〈u〉
2

d〈K ′〉
dx

.

An overall estimation of TKE dissipation is derived
from the approximate balance between the production
and dissipation of kinetic energy (see Sect. 10.1.3, on
Kolmogorov scales) and similarly for temperature

ε ≈ 〈u〉3

Λ
, εT ≈ 〈u〉 〈T 〉2

Λ
.

The former result can also be reconsidered in terms of the
fluctuating TKE, defining a scale Λε slightly different
from the integral scale:

ε ≈
(

K ′/3
)3/2

Λε

.

From an estimate of the order of magnitude of the
terms in the definition in terms of microscales (see
Sect. 10.1.3 on Integral scales),

ε = 30ν
〈

u′2〉

λ2
f

, εT = 6α
〈

T ′2〉

λ2
T

.

From the integral of the energy spectrum
(Sect. 10.1.1)

ε = 2ν

∞∫

0

Fk
u′

i u′
i
k2dk .
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10.2 Measuring Lagrangian Statistics in Intense Turbulence

Even though it has been intensively studied for well
over a century, fluid turbulence remains a largely un-
solved problem. A full characterization of turbulence is
most likely contained within the Navier–Stokes equa-
tions, but these strongly nonlinear partial differential
equations continue to resist analytical solution for turbu-
lent flows. Researchers in turbulence therefore typically
turn to phenomenological models based on the 1941
hypotheses of Kolmogorov (K41) [10.34], as well
as more-recent extensions [10.11]. Kolmogorov’s hy-
potheses were originally formulated in the Eulerian
framework, where flow statistics are determined at fixed
spatial locations. Like all quantities in fluid mechanics,
however, both turbulence and the Kolmogorov hypothe-
ses can be cast in the Lagrangian framework, where
statistics are measured along the trajectories of individ-
ual fluid elements.

Much more is known about the Eulerian characteris-
tics of turbulence than about its Lagrangian properties,
primarily because robust and precise Lagrangian exper-
iments have historically been extremely difficult, if not
impossible at high Reynolds numbers. Since a general
mapping between Eulerian and Lagrangian statistics re-
mains elusive, we cannot fully understand turbulence
without a full characterization of its Lagrangian nature
as well as its Eulerian side. In addition, many prob-
lems, including mixing and transport, are inherently
Lagrangian [10.35].

Lagrangian experiments have been carried out for
many decades in field measurements in the atmosphere
and ocean using balloons and floaters, but these de-
vices are typically too large to measure the smallest
scales of the turbulence, and the measurements they
produce often have significant noise and uncertainty.
Over the past 15 or so years, however, Lagrangian turbu-
lence has become the subject of laboratory experiments
with the development of powerful experimental tech-
niques based on digital imaging and signal processing,
and data comparable in quality to the best Eulerian re-
sults have been measured by many groups [10.36–53].
Here, we describe an optical Lagrangian particle track-
ing (LPT) technique capable of producing robust single-
and multiparticle Lagrangian measurements [10.54–59].
We first discuss the image-processing algorithms used to
determine particle trajectories, and then describe our im-
plementation of the technique in the laboratory. Finally,
we briefly show some results from our experiments,
focusing on the separation of particle pairs in intense
turbulence.

10.2.1 Image Processing

Optical particle tracking is at its heart an image-
processing technique and an application of machine
vision. The process of converting raw images of tracer
particles to Lagrangian trajectories can broadly be split
into three steps. First, the particles must be located in
each image. The accuracy with which the particles are
found is the primary factor that determines the accuracy
of the LPT system. Next, if three-dimensional resolution
is desired, the two-dimensional particle positions found
from the images taken by each of the multiple cameras
in the system must be matched to generate the three-
dimensional particle coordinates. Finally, the particle
motion must be tracked in time through many images,
producing particle trajectories.

Particle Identification
A typical image taken by our LPT system is shown in
Fig. 10.11. Several features of this image are notable in
the context of particle tracking. The image consists of
bright spots, corresponding to particle images, on a dark
background. It is readily apparent, however, that the par-
ticles are not uniformly illuminated, and that the image
contains background noise. Additionally, some particle
images overlap with one another. Overlap is unfortu-
nately unavoidable in three-dimensional LPT, since an

Fig. 10.11 A typical image of tracer particles taken in our
LPT system
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entire volume is illuminated rather than simply a plane,
and this makes particle identification significantly more
difficult than for isolated particle images.

Figure 10.11 makes it clear, then, that a good
particle-finding algorithm must be able to handle
nonuniform illumination, noise, and overlap without sig-
nificant loss of accuracy. Additionally, the algorithm
should be computationally efficient, since hundreds of
thousands of images must be analyzed to produce well-
converged turbulence statistics.

After extensive tests of many types of particle-
finding algorithms [10.54], including algorithms based
on weighted averaging, function fitting, and neural net-
works, we have chosen to use an algorithm based on
one-dimensional Gaussians. This algorithm is fast, pro-
vides subpixel accuracy, is resistant to moderate noise
levels, and can handle overlap. We now discuss the
particle-finding procedure in detail.

To identify particles, we search the image for local
maxima in image intensity above a small threshold, set
empirically to a level above the average background
noise. To find the intensity maxima, we simply step
through the image row by row and compare each pixel’s
intensity with those of its eight neighbors. If the pixel’s
intensity is greater than or equal to those of its neighbors,
we assume that the center of the particle image lies
within that pixel. We neglect the outer ring of pixels
in the image, since particles cannot be reliably located
there.

To determine the coordinates of the particle with sub-
pixel accuracy, we first assume that the intensity profile
of the light received by the detector is Gaussian. In re-
ality, the intensity profile will be some more complex
function. Near the peak, however, where the center lies,
the profile can be well approximated by a Gaussian.
The horizontal and vertical coordinates of the particle
center are then found by fitting two independent one-
dimensional Gaussians. The fitting process is simple,
and noniterative for speed. By taking the local maxi-
mum pixel as well as the pixels on either side of the
maximum, an analytical form for the particle center can
be obtained. Let us label the coordinates of the three
horizontal pixels as xi for i = 1, 2, 3, where x2 is the
local maximum pixel. We can then solve the system of
equations

Ii = I0 exp

[

−1

2

(
xi − xc

σx

)2
]

, (10.54)

where Ii is the intensity of pixel xi , I0 is the undeter-
mined overall Gaussian intensity, xc is the horizontal

coordinate of the particle center, and σx is the horizontal
Gaussian width, for xc, obtaining

xc = 1

2

(

x2
1 − x2

2

)

ln(I2/I3)− (x2
2 − x2

3

)

ln(I1/I2)

(x1 − x2) ln(I2/I3)− (x2 − x3) ln(I1/I2)
.

(10.55)

The vertical coordinate of the center is found analo-
gously. Since we use digital cameras, there is a finite
number of possible pixel intensities. Every possible
logarithm appearing in (10.55) can therefore be pre-
computed and stored in a lookup table, reducing the
computational cost of finding a particle center to simply
a few multiplications. In contrast, if we were to fit a full
two-dimensional Gaussian intensity profile to the par-
ticle image, a nonlinear, iterative fitting algorithm would
be required, significantly increasing the computational
cost (by at least a factor of four in our tests).

By testing this algorithm on simulated im-
ages [10.54], we estimate that the average error in
the determination of the particle center is less than
0.1 pixels. In addition to its accuracy, it is also fast and
robust, and is an excellent choice for the processing
of images without significant background noise. If the
signal-to-noise ratio becomes very poor, however, other
algorithms based on neural-network pattern recognition
may perform better [10.54].

Stereomatching
Once the particle positions have been determined in the
two-dimensional image spaces of each camera in the
LPT system, the information from all of the cameras
must be combined to reconstruct the three-dimensional
coordinates of the particles. For applications where the
particles have distinguishing features such as shape
or color, this information can be used to assist the
stereomatching algorithm. In a general LPT experiment,
however, the tracer particles have no such features and
the only information available for stereomatching is the
photogrammetric condition stating that, for each cam-
era, the camera projective center, the particle coordinates
on the image plane, and the true particle coordinates in
the laboratory frame must be collinear [10.36]. Further-
more, such lines of sight drawn from all the cameras
will intersect at the true location of the particle. With
appropriate system calibration, which we describe in
Sect. 10.2.3, simple photogrammetry can then determine
the locations of the particles in three-dimensional space.

If two particles lie on the same line of sight from
a single camera, ambiguities can arise. This particle
shadowing will occur more frequently as the seeding
density of the particles is increased. By using more cam-
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eras, however, shadowing becomes less of a problem
since the amount of redundant information in the sys-
tem is high. For example, Dracos [10.39] has shown
that, for a reasonable particle seeding density, at least
three cameras are needed in an LPT system.

The stereomatching algorithm we use is based on
those of Dracos [10.39] and Mann et al. [10.42]. Con-
sider a particle image pi on one detector. As described
above, we can project a line of sight from the perspec-
tive center of the camera through the particle image.
We then in turn project this line of sight onto the im-
age planes of the other cameras. Particle images on
these images planes that fall within some tolerance ε

of the projected line are considered possible matches for
pi . In this fashion, a list of possible matches for pi is
constructed for every other camera in the system. This
process is then repeated for every particle image on ev-
ery detector. The lists are checked for consistency, and
the three-dimensional coordinates are found.

Particle Tracking
Temporal particle tracking is an example of a mul-
tidimensional assignment problem. The most general
case consists of a sequence of N frames, each contain-
ing a potentially different number of particles. Solving
the tracking problem requires the determination of the
set of assignments between the particle positions in all
temporally contiguous frame pairs so that the matched
positions correspond to the same physical particle. More
precisely, if we denote the i-th particle in the n-th frame
by xn

i , we wish to find the set of links between xn
i and

xn+1
j , where the physical particle that was at position xi

in frame n is at position x j in frame n +1, for all n, i,
and j. To determine these links, we define φn

ij to be the

“cost” of making a link between xn
i and xn+1

j . If φn
ij = 0,

xn
i and xn+1

j refer to the same particle with perfect cer-
tainty; generally, however, φn

ij > 0. The general solution
to the tracking problem therefore requires minimizing

Φ ≡
N−1
∑

n=0

Mn∑

i=0

Mn+1∑

j=0

φn
ij , (10.56)

where Mn is the number of particles in frame n. We must
also allow for the possibility that some xn

i or xn+1
j will

have no matches. This must be the case if Mn = Mn+1,
and in an actual experiment corresponds to particles en-
tering or leaving the measurement volume, or otherwise
vanishing from view.

Minimizing Φ globally over all frames, as described
above, is a problem of multidimensional assignment,

and can be shown to be N P -hard and therefore not
tractable [10.60]. Instead, we restrict the number of
frames over which we minimize Φ, in what is known
as a greedy-matching approximation [10.61].

Greedy-matching algorithms differ in their speci-
fication of φn

ij . In general, however, the tracking cost
is defined in terms of slowly changing variables. In
the extreme case of variables that do not change, such
as any distinguishing features of the particles such as
color or shape, φn

ij could be specified as simply a binary
function. In LPT, however, the particles are generally
identical, and so characteristics of the motion must
be used, including the particle position, velocity, and
acceleration.

After testing several different algorithms using data
from a direct numerical simulation (DNS) of turbulent
flow [10.54], we have developed a four-frame predictive
algorithm that performs well even in intense turbulence.
Suppose that a particle track is partially generated up to
frame n. We can then use the particle positions in frames
n and n −1 to estimate a velocity, given by

ṽn
i = xn

i −xn−1
i

∆t
, (10.57)

where ∆t is the time between frames. A possible position
for the particle in frame n +1 is then estimated, given
by

x̃n+1
i = xn

i + ṽn
i ∆t . (10.58)

A small search volume with an empirically deter-
mined size is constructed around the estimated position,
and the particles in frame n +1 that fall within the vol-
ume are considered to be possible matches. For each of
these xn+1

j , both a new velocity and an acceleration are
estimated, given respectively by

ṽn+1
i = xn+1

j −xn
i

∆t
(10.59)

and

ãn+1
i = xn+1

j −2xn
i +xn−1

i

∆t2 . (10.60)

Using these estimates, a possible position for the
particle is estimated in frame n +2 for each xn+1

j in the
search volume, given by

x̃n+2
i = xn

i + ṽn+1
i (2∆t)+ 1

2
ãn+1

i (2∆t)2 . (10.61)

A second search volume is then constructed around
ãn+1

i . Let us denote the closest real particle in the search
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volume to ãn+1
i by x̌n+2

j . The tracking cost φn
ij is then

given by

φn
ij = ∣∣x̌n+2

j − x̃n+2
i

∣
∣ . (10.62)

In this way, the real particle in frame n +1 that leads
to an estimated position closest to a real particle in frame
n +2 is chosen to continue the track.

Occasionally, the same particle in frame n +1 will
be the best match for two different particles in frame n.
When such a conflict occurs, two choices are possible.
The first is simply to give up and end both tracks, starting
a new track with the particle in frame n +1. This choice
guarantees that the tracking algorithm will not construct
an incorrect track, but may artificially shorten the meas-
ured trajectories. The second possibility is to implement
some kind of conflict resolution. One appealing possibil-
ity is to construct all of the φn

ij and then minimize the total
cost for this frame pair, namely

∑

ij φn
ij [10.61]. As this

is now a two-dimensional assignment problem, efficient
algorithms exist to find the set of links with minimal
cost [10.62]. In our tests, however, we found that this
global cost minimization significantly reduced the ac-
curacy of the tracking algorithm by frequently choosing
incorrect links [10.54]. In our algorithm, we therefore
use no conflict resolution and accept the tradeoff of
shorter tracks for better accuracy.

The predictive algorithm we have described requires
prior history of the particle trajectory to estimate future
positions of the particle. For the first frame in the image
sequence, however, this information is not available. In
this case, we simply set ṽn

i = 0 and proceed as above.
Prior information is also not available for particles that
have newly entered the measurement volume in the mid-
dle of the image sequence. For this case, we set ṽn

i to the
average of the velocities of nearby particles, or to zero
if there are no nearby neighbors.

Occasionally, particles will disappear from view for
a short time while still remaining in the measurement
volume. This occlusion can occur for many reasons. If
the illumination of the particles fluctuates, the intensity

�� ��

Fig. 10.12a,b Sketch of the large-
scale flow (a): decomposed into
(a) pumping mode and (b) shearing
mode

of the particle image may fall below the threshold; im-
ages may also drop below threshold if some pixels on
the detector have poor sensitivity or are nonfunctional.
To account for the possibility of transient particle occlu-
sion, and additionally to mitigate the effects of tracking
conflicts, we have added a simple occlusion-handling
system to our algorithm. If a partially constructed track
finds no continuation in the next frame, the track is
extrapolated using its estimated velocity and accelera-
tion. This extrapolated position is then used in the next
frame to try to find a continuation of the track. If no real
continuation is found within a few frames, the track is
considered to have ended, and the estimated positions
are dropped.

10.2.2 Experimental Implementation

The LPT algorithm described above is general, and
is applicable to any type of particle tracking ex-
periment. Here, we describe the application of the
technique in an actual experiment designed for the ac-
quisition of Lagrangian data in high-Reynolds-number
turbulence.

Flow
Central to any fluid-dynamics experiment is the flow
itself. For a Lagrangian experiment where long particle
tracks are desired, the flow should ideally meet several
criteria. First, for an optical particle tracking experiment,
the working fluid must be optically transparent. Second,
the particles must remain in view for long periods of
time. This is easier to achieve in practice with flows
without a strong mean velocity field, though Lagrangian
experiments have been conducted in wind and water
tunnels [10.40, 63].

In our experiments, we have used a von Kármán
swirling flow between counter-rotating disks [10.64].
120 l of water is confined in a closed, cylindrical,
plexiglass chamber 60.5 cm high and 48.3 cm in diam-
eter. Eight round, glass windows 12.7 cm in diameter
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are attached around the centerline of the tank to pro-
vide optical access without lensing by the cylindrical
tank walls. The top and bottom of the tank consist
of hard-anodized aluminum plates. Each plate has an
internal channel through which cooling water runs to
remove the heat dissipated by the turbulence. Any dirt
in the water is removed by pumping it through a re-
circulating filter loop, and bubbles are removed by
pumping through a second recirculating loop open to
the atmosphere.

The flow was driven by two counter-rotating disks
20.3 cm in diameter. Twelve straight vanes 4.3 cm high
are attached to each disk so that the flow is forced in-
ertially. Each disk was driven by a 1 kW direct-current
(DC) motor. The large-scale flow was axisymmetric, and
consisted of a pumping mode and a shearing mode, as
sketched in Fig. 10.12. More details of the flow are given
elsewhere [10.41,65,66]. Though the flow is anisotropic
and inhomogeneous at large scales, it can generate
very intense turbulence in a small amount of laboratory
space. The strength of the turbulence is quantified by
the Reynolds number; here, we use Reλ, the Reynolds
number based on the Taylor microscale. Reλ, defined
in isotropic turbulence as Reλ =√15u′L/ν, where u′
is the root-mean-square velocity, L is the correlation
length of the velocity field, and ν is the kinematic vis-
cosity, is an intrinsic Reynolds number based on the
turbulent velocity field itself rather than on an imposed
external geometry. In our experiment, we can reach
Reλ ≈ 1000.

Tracer Particles
The tracking algorithm described above can accurately
follow the motion of many tracer particles simul-
taneously in three dimensions. The typical goal of
a Lagrangian particle tracking experiment is, however,
to gain information on the motion of the fluid. The accu-
racy to which this is accomplished therefore depends on
the extent to which the tracer particles behave like true
fluid elements. Any real particle will deviate to some de-
gree from the motion of a true fluid element due both to
its inertia and to its finite size. Since turbulent flows are
highly chaotic, such deviations can lead to significantly
different trajectories. The particle will be a good approx-
imation to a fluid element if its density is the same as
that of the working fluid, so that it is neutrally buoyant,
and if it is very small, ideally smaller than the smallest
length scale in the flow, the Kolmogorov length scale
η ≡ (ν3/ε)1/4, where ε is the mean rate of energy dis-
sipation per unit mass. The degree to which the tracer
particle behaves as a fluid element is quantified by the

Stokes number, defined as

St = 1

18

ρp −ρf

ρf

(
d

η

)2

, (10.63)

where ρp and ρf are the densities of the particle and
the fluid, respectively, and d is the particle diameter.
In our experiments, the Stokes number ranges from
10−5 to 10−3, and so our particles are good passive
tracers [10.47, 59].

Detectors
In intense turbulence, the smallest time scale in the
flow, the Kolmogorov time scale τη ≡ √

ν/ε, is typi-
cally very short; at high Reynolds number in our flow,
for example, τη is sub-millisecond. Resolving tracer par-
ticle motions on these time scales therefore requires
extremely fast detectors, with speeds at least in the tens
of kilohertz range if not faster. Such high imaging rates
were not available in commercial cameras until very re-
cently. In the past, therefore, we adapted the silicon strip
detectors used in the vertex detectors of high-energy
particle accelerators for use in Lagrangian particle track-
ing [10.44,47,67]. These one-dimensional detectors take
images at a rate of 70 kHz, allowing full resolution of the
Lagrangian acceleration. They have proved unsuitable,
however, for simultaneous measurements of multiple
tracers. Currently, we use the Phantom v7.1 complemen-
tary metal oxide semiconductor (CMOS) camera from
Vision Research, Inc. for multiparticle experiments. At
a resolution of 256 × 256 pixels, the Phantom v7.1 can
record images at 27 kHz; as the number of sensor pix-
els is increased, the maximum frame rate drops. While
we sacrifice some spatial resolution due to the small
number of pixels in this camera, its temporal resolution
allows us to resolve the Kolmogorov time scale well,
and therefore to measure Lagrangian time derivatives
accurately.

Illumination
With such fast cameras, the exposure time for each im-
age is extremely short. A very intense light source is
therefore required to illuminate the particles sufficiently.
A pulsed source is also advantageous in a multicamera
experiment since it can be used to synchronize the cam-
eras: the detectors only record particle images while the
light shines.

In our experiments, we have used two Q-switched,
frequency-doubled solid-state Nd:YAG lasers for il-
lumination, providing intense green light at 532 nm.
One laser, pumped by flashlamps, achieved pulse rates
of 30–70 kHz, with typical pulse widths of roughly
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≈ 300 ns and a peak power of ≈ 60 W. The second laser,
pumped by diode arrays, was capable of pulse rates of
10–120 kHz with pulse widths of ≈ 120 ns and a peak
power of ≈ 90 W. Each laser had two Nd:YAG rods in se-
ries in the resonant cavity. The acousto-optical Q-switch
both increased the power of the laser and controlled the
pulse frequency. Three cameras were arranged in the
forward-scattering direction from the lasers to maximize
the intensity of the scattered light.

System Calibration
As discussed above, the tracking system must be cal-
ibrated before the three-dimensional positions of the
particles can be determined, and the particles can be
tracked. Calibration consists of determining the cam-
era parameters and their locations in laboratory space.
To determine these quantities, we use the calibration
method described by Tsai [10.68].

Assuming a pinhole camera model, there are nine
parameters that must be determined for each camera. Six
of these specify the position of the camera in laboratory
coordinates: three for the rotational positional and three
for the translational. The additional three parameters
describe the characteristics of the camera–lens system:
one for the effective focal length, one for the radial
distortion of the image, and one for a possible mismatch
between the horizontal and vertical spacing of the pixels
on the detector. We assume that the tangential distortion
is negligible, which allows a significant simplification
of the calibration model [10.68].

To set the model parameters we use a calibration
mask consisting of a regular grid of dots mounted on
a micrometer stage; images of the mask from three dif-
ferent cameras are shown in Fig. 10.13. The spacing of
the dots is known, giving the true horizontal and ver-
tical coordinates of the calibration dots, and the depth

Fig. 10.13 Images of the calibration mask from each of the three cameras used in the particle tracking system

coordinate was measured from the micrometer on the
calibration mount. By also measuring the dot positions
from the camera images, the camera parameters can be
determined, as described below.

Let us denote the laboratory coordinates of a particle
by xw and the coordinates in the reference frame of the
camera by xc. The mapping between these frames is
given by a rotation matrix R̂ and a translation vector T,
so that

xc = R̂xw + T. (10.64)

The camera lens then projects xc onto the two-
dimensional camera image plane. Assuming a pinhole
camera with an effective focal length of feff, the ideal
detector coordinates xu of the particle are given by
(

xu

yu

)

= feff

zc

(

xc

yc

)

. (10.65)

The actual measured coordinates xd will, however,
contain some radial distortion, and so

xd = (1+ k1r2)xu, (10.66)

where r2 = x2
d + y2

d. Since we neglect tangential dis-
tortion, the distorted and ideal positions of the particle
must lie on a line passing through the center of the
image [10.68]. Therefore,

xu × xd = 0. (10.67)

Finally, we allow a mismatch between the hori-
zontal and vertical spacing, so that the final measured
coordinates xp are given by
(

xp

yp

)

=
(

sxxd

yd

)

, (10.68)
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where sx is a scale factor that is typically close to unity.
Calibration therefore requires the determination of R̂,
T, feff, k1, and sx. By construction, we know the xw of
the dots on the calibration mask, and from the recorded
camera images we can determine the xp for each particle.

Following Tsai [10.68], we then write (10.67) as a set
of seven linear equations, expressed as

(

−xpxw −xp yw −xpzw ypxw yp yw ypzw yp

)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T−1
y R21

T−1
y R22

T−1
y R23

T−1
y sx R11

T−1
y sx R12

T−1
y sx R13

T−1
y sxTx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= x p . (10.69)

By using least-squares fits and the orthogonality of
R̂, these equations allow the determination of the full
rotation matrix, Tx, Ty, and sx. Equation (10.66) may
then be solved iteratively for the final three parameters
after first estimating initial approximations of Tz and feff
by setting k1 to zero and using a least-squares fit.

After the parameters have been determined, the
model can be used to map the measured particle po-
sitions into laboratory coordinates.

Temporal Differentiation
For most statistical measures in Lagrangian turbulence,
velocities and accelerations must be calculated along
particle trajectories. Simple finite differences, however,
are not sufficient for calculating these time derivatives:
the errors inherent in locating the particle centers will
strongly contaminate such simple methods. Instead, we
use a more-robust numerical differentiation scheme that
also smooths the trajectory data. By convolving the
particle tracks with a Gaussian smoothing and differenti-
ating filter [10.49], we obtain time derivatives measured
from a weighted average of many points.

The n-th-order derivative of the position in our
scheme is given by

dn

dtn
x(t) =

∞∫

−∞
x̃(t − τ)kn(τ)dτ , (10.70)

where x̃ denotes the noisy measured data, and kn(τ) is
the Gaussian filtering and differentiating kernel defined

by

kn(τ) = dn

dτn

[
1√
πw

exp

(

− τ2

w2

)]

. (10.71)

Integrating (10.70) by parts n times, the derivative
in the kernel can be passed to the noisy position data;
the surface term from each integration by parts vanishes
since the Gaussian vanishes at infinity.

Measured tracks, however, are not infinitely long.
Blindly applying (10.70), then, will produce a nonzero
surface term due to the finite integration interval. We
therefore truncate and renormalize the kernel before
convolution with the particle trajectories.

Let us illustrate this process by considering the
velocity kernel, given by (10.71) with n = 1. After
truncation and renormalization, the kernel is given by

kv(τ) = Avτ exp

(

− τ2

w2

)

+ Bv , (10.72)

where the 1/(
√

πw) has been absorbed into Av. Let us
now restrict the integration domain to [T,−T ], where
typically (2T +1) ≈ τη. In principle, we must also set
w; for simplicity, however, we fix w = T/1.5 [10.49].
To fix the constant Av and Bv, we use the conditions
that the derivative of a constant must vanish and the
derivative of t must be unity. Expressed using (10.70),
these conditions are given by

T∫

−T

kv(τ)dτ = 0 (10.73)

and
T∫

−T

(t − τ)kv(τ)dτ = 1. (10.74)

By solving these two equations simultaneously, we
find that

Av =
[

1

2
w2
(

w
√

πerf

(
T

w

)

−2Te
−T2

w2

)]−1

(10.75)

and

Bv = 0 . (10.76)

The acceleration kernel is defined similarly. We note
that, in the discrete case, T = 1 corresponds to a central
difference scheme.

The differentiation scheme introduced here is more
accurate than a simple finite-difference algorithm, but
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still produces a signal that will contain errors. Here,
we explicitly analyze these errors for the case of the
velocity; errors in determining higher-order derivatives
can be described similarly. We note that here we work
in nondimensional time units.

As described above, the velocity in our scheme is
given by

ũ(t) =
T∫

−T

kv(τ)x̃(t + τ)dτ, (10.77)

where

x̃(t) = x(t)+ εx(t). (10.78)

Here, x(t) is the true position of the particle and εx
is the error in this measurement. We then rewrite the
measured velocity as

ũ(t) =
T∫

−T

kv(τ)x(t + τ)dτ +
T∫

−T

kv(τ)εx(t + τ)dτ.

(10.79)

The first term in this expression can be written as the
sum of the true velocity u(t) and an intrinsic error asso-
ciated with the filtering process ξf(t; T, w). The second
term is the propagation of the uncertainty in the determi-
nation of the particle center through the filter ξx(t; T, w).
Since we fix w = T/1.5, both ξf and ξx are functions of
time and the filter length T only.

By considering the case of ξx(t; T ) = 0, i. e., perfect
determination of the particle centers, we can study the
uncertainty introduced by the finite frequency response
of our filter. In this case, the variance of the measured
velocity will be given by

〈ũ(t)2〉 =
〈 T∫

−T

dτkv(τ)x(t + τ)

×

T∫

−T

dτ ′kv(τ ′)x(t + τ ′)
〉

. (10.80)

We can write

ũ(t) =
T∫

−T

dτkv(τ)x(t + τ)

=
T∫

−T

dτkv(τ)

⎡

⎣x(t)+
t+τ∫

t

dt′u(t′)

⎤

⎦

=
T∫

−T

dτkv(τ)

t+τ∫

t

dt′u(t′) , (10.81)

since x(t) is a constant and, by definition, the convo-
lution of the velocity kernel with a constant vanishes.
Therefore, we have

〈ũ(t)2〉 =
T∫

−T

dτ

T∫

−T

dτ ′kv(τ)kv(τ ′)

×

t+τ∫

t

dt′
t+τ ′
∫

t

dt′′〈u(t′)u(t′′)〉 . (10.82)

Defining 〈ξf(t; T )2〉 ≡ 〈u2(t)〉− 〈ũ(t)2〉, we there-
fore have

〈ξf(t; T )2〉 =
T∫

−T

dτ

T∫

−T

dτ ′kv(τ)kv(τ ′)

×

t+τ∫

t

dt′
t+τ ′
∫

t

dt′′
[〈u2〉− R(t′ − t′′)

]

,

(10.83)

where R(t′ − t′′) ≡ 〈u(t′)u(t′′)〉 is the two-time velocity
covariance and where we have assumed that the flow is
stationary. The exact form of this function in turbulence,
however, is not known. By turning to a DNS of low-
Reynolds-number turbulence, however, we can estimate
the magnitude of the error. We find that the error is less
than 1% for T < 70, and so therefore that the error purely
associated with the convolution process is negligible.

We now consider the propagated error in the deter-
mination of the particle centers. Assuming that x(t) and
εx are uncorrelated, the variance of ξx(t; T ) is given by

〈ξx(t; T )2〉 =
T∫

−T

dτ

T∫

−T

dτ ′kv(τ)kv(τ ′)

× 〈εx(t + τ)εx(t + τ ′)〉 . (10.84)

Let us now assume that the position error is δ-
correlated in time and stationary, so that

〈εx(t + τ)εx(t + τ ′)〉 = 〈ε2
x

〉

δ(τ − τ ′) , (10.85)

where now ξx is a function of T only. We note that this
assumption is not fully realistic, since the position er-
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ror will be correlated while the particle center moves
within a single camera pixel. In order to compensate for
this underestimation of the error, we take 〈ε2

x〉1/2 = 0.1
pixels, which is probably an overestimate of the posi-
tion uncertainty. With the assumption of δ-correlation,
equation (10.84) is tractable, and we have
〈

ξx(T )2〉= 〈ε2
x

〉

×
−4(T/w)+√

2π exp(2T 2/w2)erf(
√

2T/w)

2w3[−2(T/w)+√
π exp(T 2/w2)erf(T/w)]2

.

(10.86)

With w = T/1.5, this expression reduces to

〈

ξx(T )2〉= 2.11
〈

ε2
x

〉

T 3
. (10.87)

A similar analysis shows that the error in determin-
ing the acceleration scales as T−5. These errors are, in
general, not negligible, and must be taken into account
in the calculation of turbulence statistics.

Finally, we note that it is instructive to consider how
the relative error scales with turbulence parameters. Let
us define α as the subpixel resolution (0.1 in our case),
Ns to be the number of images taken per τη, NT to be
the filter length T in units of τη, and p to be the physical
pixel size. Then the relative error in the velocity scales
as

〈

ξx(T )2
〉

〈u2〉 ∼ α2

N3
s NT

( p

L

)2
Re2

λ , (10.88)

where L is the integral length scale. It is clear then
that at high Reynolds number a simple finite-difference
scheme (recall that T = 1 corresponds to taking central
differences) is insufficient for determining the velocity
accurately. For the acceleration, the problem is even
more acute, and the relative error scales as

〈

ξx(T )2
〉

accel

〈a2〉 ∼ α2

N5
s NT

Re3
λ. (10.89)

10.2.3 Turbulent Relative Dispersion

Turbulent flows abound with long-range correlations.
As such, the statistics of a single Lagrangian tracer
will never be sufficient to characterize turbulence
fully; instead, we must turn to the joint statistics of
many tracers. The simplest such multiparticle prob-
lem is that of the separation rates of pairs of fluid
elements, known as turbulent relative dispersion. We
have measured turbulent dispersion in our LPT experi-
ment [10.56, 59]; here, we briefly present some of our

�&�
�

����

�4����� 5���6'���'

���

���

��'

��.

��!

��/

��(

��+

��)

� ��

Fig. 10.14 Evolution of the mean-square particle separation
at Reλ = 815. Each set of symbols represents a bin of initial
separations 1 mm (≈ 43η) wide, ranging from 0–1 mm to
49–50 mm. With both axes normalized by the Kolmogorov
scales, each data curve follows a power law for over two
decades in time

results as an example of the type of analysis possible
with LPT.

Under the action of Brownian motion, the mean-
square separation between two fluid elements in
a quiescent fluid will grow linearly in time. In a tur-
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Fig. 10.15 Scale collapse of the mean-square particle sep-
aration. The same data as in Fig. 10.14 is scaled by
Batchelor’s constant (11/3)C2(εr0)2/3 and an almost per-
fect collapse of the data is seen for all 50 initial separations
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Fig. 10.16 Compensated mean-square particle separation.
The time axis is scaled by τη. The data for different ini-
tial separations deviate from the Batchelor prediction at
different times

bulent flow at sufficiently large scales, i. e., above the
integral scales of the flow, pairs of fluid elements will
also experience this linear Taylor diffusion [10.69]. In
the inertial range, however, fluid element pairs in tur-
bulence will separate superdiffusively, explaining why
turbulent flows mix so efficiently.

Based on simple physical arguments and meas-
urements of diffusion over a wide range of scales,
Richardson [10.70] suggested that the mean-square
pair separation should grow as t3; subsequently, Obu-
khov [10.71] refined his work and wrote that

〈r2〉 = gεt3, (10.90)

in the inertial range where energy neither enters nor
leaves the system, and where r is the distance between
the particles and g is known as the Richardson con-
stant. Such Richardson–Obukhov scaling has proved
very challenging to observe, however, and estimates of
the Richardson constant span more than an order of
magnitude [10.72].

In 1950, Batchelor [10.73] realized that while the
pair retains a memory of its initial separation r0, the
mean-square separation should grow only as t2 rather
than t3. He reasoned that this memory should persist for
times on the order of the lifetime of an eddy of size r0,
given by t0 = (r2

0/ε)1/3. After this time, if the Reynolds
number is high enough, the pair should move into the
Richardson–Obukhov regime. Taking Batchelor’s argu-
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Fig. 10.17 Compensated mean-square particle separation
with time scaled by t0. Plotted in this way, there is a scale
collapse in both space and time

ments into account, we can write [10.56, 59, 74]

〈[r(t)− r0]2〉 =
{

11
3 C2(εr0)2/3t2 , t 	 t0

gεt3 , t0 	 t 	 TL

(10.91)

where C2 is the scaling constant of the second-order
Eulerian velocity structure function with a well-known
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Fig. 10.18 Deviation from Batchelor’s prediction; t∗ mea-
sures the time when the relative dispersion data deviate by
more than 5% from Batchelor’s prediction. t∗ is plotted
against the initial separation for eight different Reynolds
numbers. Irrespective of Reynolds number, t∗ = (0.071±
0.009)t0
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value of 2.13±0.22 [10.75] and TL is the integral time
scale.

We have measured relative dispersion from the tracer
particle trajectories in a 5 × 5 × 5 cm3 volume in the
center of our experiment over a range of Reynolds
numbers [10.56, 59]. In Fig. 10.14, we show our mea-
surements of 〈[r(t)−r0]2〉 at Reλ = 815 with both axes
normalized by the Kolmogorov scales. Figure 10.14
shows the dispersion for 50 different bins of initial sep-
arations, 1 mm wide (≈ 43η) and ranging from 0–1 mm
to 49–50 mm. It is clear that, for each of these initial
separations, even though the largest is approximately
70% of the integral scale L , the data follows a power
law for more than two decades in time. The data, how-
ever, do not collapse for the different initial separations,
suggesting that the initial separation remains a relevant
parameter and that therefore the data cannot be follow-
ing the Richardson–Obukhov law. Recalling Batchelor’s
prediction for the short-time behavior of the relative
dispersion, in Fig. 10.15 we scale the same data by
(11/3)C2(εr0)2/3 and observe a nearly perfect collapse
of the data for the various initial separations. We em-
phasize that the dark line drawn in Fig. 10.15 is not a fit
but is rather Batchelor’s predicted power law.

If we now look closer at the agreement of our data
with Batchelor’s prediction by compensating our ex-
perimental results by (11/3)C2(εr0)2/3t2, as shown in
Fig. 10.16, we observe that the data deviate from the
Batchelor prediction at times that vary with the ini-
tial separation. In order to correct for this effect, we
scale time by Batchelor’s t0 = (r2

0/ε)1/3, as shown in
Fig. 10.17. This new scaling clearly collapses the data

for the various initial separations much better, with each
curve deviating from Batchelor’s prediction at essen-
tially the same value of (t/t0). Our data therefore confirm
both Batchelor’s scaling argument and the time for
which he predicted it would hold. Moreover, the value
t∗ for which the data deviate from Batchelor’s predic-
tion appears to be independent of Reynolds number. In
Fig. 10.18, we define t∗ as the time when the data deviate
by 5% from Batchelor’s prediction. For the entire range
of Reynolds numbers tested, t∗ = (0.071±0.009)t0.

10.2.4 Concluding Remarks

Experimentally, Lagrangian turbulence is still very much
a nascent field. It will be many years before the available
Lagrangian data can rival the wealth of information we
have about the Eulerian description of turbulence. Nev-
ertheless, great progress has already been made in the
development of Lagrangian experimental techniques,
and these measurements are now nearly as accurate and
robust as their Eulerian counterparts.

Here, we have presented a general Lagrangian par-
ticle tracking algorithm as well as our experimental
implementation of the technique in an actual high-
Reynolds-number flow. In addition, to demonstrate the
utility of such a technique, we have shown meas-
urements of turbulent relative dispersion, the simplest
multiparticle Lagrangian problem. As Lagrangian ex-
periments develop, we expect progress both in theory
and experiment in describing more-complex multipar-
ticle statistics and thereby probing the structure of
turbulence and the nature of intermittency in great detail.

10.3 Elastic Turbulence in Viscoelastic Flows

10.3.1 Basics

This section deals with a new class of a chaotic (ran-
dom) flow coined elastic turbulence that was observed
in viscoelastic flows of polymer solutions [10.76]. The
section is organized as follow. In the first part hydro-
dynamic description of dilute polymer solution flows
and nondimensional parameters that follows from these
equations to characterize the flows are presented. Varia-
tion of one of this control parameters that is responsible
for the elastic properties of a fluid can lead to a new
elastic instability in various flows, distinguished by the
presence of curvilinear trajectories. Theoretical criteria
for the elastic instability in three different flows together

with their experimental verification are discussed. To
complete the basics, the rheometric properties of poly-
mer solutions used and their relation to Boger fluids
are given. The first observation of elastic turbulence, in
the flow between two plates, is described. Then exper-
imental measuring techniques used to characterize the
flow are given, and a complete description of the results
of measurements together with discussion of the results
are presented. Finally, the role of elastic stress, a recent
theory of elastic turbulence, and comparative studies of
elastic versus hydrodynamic turbulence are discussed.
The third subsection deals with the description of the
elastic turbulence in a curvilinear channel, or Dean flow,
where a particularly detailed experiment on mixing due
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to elastic turbulence was conducted [10.77]. A summary
of the results is given at the end of the Section.

Hydrodynamic Description
of Dilute Polymer Solution Flows

Solutions of flexible high-molecular-weight polymers
are viscoelastic liquids, and they differ from Newtonian
fluids in many aspects [10.78]. The most striking elas-
tic property of these polymer solutions is probably the
dependence of mechanical stresses in the flow on the
history of the flow. So, the stresses do not immediately
become zero when fluid motion stops, but rather decay
with some characteristic relaxation time λ, which can be
well above a second. When a polymer solution is suf-
ficiently dilute, its stress tensor τ can be divided into
two parts, τ = τs + τp. Here the elastic stress tensor, τp,
is due to the polymer molecules, which are stretched in
the flow, and depends on history of the flow. The first
term, τs, is defined by the viscosity of the Newtonian
solvent, ηs, and the rate of strain in the flow, τs = ηs
[∇V + (∇V)T]. So, the equation of motion for a dilute
polymer solution looks like

∂V
∂t

+ (V ·∇)V = −∇ p/ρ + (ηs/ρ)∇2V +∇τp/ρ ,

(10.92)

where p is pressure, and ρ is the density of the fluid. One
can see that τp enters the equation of motion linearly.
The equation has a nonlinear term, (V∇)V, which is
inertial in nature. The Reynolds number defines the ratio
of this nonlinear term to the viscous dissipative term, ν

∇2V. So the degree of nonlinearity of the equation of
motion can still be defined by the Reynolds number Re =
VLρ/ηs for a polymer solution. Therefore, turbulence in
fluids at high Re is a paradigm for a strongly nonlinear
phenomenon in spatially extended systems [10.79, 80].

The simplest model incorporating the elastic nature
of the polymer stress tensor, τp, is a Maxwell-type con-
stitutive equation [10.78] with a single relaxation time
λ

τp +λ
Dτp

Dt
= ηp[∇V + (∇V)T] . (10.93)

Here
Dτp
Dt is a material time derivative of the poly-

mer stress, and ηp = η−ηs is the polymer contribution
to the total viscosity η. An appropriate expression for

the time derivative
Dτp
Dt has to take into account that the

stress is carried by fluid elements, which move, rotate,
and deform in the flow. The translational motion implies
an advection term (V∇)τp in an appropriate expression
for

Dτp
Dt , while the rotation and deformation of the fluid

particles should lead to contributions like (∇V)τp or
τp(∇V) [10.78]. Therefore, along with terms linear in
τp and V, some nonlinear terms, in which τp is coupled
to V, should appear in the constitutive relation. A sim-
ple model equation for

Dτp
Dt , which is commonly used

for description of dilute polymer solutions, is the upper
convected time derivative,

Dτp

Dt
= ∂τp

∂t
+ (V∇)τp − (∇V)Tτp − τp(∇V) .

(10.94)

The equations (10.93, 94) together with the expres-
sion for τs constitute the Oldroyd-B model of polymer
solution rheology [10.78]. One can see that nonlinear
terms in the constitutive equation (10.93, 94) are all of
the order λ(V/L)τp. The ratio of those nonlinear terms
to the linear relaxation term τp is given by a dimen-
sionless expression λ(V/L), which is usually called the
Weissenberg number Wi that represents the ratio of the
relaxation time to the characteristic flow time. The relax-
ation term τp is somewhat analogous to the dissipation
term in the Navier–Stokes equation.

One can expect the mechanical properties of the
polymer solutions to become notably nonlinear at suffi-
ciently large Weissenberg numbers. Indeed, quite a few
effects originating from nonlinear polymer stresses have
been known for a long time [10.78]. So, in a simple
shear flow of a polymer solution there is a difference
between normal stresses along the direction of the flow
and along the direction of velocity gradient. At low shear
rates this normal stress difference N1 is proportional to
the shear rate squared (see Sect. 9.1.1). When flow lines
are curvilinear, this gives rise to a volume force act-
ing on the liquid in the direction of the curvature, the
hoop stress. Therefore, if a rotating rod is inserted into
an open vessel with a highly elastic polymer solution,
the liquid starts to climb up the rod instead of being
pushed outwards [10.81]. This phenomenon is known
as rod climbing, or the Weissenberg effect. Further, in
a purely extensional flow, the resistance of a polymer
solution depends on the rate of extension in a strongly
nonlinear fashion. There is a sharp growth in the elas-
tic stresses when the rate of extension exceeds 1/(2λ),
that is at Wi > 1/2. As a result, the apparent viscosity
of a dilute polymer solution can increase by up to three
orders of magnitude [10.82]. Both the Weissenberg ef-
fect and the growth of extensional flow resistance have
been most clearly observed in viscous polymer solutions
and in flows with quite low Re, where nonlinear inertial
effects are insignificant.
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A natural question arising here is, whether there
may exist some kind of turbulent flow produced by
the nonlinear polymer stresses alone, in the absence
of any significant inertial effects, at low Re. An im-
portant step in this direction was made about a decade
and a half ago when purely elastic instabilities were
experimentally identified in a rotational flow between
two plates [10.83] and in a Couette–Taylor (CT) flow
between two cylinders [10.84].

Elastic Instability and its Experimental
Observations in Various Curvilinear Flows

Purely elastic instabilities occur at Wi numbers of order
unity and vanishingly small Re. As a result of these insta-
bilities, secondary vortex flows are developed [10.84],
and the flow resistance increases [10.83]. The analysis
showed that the nonlinear mechanical properties of the
polymer solution can indeed lead to a flow instability,
and a simple mechanism for this purely elastic instability
was proposed.

During the past decade the purely elastic instabili-
ties in viscoelastic fluids have been a subject of many
theoretical and experimental studies, which are partially
reviewed in [10.85, 86]. After the pioneering work by
Larson, Muller and Shaqfeh [10.84, 87], purely elas-
tic instabilities were also found in other shear flows
with curvilinear streamlines. Those included the flow
between a rotating cone and a plate (Sect. 9.1.1) and
the Taylor–Dean flow [10.85,86]. The original theoreti-
cal analysis of [10.87] was refined, and more-elaborate
experiments were carried out. A few new mechanisms
of flow instability driven by nonlinear elastic stresses
were suggested for cone-and-plate and Taylor–Dean
flows. The original mechanism proposed in [10.87] was
verified experimentally in [10.88].

The most thorough and detail studies were con-
ducted on the elastic instability in Couette–Taylor (CT)
flow between two coaxial cylinders. In spite of the fact
that instabilities in viscoelastic fluids were studied for
decades, the purely elastic instability in CT flow was
first investigated both experimentally and theoretically
rather recently [10.84,87]. The mechanism for the elas-
tic instability in the CT system suggested in [10.87],
is based on the Oldroyd-B model. The primary flow in
the CT system with the inner cylinder rotating (Couette
flow) is a pure shear flow in the r–θ plane that generates
a normal stress difference N1 ≡ τθθ − τrr = 2ηpλ(γ̇rθ )2,
and a radial force N1/r per unit volume. Here r, θ are
cylindrical coordinates in the plane perpendicular to the
cylinder axis, τθθ and τrr are the components of the
polymer stress tensor τp, and γ̇rθ is the only nonzero

component of the rate-of-strain tensor γ̇ . A secondary
flow in the CT flow includes regions of elongational
flow in the r-direction with ε̇ ≡ ∂vr/∂r = 0. The radial
extensional flow stretches the polymer macromolecular
coils in the r-direction, though it is a small perturba-
tion on the top of the azimuthal stretching produced
by the primary shear flow. However, being stretched
in the radial direction, the macromolecular coils be-
come more susceptible to the basic shear flow. The
coupling between the radial and shear flow leads to
a further increase in shear stresses. Thus, the result is
further stretching of the polymer in the θ-direction that
generates additional normal stress difference. So, the
elastic instability mechanism is based on the coupling
between the perturbative radial elongational flow and
the strong azimuthal shear flow that results in a radial
force. The latter reinforces the radial flow. As pointed out
in [10.88], this transition can be only a finite-amplitude
(first-order) transition. The corresponding criterion for
the instability is

K ≡ ηp

ηs

d

R1
Wi2. (10.95)

Here d and R1 are the gap and the inner cylinder ra-
dius, respectively. The elastic instability occurs when the
parameter K exceeds a certain threshold value [10.87].
This criterion is valid at sufficiently small values of
ηp/ηs and in the small-gap-ratio limit, d/R1. A more-
general expression is given in [10.87]. When the gap
ratio, d/R1, and the polymer viscosity ratio, ηp/ηs, are
fixed the elastic instability is just defined by the critical
Weissenberg number Wic.

As was suggested in [10.89], where the CT flow
was discussed, there is some analogy between flow
transitions driven by elasticity and inertia. So, the
inertially driven Taylor instability occurs at constant
Taylor number [10.79,80], Ta = d

R1
Re2, while the elas-

tic instability is controlled by the parameter K from
(10.95) [10.87,88]. The Weissenberg number is defined
here as Wi = λΩR/d, where Ω is the angular velocity
of the rotating inner cylinder. (It was termed the Deb-
orah number in some of the original texts [10.87–89].)
The Weissenberg number appears to be analogous to the
Reynolds number. The geometric parameter determin-
ing curvature, d/R1, enters the expressions for both Ta
and K . Scales of time and velocity for the purely elas-
tic flow transition are given by λ and d/λ, respectively.
As was shown in [10.89] these are analogous to tvd and
d/tvd, which define scales of time and velocity for the
inertially driven flow transitions. Here tvd is the viscous
diffusion time, defined as tvd = d2/ν.
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Nevertheless, along with all those analogies, there
are still some important differences between flow tran-
sitions driven by inertia and elasticity. For example, it is
an experimental fact that any laminar flow of a Newto-
nian fluid becomes unstable at sufficiently high Re, and
all high-Reynolds-number flows are turbulent. This in-
cludes rectilinear shear flows such as Poiseuille flow in
a circular pipe and plane Couette flow, which are sup-
posed to be linearly stable at any Re. In contrast, purely
elastic flow instabilities in shear flows have only been
observed so far in systems with curvilinear streamlines.
All these instabilities are supposed to be driven by the
hoop stress, which originates from the normal stress
differences.

This difference between the inertial and elastic insta-
bilities originates, of course, from the distinct governing
equations. There are, however, some purely practical
factors that can explain rather well the lack of observa-
tions of purely elastic flow transitions in rectilinear shear
flows. Inertial instabilities in rectilinear shear flows of
Newtonian fluids occur at quite high Reynolds num-
bers. Those are typically about two orders of magnitude
higher than Re, at which curvilinear shear flows with
large gap ratios become unstable. A priori, one may sug-
gest that rectilinear and curvilinear shear flows would
have a similar relation between Wi at thresholds of the
purely elastic flow instabilities as well. The problem is,
however, that while it is rather easy to generate high-Re
flows with low-viscosity Newtonian fluids, it is usually
impossible to reach the corresponding high values of
Wi in shear flows of elastic polymer solutions. That is,
there always exist rather severe practical limitations re-
stricting nonlinearity in elastic polymer stresses in shear
flows. Their molecular mechanisms have recently been
elucidated in a seminal paper by Chu’s group [10.90].

Polymer molecules have finite extensibility, and their
relaxation time decreases when they are stretched in
a shear flow. This thinning of the relaxation time at high
Wi is usually quite a strong and well-recognized effect.
In fact, different variations of the basic Oldroyd-B model
have been specially developed to take into account this
shear thinning [10.78]. A significant decrease of λ with
shear rate γ̇ renders growth of the Weissenberg number
Wi = λ(γ̇ )γ̇ much slower than linear in γ̇ . Substantial
stretching of the polymer molecules in the primary shear
flow also reduces their ability for further extension and
the susceptibility of the elastic stresses to flow pertur-
bations, which is necessary for the generation of flow
instabilities and secondary vortex flows [10.87]. Finally,
high shear rates cause mechanical degradation of the
polymer molecules, which leads to a permanent reduc-

tion of elasticity during experimental runs and a decay
of λ that can be very fast at high Wi. Because of all these
reasons it was found to be very difficult or even impossi-
ble to observe elastic instabilities, when expected values
of Wi at the instability threshold were high. This was the
case in curvilinear flows with small gap ratios [10.91],
and small viscosity ratios [10.88].

The first experimental observations of the elastic in-
stability in CT flow found Wic indeed rather close to the
theoretical prediction [10.86,87]. However, the observed
critical modes were different from the predicted axisym-
metric one. This discrepancy was resolved later both
theoretically [10.92] and then experimentally [10.88].
In fact it was shown that the non-axisymmetric mode
becomes unstable first, and the bifurcation is backward,
as was verified experimentally. In spite of this, the insta-
bility mechanism remains as first suggested and verified
in [10.87, 88].

A purely elastic instability apparently also occurs
by a similar mechanism in other rotational shear flows,
namely concentric cone-and-plate and plate-and-plate
geometries (Sect. 9.1.1). There the secondary flow is
also driven by a hoop stress, and by the coupling between
the primary shear flow and secondary elongation flow
in the axial direction. Historically a transition in fluid
rheology was first observed experimentally in these ge-
ometries [10.83], and Magda and Larson suggested that
its origin lies in an elastic flow instability. A complete set
of numerical and experimental studies of the elastic in-
stability in these flows was carried on in [10.91,93,94].
Due to the more-complicated flow structure than in CT
flow, no analytic expression for the stability criterion is
available in either of these cases. However, some com-
mon features for all rotational shear flows can be pointed
out. For all systems the threshold of the elastic instabil-
ity strongly depends on the aspect ratio, which is defined
differently in each case. The instability criterion also de-
pends on the viscosity ratio, though the functional form
of this dependence was found only in CT flow. In all sys-
tems the most unstable mode is non-axisymmetric and
oscillatory, and the transition is discontinuous, or first
order (inverse bifurcation).

Another curvilinear flow that is relevant to further
results is a flow through a curved channel driven by
a streamwise pressure gradient, which was first studied
for a Newtonian fluid by Dean [10.95]. He found that the
instability is defined similarly to CT flow by Re2d/R1
when it exceeds some critical value. The linear stabil-
ity analysis for the Oldroyd-B fluid and experimental
observation of the instability in the elastic Dean flow
were performed by Joo and Shaqfeh [10.96–98]. It was

Part
C

1
0
.3



Measurements of Turbulent Flows 10.3 Elastic Turbulence in Viscoelastic Flows 803

predicted by numerical calculations and verified exper-
imentally that the stability of the pressure-driven flow
through a curved channel is defined by a criterion (in
a small-aspect-ratio limit) that is rather similar to that
found in CT flow (10.95) with a rather close critical
value [10.97, 98]. However, in contrast to the rotational
shear flows the most unstable mode is stationary and
axisymmetric that shows up in a secondary toroidal vor-
tex flow centered near the outer curved surface. The
dependence of the stability threshold on the aspect ratio
indicates that, like in rotational shear flows, the curvature
is of crucial importance for the instability to occur. The
elastic instability in the Dean flow is also driven by the
hoop stress but the mechanism is rather different [10.97]
and is related to the existence a normal stress gradient
across the streamlines. The necessary condition for the
instability is ∂τθθ/∂r > 0, i. e., a larger hoop stress is lo-
cated outward from the center of curvature. Then a small
radial inward flow is reinforced by the increased hoop
stress gradient. Thus, all three flow configurations with
curvilinear trajectories considered in this chapter exhibit
the elastic instability. Their instability criterion as well
as the most unstable mode are rather well investigated
and known.

Experimental Considerations
to Observe Elastic Turbulence

In order to maximize the nonlinear elastic effects and
to have a better opportunity to observe the elastic turbu-
lence one has to choose experimental conditions quite
carefully [10.76]. First, it is important to obtain an elastic
instability at a possibly low critical Weissenberg num-
ber Wic. For that purpose the gap ratio and the viscosity
ratio had to be possibly large. Therefore, one should use
a polymer solution with a rather large ηp/η of about 1/4.
[Further increase of the polymer concentration (or of
ηp/η) was not very efficient, and would also complicate
the solution rheology, including large shear thinning of
the solution viscosity.] One should use a large aspect ra-
tio, either in the CT flow or the swirling flow between
two plates. In the swirling flow the experiments were
carried out with a large gap ratio, between about 0.2 and
0.53 with the possibility to vary it.

An appropriate polymer sample for the solution that
would not suffer major mechanical degradation under
experimental flow conditions had to be chosen. So, the
fluids most often used in experiments on elastic insta-
bilities were so-called Boger fluids [10.99]. These fluids
are highly elastic. They are obtained by solving high-
molecular-weight polymers at low concentration (dilute
solution) in a viscous Newtonian solvent. The Boger

fluids are almost universally used as model viscoelas-
tic fluids. Their relaxation times can be quite large,
reaching seconds or even minutes, while their rheolog-
ical properties are semiquantitatively described by the
simple Oldroyd-B model.

The limit for extensibility of the polymer molecules
had to be high compared with their typical con-
formations at the instability threshold. We used
polyacrylamide (PAA) with a large average mo-
lecular weight of Mw = 18 × 106 g/mol and a broad
molecular-weight distribution (and low concentration
of polyacrylic acid monomers). This commercial poly-
mer sample proved to be remarkably stable with respect
to mechanical degradation, which allowed us to reach
high values of Wi and explore strongly nonlinear flow
regimes. The high molecular weight of the polymers re-
sulted in a large characteristic relaxation time λ even
with solvents of moderate viscosity, and at a small
characteristic stress, τ0 = ηs/λ. One can learn from
(10.94, 95) that τ0 sets a scale for the polymer stress at
which its nonlinearity becomes significant. Therefore,
the value of τ0 together with ηp/η and d/R determine
the polymer stress τp in the primary shear flow at the
instability threshold. It is rather natural to suggest that,
when polymer molecules transduce less stress, they are
also less subjected to mechanical degradation. Further,
molecular interpretation of the Weissenberg number in
a shear flow relates it to the degree of deformation
of polymer molecules from their relaxed random coil
conformations. So Wi = 1 can be regarded as the charac-
teristic value at which extension of polymer molecules
becomes considerably larger than the size of relaxed
coils. High molecular weight and flexibility of a polymer
suggests a large number of Kuhn segments [10.78, 100]
in the polymer chain, and a high ratio between its contour
length (size, when fully extended) and the size (radius of
gyration Rg) of a relaxed coil. (For a polymer molecule
in a good solvent, with Rg ∼ M3/5

w , this ratio should in-
crease as M2/5

w [10.100]. We would like to point out here
that addition of NaCl to the solution reduces Rg.) There-
fore, by using a higher-Mw polymer, we increased the
domain of extensibility starting from the typical confor-
mation at Wic, which opened the way for richer flow
dynamics above the elastic instability threshold.

Rheometric Properties of Polymer Solutions
Several series of experiments on elastic turbulence in
different experimental setups conducted during the last
several years were based on the same stock (master)
polymer solution of PAA (Mw = 18 × 106 g/mol sup-
plied by Polysciences). First we dissolved 0.9 g of PAA
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powder and 3 g of NaCl in 275 ml of deionized water
by gentle shaking. (Addition of NaCl was necessary to
improve the solubility of PAA.) Next the solution was
mixed for 3 h in a commercial mixer with a propeller at
a moderate speed. The idea behind this procedure was
to cause mechanical degradation of PAA molecules with
the highest weights, and to cut the high-Mw tail of the
broad molecular-weight distribution of the PAA sample.
In a solution with a broad distribution of polymer mo-
lecular weights the heaviest molecules, which are most
vulnerable to mechanical degradation, may also make
a major contribution to the solution elasticity. A possi-
ble negative effect of this is significant degradation of
elasticity during experimental runs, and inconsistency
in the experimental results. We found empirically that
the procedure of predegradation in the mixer leads to
a substantial reduction of degradation during the experi-
ments and to substantial improvement of the consistency.
Finally, 9 g of isopropanol was added to the solution
(to preserve it from aging) and water was added up to
300 g. The final concentrations of PAA, NaCl and iso-
propanol in the stock solution were 3000 ppm, 1%, and
3%, respectively.

As a viscous Newtonian solvent for PAA, we used
a solution of ≈ 65% sugar (saccharose) in all exper-
iments, if it is not mentioned specifically otherwise.
Viscosity and relaxation time were measured with the
same AR-1000 rheometer in a temperature-controlled
narrow-gap Mooney–Ewart (Couette) geometry. The
solvent viscosity was ηs = 0.324 Pa s at 12 ◦C and
ηs = 0.114 Pa s at 22 ◦C. The PAA concentration was
80 ppm.

Solution 1, used in the early experiments at low tem-
perature (12 ◦C), contained 1% NaCl to fix the ionic
contents. Viscosity η was slowly decreasing with γ̇ , so
that its shear thinning was about 7% per decade of γ̇ .
At a shear rate of γ̇ = 1 s−1, corresponding to the onset
of a purely elastic instability in the standard configu-
ration (see below), η was 0.424 Pa s, and the viscosity
ratio was ηp/η = 0.235. The polymer relaxation time, λ,
was measured in oscillatory tests (Sect. 9.1) with a shear
rate amplitude of 1 s−1 in a range of angular frequen-
cies, ω. Then λ(ω) at ω → 0, estimated as 3.4 s, was
chosen as a representative relaxation time, λ. The diffu-
sion coefficient for the saccharose molecules was about
D = 8.5e−7 cm2/s [10.101].

Solution 2, used in the later experiments at higher
temperature (22 ◦C), had a viscosity of η = 0.138 Pas
at a shear rate of 2 s−1, and a viscosity ratio of
ηp/η = 0.174. The polymer relaxation time obtained by
the rheometric measurements via small oscillations us-

ing both a AR-1000 rheometer from TA Instruments
and a Vilastic viscoelasticity analyzer (Vilastic-3, Vilas-
tic Scientific, Austin, TX) as a function of shear rate
showed the relaxation time scaling with shear thinning
as λ ∼ γ̇−α, with α � 0.3 similar to that found earlier
for solutions with lower-molecular-weight PAA sam-
ples [10.88], and the relaxation time in the limit of γ̇ → 0
as λ(0) = 4.7 s.

10.3.2 Elastic Turbulence
in Swirling Flow Between Two Plates

Some flow patterns observed above the purely elastic in-
stability threshold in the curvilinear flows had a rather
disordered appearance and exhibited chaotic velocity
spectra. This was first mentioned in [10.88, 102] and
then specifically in [10.89] for CT flow. So, it was rea-
sonable to suggest that under some conditions a truly
turbulent flow might be excited by elastic stresses at
vanishingly small Re. This idea was explicitly stated
in [10.89], where an analogy between elastic and in-
ertial flow transitions was discussed. In fact, irregular
flow patterns and growth of flow resistance in elastic
polymer solutions at low Re were observed even before
the purely elastic instabilities were identified [10.103].
These flow phenomena were even sometimes coined
elastic turbulence. In all these cases, however, the term
turbulence was used in a rather loose fashion, without
a proper definition. More importantly, no quantitative
data on either the flow velocity field or the spatial and
temporal velocity spectra in these irregular flows were
ever presented.

Although the notion of turbulence is widely used
in scientific and technical literature, there is no unique,
commonly accepted definition. Therefore, turbulent flow
is usually identified by its main features. Turbulence
implies fluid motion on a broad range of temporal and
spatial scales, so that many degrees of freedom are ex-
cited in the system. There are no characteristic scales
of time and space in the flow, except for those restrict-
ing the excited temporal and spatial domains from above
and below. Turbulent flow is also usually accompanied
by a significant increase in momentum and mass trans-
fer. That is, the flow resistance and rate of mixing in
a turbulent flow become much higher than they would
be in an imaginary laminar flow with the same Re.

In recent publications [10.76, 77, 104] it was shown
how these features of turbulence appeared in a highly
elastic polymer solution at low Reynolds numbers in
two curvilinear flows. The first quantitative experiments
were done in a swirling flow between two plates with
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a wide gap, and the phenomenon was coined elas-
tic turbulence. In this section we discuss the results
of the experiments on the elastically driven turbulent
flow in two experimental setups where the most com-
plete studies were carried out, namely a swirling flow
between two plates and an open flow in a curved chan-
nel [10.76, 77, 104–109]

Experimental Setup and Procedure
The experimental apparatus is schematically shown in
Fig. 10.19.

Polymer solution was held in a stationary cylindrical
cup with a flat bottom (lower plate). A coaxial rotating
upper plate was just touching the surface of the fluid.
The cup was mounted on top of a commercial rheome-
ter, AR-1000 from TA instruments. The upper plate was
attached to the shaft of the rheometer, which allowed pre-
cise control (within 0.5%) of its angular velocity Ω and
measurements of the torque T (Ω-mode), or opposite
control (within 0.5%) of T and measurements of Ω (T -
mode). The average shear stress at the upper plate, τw,
was calculated using the equation T = τw

∫

rdS, which
gave τw ≡ 3T/(2π R3), where the integration is over the
upper plate surface.

The moment of inertia of the shaft of the rheome-
ter was Is ≈ 14 µNms2 and that of the upper plate Id
was about 61 µNms2 for setup 1, and about 84 µNms2

for setup 2. The accuracy of the angular speed mea-
surements in constant-torque mode is about 2% and the
accuracy of the torque measurements in the constant-
speed mode is about 1%. One has to point out here that
smallness of the fluctuation rate of the angular veloc-
ity is not a sufficient criterion to have constant-speed
forcing. Corresponding to the Ω-mode, (Is + Id)∂Ω/∂t
should also be much smaller than typical values of the
torque T .

The sidewalls of the cup were machined from a sin-
gle piece of perspex, which was optically clear. The cup
was circular on the inside and square on the outside
in a horizontal cross section. This allowed measure-
ments of the flow velocity in the horizontal plane by
a laser Doppler velocimeter (LDV) (Sect. 5.3.1) with
two crossing frequency-shifted beams. By appropri-
ate positioning and orientation of the beam-crossing
region, azimuthal (longitudinal) and radial (spanwise)
velocity components, Vθ and Vr , respectively, could
be measured at different r and z. Here (r, θ, z) are
cylindrical coordinates. The bottom of the cup was
machined of stainless steel and the temperature was sta-
bilized at 12 ◦C by circulation of water below the bottom
plate.
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Fig. 10.19 Overview of the swirling flow apparatus

A slightly modified version of the setup was de-
signed to photograph the flow from below, to use
particle image velocimetry (PIV)(Sect. 5.3.1) and par-
ticle tracking velocimetry (PTV) techniques, and to
observe mixing in the flow. A special cup of the same
shape but with a transparent bottom (lower plate, made
of perspex) was attached to the rheometer concentrically
with the shaft but above the rheometer base, and a mirror
tilted by 45◦ was placed under the cup, as schematically
shown in Fig. 10.19. The mirror was used both to il-
luminate the fluid by diffuse light and to relay images
of the flow to a charge-coupled device (CCD) camera.
The camera was equipped with a regular video lens and
mounted horizontally near the rheometer (Fig. 10.19).
The source of the diffuse light was an illuminated white
screen around the camera. The images were digitized
by an 8-bit 512 × 512 frame grabber in the case of flow
visualization and mixing, and at 12 bits with 640 × 512
pixels at 25 frame/s and 1280 × 1024 at 12.5 frame/s
using a PixelFly digital camera (PCO, Germany) in the
case of PIV and PTV. In order to provide thermal stabi-
lization, the whole rheometer was placed in the thermally
isolated box with through flow of temperature-controlled
air.

In the basic setup used in the early experiments, the
radii of the upper plate and the cup were R1 = 38 mm and
R2 = 43.6 mm, respectively, and the distance between
the plates was d = 10 mm. The configuration was similar
to devices with rotating flow between two plates used in
experiments on purely elastic instability [10.83, 86, 91,
94]. Its gap ratio, d/R, was significantly higher, though.
In order to study the dependence of the flow conditions
on the size of the system, two smaller setups, a half-
size and a quarter-size system, with all the dimensions
reduced by factors of two and four, respectively, were
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used. Each time, when dimensions of an experimental
setup are nonstandard, this is stated explicitly in the text.

In the later experiments two setups were used. In
setup 1 a cylindrical container of radius Rc = 2.2 cm
and a disk with radius Rd = 2 cm were used, while
setup 2 had Rc = 4.9 cm and a disk with Rd = 4.8 cm.
The distance between the disk and the bottom plate
was d = 1 cm in both setups. The system was illumi-
nated laterally by a thin (30 µm in the center of the
setup and about 130 µm at the edges of the setup) laser
sheet through the transparent walls of the fluid con-
tainer at the mid distance between the plates. The laser
sheet was generated by passing a laser beam delivered
by a 300 mW argon-ion laser through a block of two
crossed cylindrical lenses (CO) mounted in a telescopic
arrangement. The main flow investigation tool was the
digital PIV technique. As flow tracers 10 µm fluores-
cent beads were used. We acquired 2000 pairs of flow
images every 120 ms using a digital camera. The time de-
lay between consecutive images was 40 ms. Time series
of velocity fields were obtained by using a multipass
PIV algorithm [10.108]. The accuracy of the method
was carefully checked by running test experiments with
the solvent, in the same range of mean particle dis-
placements and under similar illumination conditions.
Although the instrumental error increases more or less
linearly with the mean particle displacement, it never
exceeded 5% of the mean displacement. The spatial
resolution was about 120 velocity vectors over 10 cm.
By postprocessing the velocity fields, we obtained the
profiles of the velocity components, fields of fluctua-
tions of each velocity component, spatial spectra of the
velocity fluctuations, velocity gradients and their fluc-
tuations, structure functions of gradients, and Eulerian
velocity correlation functions. The space–time measure-
ments together with simultaneous global measurements
of the flow resistance provided a rather complete de-
scription of the different flow regimes as a function of
Wi [10.109]. A Lagrangian frame flow investigation was
also conducted [10.107].

In a swirling flow between two plates the shear rate
is quite inhomogeneous over the fluid bulk, even when
the flow is laminar. So, the choice of a representative
shear rate becomes somewhat arbitrary. We decided to
consider the simple expression ΩR/d as a characteristic
shear rate, and to define the Weissenberg number as
Wi = λΩR/d. The Reynolds number was defined as
Re = ΩRdρ/η.

In order to evaluate the growth of flow resistance due
to elastic instability and irregular secondary flow in the
system, the average shear stress near the upper plate τ lam

w

in an imaginary laminar shear flow at the same Ω had
to be estimated. The stress τ lam

w depends on an average
shear rate γ̇av at the upper plate, and on the viscosity of
the polymer solution η at this shear rate; an appropriate
expression for it is τ lam

w = η(γ̇av)γ̇av. The average shear
rate γ̇av was estimated from measurements of the ratio
τw/η0 in a laminar flow of a Newtonian fluid with a large
viscosity η0 at low Re. The shear rate in the laminar flow,
calculated as γ̇av = τw/η0, was proportional to Ω, being
γ̇av = 1.12ΩR/d in the standard configuration, and gave
a properly weighted average over the surface of the upper
plate.

Observation of Elastic Turbulence
Flow Resistance. The first indication of a strongly non-
linear state in the swirling flow was significant growth of
the flow resistance above the elastic instability thresh-
old, which can be characterized by the ratio τw/τ lam

w ,
a measure of strength of turbulence and of the turbulent
resistance. The dependence of τw/τ lam

w on the shear rate,
γ̇ = ΩR/d, is shown in Fig. 10.20.

A sharp transition in the flow of the polymer solution
(curve 1, black line) occurs at γ̇ � 1 s−1 (corresponding
to Wi = 3.5) and is manifested by a significant increase
in τw compared to the laminar flow. The Reynolds num-
ber at the transition point is about 0.3, so that inertial
effects are quite negligible there. The transition has pro-
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Fig. 10.20 The ratio of the average stress at the upper plate
τw measured in the flow, to the stress τ lam

w in an imaginary
laminar shear flow with the same boundary conditions, as
a function of the shear rate γ̇ . Curves 1 and 2 are for the
polymer solution flow with gaps of d = 10 mm and 20 mm,
respectively. The shear rate was gradually varied in time.
Thin black lines represent increasing γ̇ ; thick gray lines
represent decreasing γ̇ . Curve 3 is for the pure solvent
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nounced hysteresis (thick gray line, corresponding to
a slow reduction of γ̇ ), which is rather typical of a purely
elastic flow instability [10.88]. The higher the shear rate,
the higher τw/τ lam

w . The latter reaches a value about 12
times larger than it would be in a laminar flow at the
highest γ̇ . In the same range of shear rates flow of the
pure solvent (curve 3) is completely laminar and the ratio
τw/τ lam

w is unity within the resolution of the rheometer
(about 1%). For a gap ratio of 0.526 the the ratio τw/τ lam

w
reaches a value of 19 (curve 2 in Fig. 10.20). For New-
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Fig. 10.21 (a) Dependence of the mean power P on the
control parameter, Wi. Squares: increasing Wi, circles: de-
creasing Wi. The full line is a guide to the eye Wi3.34.
The dotted line is Wi2.85. The inset shows a power-law fit,
Wi3.34±0.05. (b) Dependence of the rms power fluctuations
Prms on Wi. Squares: increasing Wi, circles: decreasing Wi.
The full lines are power laws Wi3.21. The inset shows the
power-law fits Wi3.21±0.3. Data were collected in setup 2 in
the Ω-forcing mode

tonian fluids in the same flow geometry such a growth
of the flow resistance is found at Re values of about
2 × 104. For flow in a circular pipe this value of τw/τ lam

w
is reached at Re � 105, which is usually considered as
a region of rather developed turbulence [10.79, 80].

In the setup with a radius of R1 = 4.8 cm and an
aspect ratio of 0.21 accurate power (P) measurements in
the Ω-mode reveal, besides a drastic increase in the flow
resistance, scalings of the average injected power P ∼
Wiβ1 and the rms of power fluctuations Prms ∼ Wiβ2

with β1 � 3.34±0.05 and β2 � 3.2±0.3 (Fig. 10.21).
Here the injected power was calculated as P = TΩ,

and the shear thinning of the polymer relaxation time,
λ(γ̇ ), was taken into account. For low values of Wi
in the laminar regime the injected power grows as
Plam ∼ Wi2.85, or quadratically with Ω, which is ex-
pected for the laminar flow. Due to the smallness of
Re < 16, a nonlinear inertial contribution is negligible.
So additional growth of the average injected power in the
elastic turbulence compared to its laminar values occurs
solely due to elastic stresses τ turb

p . Therefore, according
to the fit in Fig. 10.21 P/Plam ∝ τ turb

p ∝ Wi0.49.

Temporal and Spatial Velocity Fluctuations Spectra.
Temporal spectra of the azimuthal and radial com-
ponents of the velocity in the horizontal plane were
measured with LDV at various locations at the cell and
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Fig. 10.22 Power spectra of the azimuthal velocity fluc-
tuations in the standard setup at different shear rates γ̇ .
The fluid velocity was measured by LDV in the center of
the flow. The curves 1–5 correspond to γ̇ = 1.25, 1.85,
2.7, 4, and 5.9 s−1, respectively (all above the transition
point γ̇ � 1). The power P of fluctuations is fitted by
a power law P ∼ f −3.5 for γ̇ = 4 s−1 over about a decade
in frequencies, f
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808 Part C Specific Experimental Environments and Techniques

had similar appearance [10.76,104]. The azimuthal com-
ponent of the velocity spectra measured in the center of
the setup, where its average value was zero, at different
constant shear rates γ̇ (all above the elastic instability
threshold) are shown in Fig. 10.22.

The power of the fluctuations and their characteris-
tic frequencies increase with γ̇ , but the spectra remain
very similar in appearance. In particular, the spectra do
not have distinct peaks, and do span a broad range of
about an order of magnitude in frequencies, where the
power of the fluctuations decays according to a power
law P ∼ f −α. (Flattening of the curves at high f is
due to instrumental noise.) The exponent α is about
3.5, which is much larger than the Kolmogorov expo-
nent of 5/3 found for velocity spectra of high-Re inertial
turbulence [10.79, 80].

To obtain quantitative information about the spa-
tial structure of the fluctuating velocity field from the
LDV measurements, we explored velocity spectra in var-
ious off-center points with nonzero average azimuthal
velocity V̄θ . The spectra of fluctuations of the radial
component of velocity Vr at γ̇ = 4 s−1 (Wi = 13.5)
at four different radii are shown in Fig. 10.23; they
look similar to the spectra in Fig. 10.22 with a sim-
ilar power-law decay. They were all measured at
z = d/2, where z is the distance from the upper plate.
The root-mean-square values of the fluctuations at all
four points were rather close, varying between 0.88
and 0.99 mm/s.
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Fig. 10.23 Power spectra of the fluctuations of the radial
velocity Vr at γ̇ = 4 s−1 measured at z/d = 0.5 at different
radii. Curves 1–4 correspond to r = 0, r = d/2, r = 2d and
r = 3d, respectively. The average flow velocities (Vθ , Vr )
in mm/s are (0,0), (0.13, 0.19), (3.81, 1.17), (6.99, 0.89)
for curves 1–4, respectively

One can learn from Fig. 10.23 that, as the mea-
surement point moves away from the center, the
characteristic frequencies of the fluctuations become
higher. The most reasonable explanation for this is
growth of the average azimuthal velocity V̄θ , which was
3.81 mm/s and 6.99 mm/s, at r = 2d and r = 3d, re-
spectively. So, the fluctuations of the velocity in time
at these two points are mainly due to fluctuations in
space, which are advected by the large mean flow ve-
locity V̄θ . Applying the Taylor hypothesis, we can view
the spectra in time as spectra in space, with the rela-
tion between the frequency and the wavenumber given
by k = 2π f/V̄θ . Then the power-law decay regions in
curves 3 and 4 imply that the fluid motion is excited in
the whole corresponding ranges of k. The ranges of the
spatial scales where the motion is excited span about
an order of magnitude for both curves. The exponents
α in the power laws P ∼ f −α (and, so, P ∼ k−α) are
again quite large: about 3.6 for r = 2d and about 3.3 for
r = 3d [10.104].

In a separate experiment the spatial velocity power
spectra were measured by using PIV measurements.
These were obtained by averaging 2000 instantaneous
spatial spectra. Although the finite spatial resolution of
PIV, which limits the accessible range of wavenum-
bers, leads to an artificial cutoff at k ≈ 3000 m−1,
a power-law decay with k−3.5 is clearly observed
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Fig. 10.24 Power spectra of fluctuations of azimuthal ve-
locity component at different Wi. Circles: Wi = 4.41, up
triangles: Wi = 5.72, down triangles: Wi = 8.32, left tri-
angles: Wi = 11.1, right triangles: Wi = 12.7, diamonds:
Wi = 16, half filled squares: Wi = 18, empty circles:
Wi = 19. Solid line presents the power law decay k−3.5.
Data were collected in setup 1
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Measurements of Turbulent Flows 10.3 Elastic Turbulence in Viscoelastic Flows 809

(Fig. 10.24 [10.109]). This is rather consistent with the
scaling obtained above for the velocity power spec-
tra in the frequency domain. These large values of α

imply that the power of the fluctuations decays very
quickly as the size of the eddies decreases. The main
contribution to fluctuations of both velocity and ve-
locity gradients [the power of the latter should scale
as k−(α−2)] should therefore be due to the largest ed-
dies.

This also indicates that the Taylor hypothesis
is applicable to this chaotic flow [10.108]. The
agreement between the velocity spectra measured
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Fig. 10.25 Snapshots of consecutive stages of mixing of
a droplet of ink in the polymer solution in the half-size
setup, viewed from below. The area of the photographs
corresponds to the area of the white upper plate. Rotation
of the upper plate at Ω =1.47 s−1 (γ̇ =5.6 s−1) was started
suddenly at t = 0

at a single point in the frequency domain [10.76,
104] and the directly measured spectra in the k-
domain [10.109] deserves brief discussion. Following
Lumley [10.110], the relation between the spatial spec-
trum, P(k) and the frequency spectrum, P( f ) can be

written as P(k) = VP( f )− I2
t
2

d2(k2 P(k))
dk2 + O(I4

t ), where

It = V rms
θ /Vθ , V rms

θ ≡ V 2
θ

1/2

t and Vθ are the rms val-
ues of the fluctuations of the azimuthal velocity
and the average azimuthal velocity, respectively. If
P(k) ∝ kα2 and P( f ) ∝ f α1 , the equation above leads

to: α2 −α1 ∝ log[1+ I2
t
2 α2(α2 +2)]/log(k). If one in-

serts into the last equation α2 ≈ −3.6, the difference
between the exponents is (for k ≈ 1000 m−1) as small
as α2 −α1 ≈ 0.2. Thus, the experimental resolution does
not allow us to observe the difference in the scaling
exponents for the spatial and temporal spectra [10.109].

Mixing in the Flow. Mixing in the flow was observed
using a droplet of black ink added to the working
fluid before rotation of the upper plate was started
(Fig. 10.25). Using a micropipette the droplet was care-
fully placed near the center (at r = 0) at about half of
the fluid depth. The ink was dissolved in a concentrated
sugar syrup, to match the density of the droplet with the
density of the working fluid.

Consecutive stages of mixing in the polymer solution
are shown in Fig. 10.25.

Rotation of the upper plate was started abruptly at
t = 0 at a shear rate of γ̇ = 5.6 s−1. It took about one
minute for the irregular flow to develop after the rotation
of the upper plate was started. (Development of the ir-
regular flow was judged by growth of the flow resistance,
which was saturated after about one minute [10.111].)
So, no significant changes in the ink distribution oc-
curred during the first 15 s (Fig. 10.25). After 30 s the
ink spread over the surface of the lower plate by the large
toroidal vortex discussed above. In the snapshots taken
at later times (60, 90, and 120 s in Fig. 10.25) one can
see many fine-scale structures. Those may be due either
to excitation of the fluid motion on small spatial scales
or significant stretching of fluid elements along their La-
grangian trajectories by randomly fluctuating large-scale
eddies. The contrast of the patterns gradually decreases
with time, which indicates progressing mixing. The pat-
tern in the last snapshot, taken 8 min after the flow had
been started, appears completely homogeneous. From
the appearance of the mixing patterns in Fig. 10.25, the
characteristic time of mixing can be estimated as 120 s,
corresponding to about 30 full turns of the upper plate.
The time required for mixing by molecular diffusion
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Fig. 10.26 Snapshots of consecutive stages of mixing of
a droplet of ink in the pure solvent in the half-size setup,
viewed from below. Rotation of the upper plate at Ω =
1.47 s−1 was started suddenly at t = 0

without macroscopic flow can be estimated as dR/D,
which gives a value of about 106 s, i. e., at least four or-
ders of magnitude larger than the mixing time observed
in the flow [10.104].

Mixing in the flow of the pure solvent at the same
shear rate is shown for comparison in Fig. 10.26.

One can see that the distribution of the ink remained
inhomogeneous even after 9 h, although the ink became
somewhat spread out the time. The Reynolds number
was about 0.5, and there were some nonvanishing inertial
effects in the flow [10.104].

Summarizing the experimental results, we conclude
that the flow of the elastic polymer solution at suf-
ficiently high Wi indeed has all the main features of
developed turbulence stated above. The fluid motion is
excited in broad ranges of frequencies and wavenum-
bers, both spanning about an order of magnitude. The
flow is accompanied by a dramatic increase in the rate of
transfer of momentum and mass. In terms of the strength
of the turbulent resistance, the mixing rate, and the span
of scales in space and time at which the fluid motion is

excited, the observed flow can be compared to turbulence
of a Newtonian fluid in a pipe at Re of about 105. This
apparently turbulent fluid motion in the swirling flow
between two plates arises at very low Re, where inertial
effects are negligible, solely because of the nonlinear
mechanical properties of the elastic polymer solution.
We therefore call the phenomenon elastic turbulence.
Distinctions between the elastic turbulence and the usual
inertial turbulence observed in Newtonian fluids at high
Re are discussed below.

Further Properties of Elastic Turbulence
Power Fluctuations and the Statistics of Injected
Power. The injected power fluctuations were meas-
ured for different Wi in the elastic turbulence regime
in two modes: Ω-forcing (Fig. 10.27) and T -forcing
(Fig. 10.28). For each value of Wi the statistics of the
power fluctuations were collected with 180 000 data
points evenly sampled in time (ts ≈ 0.038 s). The time
series of the injected power at different Wi for both
modes are presented in both figures. In the elastic tur-
bulence regime the probability distribution functions
(PDFs) of the power fluctuations deviate strongly from
the Gaussian distribution for both forcing modes. The
PDFs in the Ω-forcing mode have a left-side skew-
ness, while in the T -forcing mode they show a right-side
skewness. Since the injected power fluctuations reflect
fluctuations of the turbulent elastic stress averaged over
the upper plate, one can conclude that the statistics of
the elastic stress deviate strongly from Gaussian statis-
tics and are therefore intermittent. The Wi dependencies
of both P/Prms (Fig. 10.21) the skewness of the PDF in
elastic turbulence suggest an analogy with similar be-
havior in hydrodynamic turbulence, though the reasons
for the effects are entirely different [10.112, 113].

Flow Structure and Velocity Profiles. To characterize
the structure of the velocity field and velocity profiles
flow visualization (PIV and LDV) techniques were used
in various experiments and setups [10.104, 108, 109].
An impression of the flow structure in elastic turbu-
lence can be obtained from just a few snapshots of the
flow, visualized by seeding with light-reflecting flakes
(1% of Kalliroscope liquid). The upper plate was black,
so the bright regions indicate where the flakes are ori-
ented parallel to the upper plate. The patterns of the
polymer solution flow above the transition at Wi = 6.5
(Fig. 10.29a, b), and at Wi = 13 (Fig. 10.29c, e), ap-
pear quite irregular and exhibit structures of different
sizes. One can see, however, that the structures tend
to have a spiral-like form, which is probably imposed

Part
C

1
0
.3



Measurements of Turbulent Flows 10.3 Elastic Turbulence in Viscoelastic Flows 811

by the average azimuthal flow and circular symme-
try of the setup. Further, there is a dark spot in the
middle, which appears in most of the snapshots. This
corresponds to the center of a large, persistent toroidal
vortex, which has dimensions of the whole setup (see
also below). The direction of vortical motion was in-
wards near the upper plate, downwards near the center
and outwards near the lower plate [10.104]. The average
flow velocity along the radial direction was meas-
ured by LDV at a few points, and the results agreed
quite well with the presence of the large, persistent
toroidal vortex. The flow of the pure solvent at the
same shear rate was completely laminar, as can be seen
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Fig. 10.27 (a) Time series (partially shown) of the injected
power in the constant Ω-forcing regime for different Wi.
(b) PDF of the power fluctuations in constant Ω forc-
ing regime for different Wi. The curves are: (5) Wi = 5,
(4) Wi = 19, (3) Wi = 24, (2) Wi = 31.5, (1) Wi = 40. Data
were collected in setup 2

from the snapshot in Fig. 10.29f, which appears quite
uniform [10.104].

Quantitative characterization of the global flow
structure and its dynamics was obtained via PIV. Instan-
taneous images of fields of the horizontal components
of the velocity as well as averaged images over 2000
fields taken equidistant between the plates in setup 1 for
several values of Wi are presented in Fig. 10.30, 31. The
left column in Fig. 10.30 shows the instantaneous vector
fields at three increasing values of Wi, while the right
column shows the averaged vector field at the same Wi
values. One can easily identify the core of the toroidal
vortex, which appears in all the images above the thresh-
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Fig. 10.28 (a) Time series (partially shown) of the in-
jected power in constant T forcing regime for different Wi.
(b) The PDF of the power fluctuations in the constant T -
forcing regime for different Wi. The curves are: (5) Wi = 5,
(4) Wi = 17, (3) Wi = 25, (2) Wi = 34, (1) Wi = 46. Data
were collected in setup 2
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old for the instability, and a spiral vortex that in addition
occurs in the elastic turbulence regime. These flow struc-
tures and their reorganization can also be observed in
separate presentations of the averaged azimuthal, radial
components, and rms of fluctuations of the azimuthal
velocity component of the velocity field at the same Wi
(Fig. 10.31, 32). The profile of the average azimuthal ve-
locity Vθ below the elastic instability exhibits a linear
increase along a radius with a slope, Ω−1, that cor-
responds to rigid-body rotation (inset in Fig. 10.33a),
while there is no motion in the radial direction, Vr ≈ 0
(Fig. 10.33b). Above the instability one can clearly see
the creation of the core of the toroidal vortex at the cell
center, and restructuring in the radial motion [10.109].

The large, toroidal vortex driven by the hoop stress
is actually quite well known in swirling flows of elastic
fluids [10.78, 114], and inhomogeneity of the shear-
rate profile in the primary laminar flow has long been
recognized as the origin of this phenomenon. In our
system this vortex first arises as a stationary structure
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Fig. 10.29a–f Representative snapshots of the flow taken
from below. The field of view corresponds to the upper
plate area. The flow was visualized by seeding the fluid
with light-reflecting flakes. (a), (b) the polymer solution at
Wi = 6.5, Re = 0.35; (c), (d), (e) the polymer solution at
Wi = 13, Re = 0.7; (f) the pure solvent at Re = 1

at low shear rates. As can be learned from Fig. 10.20
(curve 1 at γ̇ < 0.75 s−1 and curve 2 at γ̇ < 0.4 s−1),
the toroidal vortex leads to some increase in the flow
resistance even before the elastic instability, so we can
conclude that the transition to elastic turbulence in the
swirling flow between two plates is mediated by this vor-
tex. The toroidal vortex provides a smooth, large-scale
velocity field (see the right-hand panels in Fig. 10.30),
which is randomly fluctuating in time (left-hand panels
in Fig. 10.30), and in which the fluid and the embedded
stress tensor are chaotically advected. This type of ad-
vection can create variations of the stress over a range
of smaller scales, which may cause small-scale fluid
motion [10.115, 116]. This would be analogous to gen-
eration of small-scale concentration variations in chaotic
mixing by large fluctuating vortices.

The large-scale toroidal vortex is also responsi-
ble for the ring-shaped topology of fluctuations of the

azimuthal velocity V rms
θ ≡ V 2

θ

1/2
(Fig. 10.32). The ve-

locity fluctuations in the laminar regime are only due to
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Fig. 10.30a–c Instantaneous (left column) and time-
averaged (right column) velocity fields for different values
Wi: (a) Wi = 2.48 (b) Wi = 9.88 (c) Wi = 18.96. Data were
collected in setup 1 at the mid distance between the plates
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Measurements of Turbulent Flows 10.3 Elastic Turbulence in Viscoelastic Flows 813

instrumental noise, which does not exceed 5% of the av-
erage value (panel a in Fig. 10.32). The average radial
velocity changes sign at about half of the radius (see
Fig. 10.33b). At higher value of Wi the toroidal vortex
forces a transition to elastic turbulence, which is charac-
terized by the second flow structure reorganization to the
spiral vortex (Fig. 10.30, 31) and the scaling region in P,
Prms (Fig. 10.21). At the same time the circular symme-
try of V rms

θ is broken and becomes dipolar (Fig. 10.32).
The radial profiles of Vθ and Vr also change drastically.
These structural transitions in the flow are also reflected
in the average radial gradients of the azimuthal velocity
field and its average vorticity field, which are presented
in Fig. 10.34 for several values of Wi.

To learn more about the velocity field generated by
elastic turbulence, we measured the average velocity and
rms of the velocity fluctuations at different points. Pro-
files in the z-direction of the average azimuthal velocity
V θ and of the rms fluctuations V rms

θ at different flow
conditions are shown in Fig. 10.35 [10.104].

The measurements were done at r = 2d, which
is rather far from the edge of the upper plate (R −
r = 1.8d). The profile of V̄θ in a low-Re flow of
the pure solvent is an almost straight line (Fig. 10.35,
curve 3). The elasticity-driven turbulent flow signif-
icantly changes the distribution of V̄θ . It produces
a high-shear-rate layer near the upper plate (Fig. 10.35
curve 1), and a low-shear-rate region near the middle of
the gap (at z/d = 0.5). Such a distribution of V̄θ is remi-
niscent of the average velocity profiles in usual high-Re
turbulence. The perturbation of the V̄θ profile becomes
stronger when γ̇ is increased (Fig. 10.35, curve 2). In
particular, the slope of the V θ curve at small z/d be-
comes larger, which obviously corresponds to growth of
τw/τ lam

w with γ̇ (Fig. 10.20).
Fluctuations of the azimuthal velocity (curve 4 in

Fig. 10.35) are small near the upper plate, reach a max-
imum at z/d � 0.25, and start to decrease at larger z.
Again, such a distribution of V rms

θ along the z-direction
is reminiscent of the velocity fluctuations in turbulent
flows of Newtonian fluids [10.79, 80]. The rms fluctua-
tions reach a value of about 0.5d/λ, so that the rate of
deformation produced by the fluctuating velocity field is
on the order of 1/λ. That implies an essentially nonlinear
relation between the rate of deformation and the fluctuat-
ing elastic stress. The maximal rms value of the velocity
fluctuations at γ̇ = 4 s−1 was about 1.55 mm/s, which
was about 7.5% of the upper-plate velocity (Vmax) at
r = 2d and about 25% of the local value of V θ [10.104].

Another way to characterize a turbulent flow is to
display the radial profiles (azimuthally averaged) of

the turbulent intensity, defined as It = V rms
θ /Vθ at sev-

eral values of Wi (Fig. 10.36) [10.109]. The velocity
fluctuations in the laminar regime occur only due to in-
strumental errors and do not exceed 5% of the mean
values. Above the elastic transition, It increases sharply
but remains rather uniform at 20–30% in a peripheral re-
gion for radius ratios r/RC of 0.2–1 (see Fig. 10.36). In
the case of elastic turbulence, It further increases, and its
dependence on Wi, presented in the inset in Fig. 10.36,
exhibits a power-law scaling, It ∼ Wi0.49 [10.109].

The PIV measurements of the time-dependent ve-
locity fields allowed us to calculate the average velocity
gradients and vertical vorticity, and their rms fluctua-
tions without involving the Taylor hypothesis, which is
questionable in a smooth, random flow. Typical radial
distribution of the velocity gradients and vorticity aver-
aged in an azimuthal direction spatially and over 2000
images temporally is rather uniform in the bulk for all
Wi but increases sharply near the wall (Fig. 10.37), while
the rms of the velocity gradients and vorticity gradually
increase along a radius (Fig. 10.38). The dependence
of the average vertical vorticity on Wi is displayed in
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Fig. 10.31a–c Distribution of the radial (left column) and the az-
imuthal velocity components (right column) for different values
of Wi: (a) Wi = 2.48, (b) Wi = 9.88, (c) Wi = 18.96. Data were
collected in setup 1 at the mid distance between the plates
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814 Part C Specific Experimental Environments and Techniques

Fig. 10.37a, exhibiting a tendency to saturation at higher
Wi for vorticity in the bulk and gradual growth near
the wall. On the other hand, the rms of the vorticity
fluctuations definitely level off at Wi > 15. A similar
behavior is displayed by all components of the velocity
gradient, which is consistent with theoretical predic-
tions, though the saturated value ωrms

z λ ≈ 2.5 is rather
high [10.115, 116] (see further discussion of this issue
below). The relation between the rms fluctuations of the
velocity gradients and the Eulerian correlation time will
be discussed in the next section.

Velocity and Velocity Gradient Fields Statistics and
Wi Dependence. Characteristic probability distribution
functions (PDFs) of the azimuthal component of the flow
velocity in the regime of elastic turbulence are shown
in Fig. 10.39. A similar PDF was found for the radial
velocity component [10.104]. These distributions were
obtained from LDV measurements taken at r = 2d, z =
0.25d at a shear rate of 4 s−1. One can see that the
distribution has only minor skewness and is very nearly
Gaussian.

The PDF for the gradients of velocity (rates of de-
formation) in the azimuthal direction (and similarly for
transverse), obtained from the same LDV time series,
is shown in Fig. 10.40. The rates of deformation are
multiplied by the relaxation time λ to make them dimen-
sionless. The velocity gradients were estimated using
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Fig. 10.32a–g Fields of fluctua-
tions of the azimuthal velocity
at different Wi: (a) Wi = 8.32,
(b) Wi = 9.88, (c) Wi = 11.1,
(d) Wi = 12.72, (e) Wi = 13.83,
(f) Wi = 17, (g) Wi = 19. Data were
collected in setup 1 at the mid distance
between the plates

the Taylor hypothesis, with smoothing over a distance
of about 1.45 mm. The difference ∆V between con-
secutive velocity readings with even time intervals of
∆t = 0.22 s was divided by ∆t and by the average ve-
locity V = (V

2
θ + V

2
r )1/2 = 6.6 mm/s. One can see that

the distribution of ∂Vθ/r∂θ (as well as ∂Vr/r∂θ) cannot
be fitted by a Gaussian curve [10.104]. In contrast to the
velocity distribution in Fig. 10.39, the PDF in Fig. 10.40
has a well-pronounced exponential tail, which implies
significant intermittency of the velocity gradients. The
situation of nearly Gaussian statistics of velocities and
essentially non-Gaussian, strongly intermittent distribu-
tions of velocity gradients is actually quite typical for
high-Re inertial turbulence [10.117]. Hence, the elas-
tic turbulence also resembles high-Re inertial turbulent
flows in this respect.

The statistical properties of elastic turbulence can
be characterized in many ways. Besides the PDF of
the local velocity and velocity gradients and the power
spectrum of velocity fluctuations in the frequency and
wavenumber domains, one can calculate various cor-
relation and structure functions of the velocity and
velocity gradients. Their scalings can give information
on the degree of deviation from a Gaussian random field,
a standard approach in hydrodynamics to quantify in-
termittency and to compare it with the corresponding
scaling in known cases. First, let us find typical spatial
and temporal correlation scales in the elastic turbulence.
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Measurements of Turbulent Flows 10.3 Elastic Turbulence in Viscoelastic Flows 815

A typical scale on which the elastic stress is correlated
can be estimated as L = 2π

∫

P(k)dk/
∫

kP(k)dk and
in the elastic turbulence regime one gets L � 5.9 cm,
i. e., on the order of the cell size. The Eulerian correla-
tion time is defined as τc = ∫ tC(t)dt/

∫

C(t)dt, where
C(t) = V (T )V (T + t)/vrmsvrms is the Eulerian correla-
tion function. Figure 10.41 presents τc as a function of
Wi at some radial positions in the cell. The correla-
tion time drops significantly in the transition region and
then saturates in the elastic turbulence region similar
to the rms of the vorticity (velocity gradients) fluctu-
ations. It is worth pointing out that the inverse of the
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Fig. 10.33 (a) Profiles of the average azimuthal velocity Vθ

for several values of Wi. The inset shows a typical laminar
profile of the azimuthal velocity component. (b) Profiles of
the average radial velocity Vr for several values of Wi. The
curves are: (1) Wi = 2.48, (2) Wi = 4.41, (3) Wi = 11.1,
(4) Wi = 15, (5) Wi = 18. Data were collected in setup 1 at
the mid distance between the plates

saturated value of the correlation time is of the order
of the saturated value of ωrms

z and λ−1, as expected by
theory [10.115, 116].

Using PIV data one can also calculate the struc-
ture functions of the velocity gradients defined as
Sp(r) = 〈| ∂Vθ (r0+r)

∂r − ∂Vθ (r0)
∂r |p〉r0

. Similar to inertial tur-
bulence, let us look for a scaling in the range of scales
corresponding to the power-law decay of the velocity
spectra (Fig. 10.24) in the form Sp(r) = rζp . The de-
pendence of the scaling exponent ζp on the order of
the structure functions p is presented in Fig. 10.42. The
deviation from a linear dependence that is character-
istic to the Gaussian field is clearly observed and is
rather close to the analogous dependence for a passive
scalar [10.118]. The relation between the passive-scalar
problem and the statistics of the velocity gradient are
discussed in the next subsection.

As noted in Sect. 10.3.1 on flow resistance, the com-
parison of the velocity power spectra in the frequency
and wavenumber domains leads to the conclusion that
the Taylor hypothesis is applicable in spatially smooth
random-in-time flows, a representative of which is elas-
tic turbulence. On the other hand, from Fig. 10.35 one
learns that, in the cell interior at r/Rc < 0.2, the rms ve-
locity fluctuation becomes much larger that the mean
velocity, which casts doubt on the applicability of the
Taylor hypothesis. The validity of the Taylor hypoth-
esis in this flow was investigated experimentally in
detail [10.108]. By using cross-correlation technique as
well as the structure function approach, it was shown
that the breakdown of the Taylor hypothesis occurs near
the cell center due to strong velocity fluctuations, while
the flow smoothness and the lack of scale separations in
the elastic turbulence limit the quantitative applicability
of the Taylor hypothesis close to the boundaries. How-
ever, the latter deficiency can be corrected by a proper
choice of the advection velocity [10.108].

Role of the Elastic Stress
and Theory of the Elastic Turbulence

Along with the apparent similarity in phenomenology
between the elastic and inertial turbulence, there are
also a few important distinctions, which are reflected
in the dependence of the onset of elastic instability and
the scaling of the main characteristics of elastic turbu-
lence with system size and fluid viscosity. These results
were found to be in sharp contradiction with the cor-
responding dependence in Newtonian fluid mechanics
but quite in line with the concept of viscoelastic sim-
ilarity suggested for purely elastic instability [10.88].
As was shown in [10.89], an increase in the viscosity
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of the solvent should lead to a transition to elastic tur-
bulence at lower velocity, a prediction that was verified
experimentally [10.104]. When the size of the setup is
proportionally reduced, the velocity required for excita-
tion of elastic turbulence should increase. This property
was examined in setups twice and four times smaller
than the main one [10.104]. Transition to the elastic
turbulence is expected to occur at the same character-
istic stress, and its dependence on Wi is supposed to
be the same for all system sizes, as was also verified
experimentally [10.104]. The equivalence of the sta-
tistical properties of the velocity field and the mixing
patterns in elastic turbulence has also been demon-
strated [10.104].

An obvious reason for the differences in the scal-
ings in inertial and elastic turbulence is the different
physical mechanisms that underlie these two kinds of
turbulent motion. As is well known, the high flow re-
sistance in high-Re inertial turbulence is due to large
Reynolds stresses. The Reynolds stress tensor is defined
as the average value ρ〈Vi Vj〉, where Vi and Vj are dif-
ferent components of the flow velocity. In the case of
elastic turbulence the Reynolds stresses are quite small,
since Re is low. So, the high flow resistance in elastic
turbulence is due to a large elastic stress, τp [10.111].
Therefore, one can suggest that in the case of elastic
turbulence it would be more relevant to study the field
of stresses and of rates of deformations rather than the

��

 '

'

�

�� �� ��

�� �� ��

��

 �

�

Fig. 10.34a–g The average verti-
cal component of the vorticity ωz

at different Wi: (a) Wi = 8.32,
(b) Wi = 9.88, (c) Wi = 11.1,
(d) Wi = 12.72, (e) Wi = 13.83,
(f) Wi = 17, (g) Wi = 19. Data were
collected in setup 1 at the mid distance
between the plates. The squared pat-
tern visible in panels (a,b) is a result of
the combination of the peak-locking
effect and numerical differentiation
and should be disregarded

velocity field. It would certainly be quite instructive to
explore the spatial structure and temporal distribution
of the elastic stress, but there is currently no technique
for local measurements of τp in a turbulent flow. On the
other hand, large-scale properties of the τp field can be
inferred from measurements of the torque or injected
power.

It is now widely accepted that the statistical proper-
ties of a random flow in the elastic turbulent regime
and significant increase in the contribution of the
polymer stresses to the flow resistance are associ-
ated with significant polymer stretching in a random
flow. To support this theoretical vision, experimen-
tal studies of polymer stretching in a 3-D random
flow between two plates were conducted in macro-
and microscale setups [10.111, 119]. The first exper-
iment was performed in a swirling flow setup with
a high aspect ratio of R/d = 1, where R = 30 mm,
and with a very viscous solvent, ηs = 1.36 Pa s to sup-
press inertia [10.111]. By experimental analysis and
estimates of the contributions of the Reynolds, vis-
cous, and elastic stresses to the shear stress on the
upper plate, we found that the Reynolds stress con-
stitutes less than 0.1% of the total stresses, and that
the viscous stress is rather constant. So, as a result
of a secondary random 3-D flow superimposed on
a primary applied shear flow between two plates, the
polymer contribution to the shear stress increases by
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Fig. 10.35 Average azimuthal velocity V θ (y-axis on the
left, curves 1–3), and rms fluctuations of the azimuthal
velocity V rms

θ (y-axis on the right, curve 4), as functions
of the distance z from the upper plate. The measurements
were done at r = 2d. The average velocities are divided
by the upper plate velocity at r = 2d. Curve 1: polymer
solution at γ̇ = 2.7 s−1; curves 2,4 polymer solution at
γ̇ = 4 s−1 (Fig. 10.21, 22, 23, 26); curve 3 pure solvent at
γ̇ = 4 s−1, Re � 1.2. The rms velocity fluctuations in the
polymer solution (curve 4) is multiplied by λ/d to make it
dimensionless

as much as 170 times. If one assumes linear elas-
ticity of the flow-stretched polymer molecules (PAA),
then the elastic stress causes a 13-fold polymer exten-
sion [10.111].

Thus, the first logical step in theoretical exploration
of the whole problem of turbulent hydrodynamics of
a dilute polymer solution was to describe a single poly-
mer stretching in a random flow. More than 30 years
ago Lumley [10.110] first suggested a semiquantita-
tive theory for polymer stretching in a random flow.
Since then, numerous publications on theoretical as
well as numerical calculations of mean polymer ex-
tension in a stochastic flow as a function of Wi with
the aim of qualitatively verifying the predicted coil-
stretch transition have been published [10.120–122].
However, the statistics of a random flow was not re-
lated to the statistics of the polymer extension in
these works. Recently Lumley’s theory was revised,
and a quantitative theory of the coil-stretch transition
of a polymer molecule in a 3-D random flow was
developed [10.123, 124]. The dynamics of a polymer
molecule are sensitive to fluid motion at the dissipa-
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Fig. 10.36 Turbulence intensity versus the reduced ra-
dial coordinate at different Wi. Rhombus: Wi = 31.56,
squares: Wi = 27.73, down triangles: Wi = 23.67, cir-
cles Wi = 7.54, up triangles: Wi = 2.82. The inset shows
the dependence of the turbulence intensity on Wi at
r/Rc = 0.85 obtained from LDV measurements. The full
line is a power-law fit It ∝ Wi0.49±0.06. The arrow indicates
the onset of the elastic instability. The data were collected
in setup 2

tion scale, where the velocity field is spatially smooth
and random in time [10.110]. On this scale polymer
stretching is determined only by the velocity gradient
tensor, ∇i Vj , which varies randomly in time and space:
∂t Ri = R j∇ j Vi − Ri/λ(R)+ ζi . Here Ri is the end-to-
end vector and R is the end-to-end distance for the
stretched polymer molecule, respectively, λ(R) is the
polymer relaxation time, which is R-dependent, and ζi
is the thermal noise. At R 	 Rmax the linear regime
of polymer relaxation is characterized by the polymer
relaxation time λrel = λ(0), where Rmax is the maxi-
mum end-to-end stretched polymer length. At R � Rg
one can use, e.g., the FENE (finitely extensible, nonlin-
ear elastic) model with λ(R) = λ(0)(1− R2/R2

max). In
a 3-D random flow ∇i Vj always has an eigenvalue with
a positive real part, so that there exists a direction with
a pure elongation flow [10.125]. The direction and rate
of the elongation flow change randomly as a fluid ele-
ment rotates and moves along the Lagrangian trajectory.
If ∇i Vj remains correlated within finite time intervals,
the overall statistically averaged stretching of the fluid
element will increase exponentially fast in time. The
rate of stretching is defined by the maximal Lyapunov
exponent α of the turbulent flow, which is the average
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Fig. 10.37 (a)Profiles of the vorticity 〈ωz〉 averaged in an
azimuthal direction spatially and over 2000 images tem-
porally at different Wi: black-Wi = 34.5, red-Wi = 32.3,
green-Wi = 27.73, blue-Wi = 26.13, magenta-Wi = 19.29,
dark yellow-Wi = 17.43, dark blue-Wi = 14.48, yellow-
Wi = 10, orange-Wi = 5.4, pink-Wi = 2.82 (b) The
dependence of the average vorticity on Wi at different ra-
dial positions. Squares-r/Rc = 0.33, circles-r/Rc = 0.66,
up triangles-r/Rc = 0.4, down triangles-r/Rc = 0.2, left
triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-
r/Rc = 0.5, half-filled squares-r/Rc = 0.8, half-filled cir-
cles-r/Rc = 0.9. The arrow indicates the onset of the elastic
instability. Data were collected in setup 2

logarithmic rate of separation of two initially close tra-
jectories, where the value of α is usually on the order
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Fig. 10.38 (a) Profiles of the rms fluctuations of the vortic-
ity ωrms

z at different Wi: black-Wi = 34.5, red-Wi = 32.3,
green-Wi = 27.73, blue-Wi = 26.13, magenta-Wi = 19.29,
dark yellow-Wi = 17.43, dark blue-Wi = 14.48, yellow-
Wi = 10, orange-Wi = 5.4, pink-Wi = 2.82. (b) Depen-
dence of the rms of fluctuations of the vorticity on
Wi at different radial positions. Squares-r/Rc=0.33,
circles-r/Rc = 0.66, up triangles-r/Rc = 0.4, down tri-
angles-r/Rc = 0.2, left triangles-r/Rc = 0.1, right tri-
angles-r/Rc = 0.7, stars-r/Rc = 0.5, half-filled squares-
r/Rc = 0.8, half-filled circles-r/Rc = 0.9. The arrow
indicates the onset of the elastic instability. Data were
collected in setup 2

of the rms of the fluctuations of the velocity gradient,
(

∂Vi
∂r j

)rms ≡
(

∂Vi
∂r j

)2
1/2

.

Stretching of a polymer molecule follows deforma-
tion of the surrounding fluid element. So the statistics
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Fig. 10.39 Probability distribution functions (PDF) of the
azimuthal flow velocity Vθ measured at r = 2d, z = d/4, and
γ̇ = 4 s−1 (circles). The solid line represents the Gaussian
fit with some skew

of polymer stretching in a random, smooth flow de-
pends critically on the value of λα [or equivalently

λ
(

∂Vi/∂r j
)rms], which plays the role of a local Weis-

senberg number for a random flow, Wi ′. According to
the theory [10.110, 123], the polymer molecules should
become vastly stretched if the condition λα > 1 is ful-
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Fig. 10.40 Probability distribution functions (PDF) of the
longitudinal velocity gradient, ∂Vθ

r∂θ
measured at r = 2d, z =

d/4 and γ̇ = 4 s−1 (circles). The velocity gradients are made
dimensionless by multiplication by the relaxation time λ.
The solid line represents a Gaussian fit
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Fig. 10.41 Eulerian correlation times of the azimuthal ve-
locity component as function of Wi. Squares: setup 1,
circles: setup 2

filled, and the coil-stretch transition is defined by the
relation λcrα = 1, similar to that in an elongation flow
with the strain rate α [10.126]. A somewhat surprising
conclusion of the theory is that a generic random flow
is on average an extensional flow at every point, with
the rate of extension ε̇ = α and unlimited Henky strain.
Dramatic extension of the flexible polymer molecules in
the turbulent flow environment, inferred here from the
bulk measurements of the flow resistance, has recently
been confirmed by direct visualization of individual
polymer molecules in a random flow [10.119]. Ac-
cording to the recent theory [10.123], the tail of the
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Fig. 10.42 Dependence of the scaling exponent ξp of the
order of the structure function of the velocity gradients p
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PDF of the molecular extensions is described by the
power law P(Ri ) ∼ R−β−1

i , where β ∼ (λ−1 −α) in the
vicinity of the transition. Positive β corresponds to the
majority of the polymer molecules being unstretched.
On the contrary, at β < 0 a significant fraction of the
molecules is strongly stretched, and their finite size is
defined by the feedback reaction of the polymers on
the flow [10.123] and by the nonlinearity of molecular
elasticity [10.124]. Thus, the condition β = 0 can be in-
terpreted as the criterion for the coil-stretch transition
in turbulent flows [10.123]. This criterion was quantita-
tively verified in the experiment by statistical analysis
of both a velocity field in the Lagrangian frame (by sta-
tistical analysis of the Lyapunov exponents to define the
average one) in the elastic turbulence and of a single
polymer stretching in the same flow [10.119].

In the framework of the molecular theory of polymer
dynamics the tensor τp is found to be proportional to the
polymer concentration n and to the average polymer con-
formation tensor, τp,ij ∼ nλ−1〈Ri R j〉 (if one neglects
the thermal noise and uses the Hookean approximation).
The growth of the elastic stresses is also evidence of sig-
nificant extension of the polymer molecules in the flow.
So, we can suggest that the elastic stress tensor τp should
be the object of primary importance and interest in the
elasticity-driven turbulent flow, and that it may be ap-
propriate to view elastic turbulence as turbulence of the
τp field.

The next crucial step towards a theoretical de-
scription of elastic turbulence was to relate the elastic
stress field to the linearly decaying passive field prob-
lem [10.115, 116, 124, 127]. As was shown in [10.115],
the elastic stress tensor can be rewritten as uniaxial, i. e.,
τik = Bi Bk, if the contribution to the elastic stress due to
thermal fluctuations and polymer internal nonlinearity
can be neglected. Then (10.93, 94) can be rewritten for
the vector Bi in a form that is similar to the equation for
the magnetic field in magnetohydrodynamics [10.116].
Then in the case of the elastic turbulence one obtains:

∂t B+ (V∇)B = (B∇)V − B/λ . (10.96)

This equation, complemented by the equation of
motion rewritten as

∇ P = ρ(B∇)B+η∇2V , (10.97)

and by the boundary conditions, leads to instability at
Wi > 1, as already explained in detail. The instability
eventually results in a chaotic, statistically steady dy-
namics. As was explained above for a single polymer
stretching, a steady state occurs due to a back reac-
tion of the stretched polymers (or the elastic stress in

(10.97)) on the velocity field. Thus, stationarity of the
statistics implies that the velocity gradients on a small
scale should be limited by some mechanism. The satura-
tion mechanism suggested in [10.115] assumes that both
dissipative terms in (10.96, 97), namely viscous ν∇2V
and relaxation B/λ, are of the same order. Then the
velocity gradients become smaller when the scale de-
creases, and become of the same order as λ−1 on a small
scale fixed by the stationarity condition. This means that
in the chaotic flow the velocity fluctuations dominate on
the scale of the system size. So, the elastic stress can be
estimated as

τp = B2 ∼ ν∇i Vj ∼ η

λ
. (10.98)

The large-scale velocity fluctuations produce
smaller-scale fluctuations in B via (10.96) that in turn in-
duce small-scale fluctuations of the velocity via (10.97).
Velocity gradients become smaller as the scale de-
creases, since the large-scale velocity gradient is of the
order of λ−1. The small-scale fields v and B′ evolve
passively in the large-scale fields V and B, where
v, B′ 	 V, B. Thus, this problem is reduced to a linearly
decaying passive field problem considered in [10.128].
In the case of elastic turbulence the equation of motion
for v is dissipative, and one can neglect the gradient
terms, since ∇B′ ∼ ∇B and ∇v 	 ∇V.

The saturation of the rms fluctuations of the vor-
ticity at high values of Wi observed in the data
in Fig. 10.38 gives us the possibility to test which
of the two theoretical mechanisms discussed above,
either the feedback reaction of a molecule on the
flow or the nonlinearity of molecular elasticity, pri-
mary leads to the saturation. As one finds from
Fig. 10.38, (∂Vi/∂r j )rms � 1 s−1. This gives for the lo-
cal Weissenberg number, Wi ′ = λ(∂Vi/∂r j )rms � 2.5,
which exceeds the unity value predicted for the lin-
ear molecule elasticity and the feedback mechanism
discussed [10.123]. So, this value indicates that the non-
linearity of molecular elasticity is mostly responsible for
the saturation [10.124].

The analysis of the equations for the small-scale
fluctuations of both fields leads to the power-like de-
caying spectrum for the elastic stress that in a spherical
presentation looks like 〈B′

i B′
j〉 ∼ F(k) ∼ (k)−α, where

α > 3. It is clear that the field B′
i (and therefore the

field B′
i B′

j = ∇iv j ) is the passive field in the problem.
The mechanism leading to the power-law spectrum for
small-scale fluctuations of B′ in a chaotic flow is rather
general and directly related to the Batchelor scaling of
a passive scalar revealed long ago [10.125]. A linear rela-
tion between small-scale fluctuations of the fields B′ and
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v allows the establishment of the power-law spectrum
of the velocity, which in a spherical representation looks
like E(k) ∼ k−α, where α > 3, in good agreement with
the experimental values of α = 3.3–3.6 (Fig. 10.22, 24).
Since the velocity spectrum decays faster than k−3, the
elastic turbulent flow is smooth and strongly correlated
on the global scale. This is the main feature of the Batch-
elor regime, where spatially smooth and random-in-time
flow is observed [10.125]. The smoothness of the veloc-
ity field in elastic turbulence was experimentally tested
by investigating the shape of the cross-correlation func-
tions of the velocity field [10.108]. It was found that the
second-order spatial derivative of the velocity field was
about an order of magnitude smaller than the first-order
derivative, which is a direct confirmation of the flow
smoothness [10.108]. It should be emphasized that, in
contrast to hydrodynamic inertial turbulence, in elastic
turbulence the algebraic power spectrum decay is not
related to the energy cascade and any conservation law,
since the main energy dissipation occurs at the largest
scales. The rapid decay of the fluctuation power with
k implies a velocity field in which the main contribu-
tion to deformation and stirring (stretching and folding)
on all scales comes from the randomly fluctuating ve-
locity field at the largest scale of the system. So, it is
suggested that the leading mechanism for the genera-
tion of small-scale (high-k) fluctuations in the elastic
stress is advection of the fluid (which carries the stress)
in this fluctuating large-scale velocity field. Hence, the
fluctuating velocity field and stress tensor can both be de-
composed into large- and small-scale components, and
the leading mechanism for the generation of the small-
scale (high-k) portions is advection by the fluctuating
large-scale flow. The theory considers the elastic stress
tensor as passively advected in a random velocity field,
which is analogous to the concept of a passively ad-
vected vector in the magnetic dynamo theory [10.116].
Thus, the mechanism leading to the algebraic power
spectra for the elastic stress and the velocity in this case
is related to advection and linear decay accompanied
by stretching of the fluid element carrying the elastic
stress.

It follows from the stationarity of statistics of both
fields that the velocity gradients ∇i Vj are of the same
order as λ−1 in the bulk. This leads to the formation of
a boundary layer, where ∇i Vj exceeds λ−1 and drops
to the value in the bulk. The boundary layers at the
upper plate and the walls are clearly observed in the
experiment (Figs. 10.33, 35), where the flow is mainly
shear dominated, and therefore, the polymers are weakly
stretched [10.90, 119].

The saturation of the rms fluctuations of the vortic-
ity (and velocity gradients) and thus of the elastic stress
in the bulk that results from (10.98) and from the exper-
imental observations naturally explains the power-law
behavior of the injected power, P

Plam
∼ Wi0.49, obtained

from the plot in Fig. 10.21a. Indeed, the injected power
is proportional to the torque, P = TΩ. The latter is

just the shear stress τw averaged over the upper plate.
As was shown above, the flow resistance (or torque)
growth above the instability threshold occurs solely due
to growth of the elastic stress τp. In the elastic turbulence
regime, however, the theory predicts τp ∼ η/λ. On the
other hand, it was found that, due to shear thinning of
the solution used, λ ∼ Ω−0.3. Thus, the theoretically ex-
pected growth of the mean injected power with respect
to its laminar value, Plam, should be solely due to the
elastic stress and has the following power-law scaling:
P/Plam ∼ τp ∼ Wi0.43. The latter is rather close to the
experimentally observed scaling P/Plam ∼ τp ∼ Wi0.49.
Thus, this scaling is consistent with the saturation of
the rms of the fluctuations of the vorticity (and the
velocity gradients) in the elastic turbulence observed
experimentally [10.109]

Based on this discussion, one can suggest the follow-
ing scenario for the development of elastic turbulence.
The polymer molecules are stretched in the primary
shear flow, which leads to a large elastic stress. The
elastic stress renders the primary shear flow unstable and
causes an irregular secondary flow. The flow acts back
on the polymer molecules, stretching them further and
raising the elastic stress even more [10.111]. This makes
the flow increasingly turbulent, until a kind of a saturated
dynamic state is finally reached. This state implies some
mutually consistent fields of average stresses and veloc-
ities, and their fluctuations, related to each other by the
equation of motion and the constitutive equation.

10.3.3 Elastic Turbulence
in a Curved Channel: Dean Flow

Experimental Setup and Procedure
Experimental Setup and its Fabrication. Another ex-
perimental system where elastic turbulence was studied
in detail is flow in a curvilinear channel, or Dean flow.
The main motivation for the experiments on Dean flow
was to carry out a detailed quantitative study of mix-
ing in elastic turbulence [10.77]. It is an open flow that
allows extended continuous experimental runs with re-
producible and well-controlled initial conditions, and
easy collection of extensive data at different stages of
mixing. Meanwhile the elastic turbulence and mixing ex-
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Fig. 10.43 Schematic of the curvilinear channel showing the inlet,
a region of observation, and the outlet

periments were conducted in macro- and microchannels
of similar geometry. The macrochannel, schematically
shown in Fig. 10.43, had a uniform depth of d = 3 mm,
machined in a transparent bar of perspex, and was sealed
from above by a transparent window.

The channel consisted of a sequence of smoothly
connected half-rings with inner and outer radii of
R1 = 3 mm and R2 = 6 mm, respectively; it was square
in cross section, and had quite a high gap ratio of
d/R1 = 1, which was intended to facilitate the de-
velopment of an elastic instability at low Wi and of
intensive irregular flow above the instability threshold.
The macrochannels had, depending on the specific ex-
periment, 40 to 64 repeating units, each one being 18 mm
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Fig. 10.44 (a) Photograph of the microfluidic device. The
microchannel was filled with ink for better contrast. (b) Pho-
tograph of a section of the functional curvilinear element.
The point where instantaneous flow velocity measurements
(averaged over a 20 × 20 µm2 region) were made is marked
by a cross
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Fig. 10.45 Photograph of the microfluidic device. The mi-
crochannels were filled with ink for better contrast

in length. Because of the periodic structure of the chan-
nel, it is convenient to use the number of a segment
N starting from the inlet as a discrete linear coordinate
along the channel [10.77, 104].

The experiments were conducted in a microchannel
consisting of 64 smoothly connected half-rings with in-
ner and outer radii of R1 = 100 µm and R2 = 200 µm,
respectively, and a uniform thickness of d = 100 µm.
This channel has the same proportions as the macro-
scopic channel but its dimensions are reduced by
a factor of 30 (Fig. 10.44 [10.105]). Another microchan-
nel with 46 identical segments of the same geometry
and sizes was used to measure the flow resistance
(Fig. 10.45 [10.106]). The auxiliary rectilinear channel
(b) has a width of 90 µm and a total length of about
72.5 mm. Channel (b) and the comparator region (c)
serve to make differential in situ measurements of flux
versus pressure by the method described in [10.129].

The microchannel devices consist of a silicon elas-
tomer (Sylgard 184, Dow Corning) chip sealed to a #1
microscope cover glass. The channel structure of the
chip was fabricated using soft lithography [10.130].
First, a negative master mold was fabricated in UV-
curable epoxy (SOTEC microsystems SU8-1070) using
conventional photolithography. The epoxy was spun
onto a silicon wafer at 1800 rpm for 60 s to create
a 100 µm layer and patterned by using a high-resolution
negative transparency mask. Liquid elastomer was
poured onto the mold to a thickness of ≈ 5 mm and
cured in an 80 ◦C oven for 1.5 h. The elastomer was
then peeled off the mold, trimmed to its final size, and
liquid-feeding ports were punched using a 20 gauge luer
stub. The patterned side of the chip was bonded to the
cover glass by overnight baking in an oven at 80 ◦C.

Flow Control. The flow in the microchannels was gen-
erated and controlled by pressure differences between
the inlets and the outlet (Fig. 10.45). The pressures were
generated hydrostatically using long vertical rails with
precise rulers and sliding stages. Working liquids were
kept in 30 ml plastic syringes, which were held upright,
open to the atmosphere and connected to the two inlets
and the outlet by plastic tubing with an internal diameter

Part
C

1
0
.3
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of 0.76 mm. The pressure drop in the tubing was esti-
mated to be less than 1% of the total. The two syringes
feeding the inlets were attached to the sliding stages. The
difference in liquid elevation between these two syringes
and the outlet syringe was measured and adjusted with
a precision of about 0.1 mm corresponding to 1 Pa in
pressure. The dependence of the volumetric low rate Q
in the curvilinear channel on the pressure difference be-
tween inlet 1 and the outlet (Fig. 10.45) was determined
with a relative precision of about 0.5% using an in situ
measurement technique described in [10.129]. A sy-
ringe pump (PHD 2000, Harvard Apparatus, Boston)
with a 50 ml gastight Hamilton syringe was used for an
absolute flow-rate calibration [10.129].

Measuring Flow Velocity. The flow velocity in
a macrochannel was measured directly by LDV. Be-
cause of the small width of the channel, special effort
was made to obtain high spatial resolution by reducing
the region of space where the two laser beams crossed,
and reduction of the distance between the interference
fringes. Focusing lenses with a small focal length (about
25 mm) were used, and the angle between the beams was
raised to about 90◦ in air (and about 60◦ in the liquid).
As a result, the region of beam crossing was decreased
to 15 µm × 15 µm × 40 µm, and the distance between the
fringes was 0.44 µm [10.77, 104].

Measurements of the flow velocity in a microchannel
were carried out using custom developed microscopic
particle image velocimetry (micro-PIV). The poly-
mer solution was seeded with 0.2 µm yellow–green
fluorescent beads (Polysciences, Warrington), and epi-
fluorescent imaging of the flow in the microchannel
(Fig. 10.46) was made with an inverted microscope
(Olympus IMT2, Warrington) and narrow-band excita-
tion and emission filters in the dichroic filter cube. The
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Fig. 10.46 Overview of the micro-PIV setup

objective was a long-working-distance lens with 20×,
N.A. = 0.40, and the images were projected onto a CCD
array with a 640 × 480 pixel resolution (PixelFly camera
from PCO, Germany) digitized to 12 bits. Snapshots of
the flow were taken with even time intervals of 40 ms,
and digitally postprocessed. Images of out-of-focus par-
ticles were disregarded. The velocity field was found by
cross-correlating positions of the particles in two con-
secutive snapshots, and the particle velocity vectors were
neighbor-validated. (The calculated velocity field corre-
sponded to the time interval between the two snapshots.)
The collected time series represent velocity averaged
over a 20 µm × 20 µm square region at the middle plane
of the channel. Its position in the channel is equidistant
from the channel walls (at R = 150 µm) and equidis-
tant from the interconnections of the two half-rings at
N = 35 [10.105, 106, 109].

Measuring Tracer Concentration Profile. The liquids
to be mixed were fed into the macrochannel by two
identical syringe pumps through two separate tubing
lines, always at equal discharge rates. The chemical
composition of the two liquids was always identical
as well, with the only difference being a low concen-
tration (c0 = 2 ppm) of a fluorescent dye (fluorescein)
added to one of them with the diffusion constant of
the dye taken as that for the saccharose molecules,
D = 8.5 × 10−7 cm2/s. They were prepared from the

��

��

��

��

Fig. 10.47a–d Photographs of the flow taken with the laser sheet vi-
sualization at different N . The field of view is 3.07 × 2.06 mm, and
corresponds to the region shown in Fig. 10.43 (rotated 90◦ coun-
terclockwise). Bright regions correspond to high concentration of
the fluorescent dye. (a) Flow of the pure solvent at N = 29; (b)–
(d), flow of the polymer solution at Wi = 6.7 and at N = 8, 29, 54,
respectively
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same stock of a carefully filtered liquid, which was
divided into two equal parts. A small amount of a con-
centrated solution of the dye was added to one part,
while the other part was diluted by an equal amount of
pure water. This method of preparation provided very
good matching of the densities and refraction indices of
the liquids. The channel was illuminated from one side
by an argon-ion laser beam converted by two cylindri-
cal lenses into a broad sheet of light with a thickness of
about 40 µm in the region of observation. This produced
a thin cut of the three-dimensional mixing pattern, par-
allel to the top and bottom of the channel at half of the
channel depth [10.77, 104].

Fluorescent light emitted by the liquid in the direc-
tion perpendicular to the beam and to the macrochannel
plane was projected onto a CCD array by a camera lens
and digitized by an 8-bit, 512 × 512 frame grabber. Us-
ing homogeneous solutions with different amounts of
dye, we found the intensity of the fluorescent light cap-
tured by the camera to be linearly proportional to the
dye concentration. Therefore, the concentration of the
dye was evaluated from the fluorescent light intensity
(Fig. 10.47) [10.77, 104].

The experiments on mixing in microchannels were
carried out by adding fluorescent dyes with low diffu-
sivity to the solution and using them as tracers. We used
a few different samples of fluorescein-conjugated dex-
tran (FITCD, Sigma) with average molecular weights
M varying from 104 g/mol to 2 × 106 g/mol. In spite of
the relatively high molecular weight of FITCD, it did
not have a measurable influence on the solution relax-
ation time due to the high rigidity of the polysaccharide

�

�

�������

����
.

��

�&/

'

'&/

Fig. 10.48 Dependence of the normalized resistance Z/Z0

in the flow of solution 1 through the curvilinear channel on
the volumetric flow rate Q on a semilogarithmic scale

molecules. The diffusion coefficients of the FITCD sam-
ples in water were estimated using the data in [10.131],
giving values of 9.1 × 10−7 –7.4 × 10−8 cm2/s that
corresponded to a broad range of biological macro-
molecules. The diffusion coefficients in the solvent used
were estimated under the assumption that D ∼ 1/ηs, re-
sulting in D1 = 6.6 × 10−9 and D2 = 5.4 × 10−10 cm2/s
for 104 g/mol and 2 × 106 g/mol FITCD, respec-
tively [10.105, 106].

The concentrations of the fluorescent dyes, which
were used as passive tracers in the experiments on
mixing in the microchannel, were evaluated using
a commercial confocal microscope (Fluoview FV500,
Olympus), which was equipped with 40×, N.A.= 0.85
infinity corrected objective and a 12 bit photomultiplier.
The scanning was done at a rate of 56 lines per sec-
ond and 512 pixels per line, corresponding to a step of
0.18 µm per pixel [10.105].

Observation of Elastic Turbulence
Flow Resistance. The flow resistance in the mi-
crochannel was measured by measuring the volumetric
flux rate, Q, in a broad range of applied pres-
sure drops and by calculating the resistance factor
Z = ∆ps/Q, where ∆ps is the pressure drop per
segment. The resistance factor is a constant pro-
portional to the viscosity for Newtonian fluids in
linear, low-Re regime, and can be used as a meas-
ure of turbulent flow resistance in large channels at high
Re. Figure 10.48 shows the dependence of Z on Q, after
Z is divided by the resistance factor Z0 found for a New-
tonian liquid with the same viscosity. The ratio Z/Z0 is
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Fig. 10.49 Flow resistance, ∆ps/V versus ∆ps. The arrow
indicates the onset of the elastic instability
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constant and equal to unity in the linear regime at low
Q. At Q of about 8.5 nl/s, however, a nonlinear transi-
tion occurs; Z/Z0 starts to grow and reaches a factor of
about 2.8 at high Q. The Reynolds number was always
much lower than unity, so inertial effects were always
negligible [10.106].

Another way to measure the flow resistance is
to measure an average flow velocity through a mi-
crochannel at various pressure drops by the micro-PIV
technique. Using this method, an analog of the flow re-
sistance, ∆ps/V , versus the pressure drop per segment,
∆ps, is shown in Fig. 10.49 [10.105]. The elastic in-
stability occurs at ∆ps ≈ 50 Pa, and the flow resistance
grows up to 1.4-fold in the elastic turbulence regime.

Flow Structure, Velocity and Velocity Gradient Fields,
Velocity Fluctuations Spectra, and Velocity Statistics.
The flow structure and velocity flow field in the mi-
crochannel were investigated by combined micro-PIV
and micro-PTV techniques for a broad range of flow
rates. Above the instability threshold an initially station-
ary longitudinal vortex becomes time dependent. As one
can see in Fig. 10.50, the vortical structure fills the whole
channel cross-section and is quite spatially smooth with
irregular velocity fluctuations in time [10.109]. One gets
a similar impression from measurements of the transver-
sal velocity component at several off-center locations in
a macrochannel. Indeed, we found nonzero averages,
which typically persisted for a few minutes and changed
their sign rather randomly in time. This situation can be
explained by the presence of persistent longitudinal vor-
tical structures in the flow. These vortices probably fill
the channel cross section, with their vorticity direction
jumping between parallel and antiparallel to the mean
flow [10.104].

The spatial smoothness of the channel flow in elas-
tic turbulence was investigated by measuring profiles of
the longitudinal and transversal velocity components by
micro-PTV for different values of Wi (Fig. 10.51). One
notices that, even below the transition (squares, circles,
and triangles in Fig. 10.51), the profiles of the longitu-
dinal velocity component are clearly nonparabolic and
nonsymmetric. This apparent difference with respect to
the case of a laminar Poiseuille flow in a straight chan-
nel has been also observed in experiments with a pure
solvent (data not shown) and is confirmed by recent
numerical simulations by A. Kumar (private communi-
cation) in a low-Re flow in a similar geometry [10.109].

The longitudinal velocity profile allows us to es-
timate the critical Weissenberg number of the elastic
transition Wic = λ(γ̇ )γ̇c, where the critical shear rate

���E�

Fig. 10.50 Mid-plane horizontal confocal snapshot. The flow is
seeded with 0.2 µm fluorescent spheres. The driving pressure is
120 Pa per channel segment

γ̇c is calculated as γ̇c = 2V max
θ /d, where V max

θ is the
maximum longitudinal velocity of the profile. Indeed, at
the critical pressure difference corresponding to the on-
set of instability, ∆ps ≈ 50 Pa, one gets γ̇c � 4.2 s−1,
which leads to Wic � 13 with λ(γ̇c) � 3.1 s. On the
other hand, one can use the time-averaged longitudi-
nal velocity gradient across the channel, ∂Vθ/∂r, at the
transition to estimate Wic. Using the data in Fig. 10.54,
one then obtains Wic � 9.3. This critical value Wic is in
fair agreement with the value obtained theoretically from
the linear stability criterion for the aspect ratio, d/R1 = 1
and S = 0.82, in the experiment. Then, using the instabil-
ity criterion for the Dean flow one obtains Kc � 9, which
leads to Wic � 9 [10.96–98], while Re � 8 × 10−5.

PTV measurements also provide us with the pos-
sibility of measuring time series of the flow velocity
at specific points in the flow. The rms fluctuations of
both horizontal velocity components in the center of
the microchannel as a function of Wi are shown in
Fig. 10.52, 53. The fluctuations are practically absent
in the laminar regime, while at Wic � 13 the rms of
both velocity components start to grow sharply. These
measurements can be used as another indication of
the transition and appearance of the elastic turbulence
regime [10.109].

Figure 10.52 shows the time-averaged longitudinal
velocity V̄θ as a function of the driving pressure differ-
ence. One observes that in a laminar regime the velocity
growth is linear but slows above the transition. Other im-
portant information is provided in Fig. 10.45, where the
average longitudinal velocity gradient across the channel
at three locations as a function of Wi is presented.

The statistical properties of the velocity field are
characterized by the correlation function, which is pre-
sented in Fig. 10.55 together with a typical time series
of the instantaneous longitudinal velocity far above the
transition. The temporal dependence has well-expressed
chaotic appearance that is confirmed by the shape of the
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Fig. 10.51a,b Profiles of the (a) longitudinal velocity component, Vθ and (b) radial velocity component Vr across the
microchannel. The symbols correspond to: Full squares: Wi = 3.84, circles: Wi = 6.75, up triangles: Wi = 8.49, rhombus:
Wi = 13.56, left triangles: Wi = 14.83, right triangles: Wi = 19.4, open squares: Wi = 20.15, open circles: Wi = 22; the
full line is the result of numerical simulations

autocorrelation function, which decays monotonically
without distinct peaks [10.106].

Figure 10.56 shows the power spectra of the fluctu-
ations of the longitudinal and transversal components
of the velocity in the polymer solution flow in the
macrochannel at Wi = 6.7. The measurements were
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Fig. 10.52 Dependence of the rms fluctuations of the lon-
gitudinal component of the flow velocity Vθ,rms on Wi at
the center of the microchannel. The squares are the instru-
mental error. The arrow indicates the onset of the elastic
instability. Inset: dependence of the time average of the
longitudinal velocity component Vθ at the center of the mi-
crochannel on the pressure drop per channel segment ∆ps

done at N = 12, near the middle of the half-ring in the
middle of the channel. A spectrum of the velocity fluc-
tuations in the flow of the pure solvent at the same Q,
giving just instrumental noise, is shown for comparison.
The mean velocity was V̄ = 6.6 mm/s; the rms fluctu-
ations Vrms were 0.09V̄ and 0.04V̄ in the longitudinal
and transversal directions, respectively [10.77,104]. The
power spectra exhibit the power-law decay P ∼ f −α

with an exponent α � 3.3 that is consistent with similar
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Fig. 10.53 Dependence of the rms fluctuations of the radial
component of the flow velocity Vr,rms on Wi at the center
of the microchannel. The arrow indicates the onset of the
elastic instability
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Fig. 10.54 Dependence of the average gradients of the lon-
gitudinal component of the flow velocity, ∂Vθ/∂r on Wi,
at three different points having the same radial coordinate,
r = d/2 but different polar angles, θ = −π/2, 0, π/2. The
arrow indicates the onset of the elastic instability. Circles:
0, squares: π/2, triangles: −π/2

measurements in other setups and with the theoretical
estimates [10.76, 77, 104, 115, 116].

Mixing in the Flow. Mixing in macrochannels was stud-
ied at quite small Reynolds numbers, reaching only 0.6
for the highest Q that was explored. Therefore, the flow
of the pure solvent always remained laminar and no mix-
ing occurred (Fig. 10.47a). The boundary separating the
liquid with and without the dye was smooth and paral-
lel to the direction of flow and only became somewhat
smeared due to molecular diffusion as the liquid ad-
vanced downstream. The flow of the polymer solution
was laminar and stationary up to a value of Q corre-
sponding to Wic (and Re = 0.06), at which an elastic
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Fig. 10.55 (a) Time series of the lon-
gitudinal flow velocity Vθ at the center
of the microchannel at Wi = 20.93.
(b) Autocorrelation function of Vθ

based on about 6000 individual
velocity measurements
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Fig. 10.56 Power (P) of the fluctuations of velocity in the
middle of the channel at N = 12 as a function of frequency
f . The spectra in the polymer solution flow at Wi = 6.7 for
the velocity components along and across the mean flow
are shown by curves 1 and 2, respectively. Curve 3 shows
the velocity spectrum across the mean flow for the pure
solvent at the same Q

instability occurred. This instability led to irregular flow
and fast mixing of the liquids [10.77, 104].

A few typical mixing patterns at different N in
the polymer solution above the instability threshold are
shown in the photographs in Fig. 10.47b–d. More insight
into the structure and evolution of the mixing patterns
can be obtained from space–time diagrams. Representa-
tive diagrams taken at Wi = 6.7 at four different N are
shown in Fig. 10.57. The brightness profiles along a sin-
gle line perpendicular to the channel near the middle
of a half-ring (a horizontal line going through the mid-
dle of a snapshot in Fig. 10.47) were captured at even
time intervals of 80 ms and plotted from top to bottom.
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Fig. 10.57 Representative space–time diagrams of the poly-
mer solution flow at Wi = 6.7 taken at different positions
N along the channel

The diagrams in Fig. 10.57 share the same chaotic ap-
pearance and show features at comparable scales, but
they lose contrast as liquid advances downstream and
becomes progressively mixed [10.77, 104].

As illustrated by the space–time diagrams in
Fig. 10.57, mixing in the polymer solution flow above
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Fig. 10.58 Dependence of crms (the normalized root mean
square of concentration deviations from the average) on the
Weissenberg number Wi measured near the channel exit at
N = 29 (semilogarithmic coordinates)
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Fig. 10.59a,b Space–time plots of the FITCD distribution
across the channel taken at (a) N = 12 and (b) N = 18.
Confocal scanning was done along the same line across the
channel in the mid-plane at equal distances from the half-
ring interconnections, with even time intervals of 0.0177 s.
Profiles of the FITCD concentration at consecutive mo-
ments of time are plotted from the top to bottom

the instability threshold was a random process calling
for statistical analysis [10.77, 104]. A simple parame-
ter characterizing the homogeneity of the mixture is the
rms deviation of the dye concentration from its aver-
age value c̄ = c0/2 divided by the average value itself
crms = 〈(c− c̄)2〉1/2/c̄. A small value of crms indicates
strong homogeneity and good mixing of the liquids. At
the channel entrance, where the two injected liquids are
perfectly separated, crms is unity, and it should become
zero for a perfectly mixed liquid.
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Fig. 10.60 Time average of FITCD concentration c as
a function of the normalized coordinate across the mi-
crochannel at different locations downstream: (1) N = 7,
(2) N = 11, and (3) N = 41
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The dependence of crms on Wi near the exit of
the channel, at N = 29, is presented in Fig. 10.58. The
statistics of the dye concentration was evaluated from
space–time diagrams similar to those in Fig. 10.57. The
regions near the walls of the channel with a width of
0.1d were excluded from the statistics, because of pos-
sible image aberrations. In a stationary flow regime
(Wi < Wic), when the concentration profile did not
change in time, the brightness profiles were meas-
ured over short time intervals (about 100 s). In the
regime of an irregular flow, however, the profile of
concentration was strongly fluctuating. So, in order
to obtain representative statistics of c, the measure-
ments of the brightness profile were taken over quite
long intervals of time (20–30 min), which typically
corresponded to the total liquid discharge of about
103 d3 [10.77, 104].

The plot in Fig. 10.58 is somewhat analogous to that
in Fig. 10.20, 48, 49, which show the dependence of the
flow resistance on Wi. Indeed, the decrease in crms is an
integral result of mass transfer produced by the irregular
flow in the channel, just as growth of the flow resistance
is an integral characteristic of increase of momentum
transfer in elastic turbulence. The most striking feature
of the plot in Fig. 10.58 is certainly an abrupt drop in
crms at Wic, where the irregular motion of the liquid
sets in.

We studied the dependence of crms on N at Wi = 6.7,
corresponding to the greatest homogeneity of the mix-
ture near the channel exit (Fig. 10.58), and found crms
to decay exponentially with distance from the inlet
with a characteristic decay length ∆N of about 15 seg-
ments [10.77,104]. One can learn from Fig. 10.58 that, if
Wi is raised above 6.7, crms starts to increase again. The
most plausible explanation for this is saturation of the
growth of the velocity fluctuations together with reduc-
tion of the residence time in the flow at growing Wi (and
average flow velocity V̄ = Q/d2). If the ratio between
the fluctuating and average flow velocities remains con-
stant, while they both increase, the stirring in the flow
remains the same, but there is less time available for
molecular diffusion, and homogeneity is reduced as a re-
sult. This situation can be quantitatively described by the
growth of the Peclet number Pe = V̄ d/D. It was recently
found, for a flow of a polymer solution in a channel of
the same shape and at similar Wi, that the characteristic
length ∆N increases as Pe0.25 [10.105]. This suggests
that crms should start increasing with Wi once growth of
the velocity fluctuations has slowed down.

The typical mixing time in the channel at Wi = 6.7
was found to be 3–4 orders of magnitude shorter than the

diffusion time, d2/D, for the small molecules of fluores-
cein [10.77]. The dependence of the efficiency of mixing
at the optimal flow conditions (for the 80 ppm solution
it was Wi = 6.7) on the concentration of the polymers
was surprisingly weak (although Wic grew quickly as
the polymer concentration decreased). So, for a solution
with a polymer concentration of 10 ppm (η/ηs = 1.03),
crms values as low as 0.29 could be reached at N = 29.
(measured at Re = 0.065, where inertial effects were
still negligible). Excitation of irregular flow and active
mixing was observed down to polymer concentrations
of 7 ppm [10.77, 104].

Quantitatively similar results for mixing were ob-
served in a microchannel [10.105, 106]. We studied
in detail mixing of fluorescent-conjugated dextran
(FITCD) with 2 × 106 g/mol molecular weight in the
channel at ∆P = 124 Pa, corresponding to a flow rate
of about twice above the nonlinear transition threshold
and a cross-channel space–time-averaged longitudinal
velocity of about 173 µm/s. Variation of the tracer
concentration profiles with time at different distances
from the inlet is illustrated by the space–time plots in
Fig. 10.59a,b. One can observe that the tracer concen-
tration appears to fluctuate quite randomly without any
apparent scale in time or space. Next, one can see in
Fig. 10.59a, taken at N = 12, that the left side of the
channel, where the tracer was initially injected, looks
much brighter and has a much higher average concentra-
tion of the tracer. Although also noticeable in Fig. 10.59b
taken further downstream, at N = 18, this feature is
clearly weaker there.

Thus, stirring by the fluctuating velocity field seems
to create a more-symmetric distribution of the tracer
between the two sides of the channel. In order to validate
this observation, we measured the time average of the
tracer concentration c̄ at different positions across the
channel and at different N (Fig. 10.60).

One can see that the cross-channel distribution of
c̄/c0 close to the inlet, at N = 7, is strongly influenced
by the asymmetric conditions at the channel entrance.
As one can observe from the curve at N = 11, however,
the imprint of the initial conditions is clearly fading as
the liquid advances downstream and being stirred. Fur-
ther downstream, at N = 41, asymmetry in the tracer
distribution introduced by the initial conditions has dis-
appeared completely. Fading of the influence of the
initial condition with time and restoration of symme-
try in flow in a statistical sense are both distinct features
of chaotic and turbulent flows. Therefore, the curves in
Fig. 10.60 provide further evidence for the truly chaotic
nature of the flow in the microchannel [10.105, 106].
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10.3.4 Conclusions

Summarizing these experimental results, we conclude
that the flow at sufficiently high Wi in curved macro-
and microchannels exhibits main features that are rather
similar to those observed in the swirling flow between
two disks. Above the elastic instability threshold the flow
of the polymer solution in the channel, firstly, exhibits
two major features of turbulent flows: a major increase
in the flow resistance and in the rate of mixing, and
secondly, the fluid motion generates the velocity power
spectra across a wide range of frequencies as well as
wavenumber domains, which provides solid evidence
for the turbulent character of the flow, particularly due
to the absence of peaks in the spectra in Fig. 10.56 simi-
lar to those observed in the swirling flow (Fig. 10.22, 23).
The spectra of both longitudinal and transversal velocity
components do not exhibit any distinct peaks and have
broad regions of power-law decay with an exponent of
about −3.3. Since the power spectra in Fig. 10.56 were
measured at a point with a high mean flow velocity (10
times higher than a characteristic fluctuating velocity),
we can use the Taylor hypothesis and argue that the
spectra in Fig. 10.56 actually reflect the spatial struc-
ture of the flow. Then the power-law decay region can
be transferred to the spatial domain, with the power of
the velocity fluctuations scaling as P ∼ k−3.3 with the
wavenumber k (see the remark on this subject in the pre-
vious section). We also notice here that the exponent of
−3.3 in Fig. 10.56 is very close to those measured in
the flow between two plates, which varied from −3.3
to −3.6 depending on the position. So, one can suggest
that the decay of the power of the velocity fluctuations
with an exponent of around −3.5 is a rather general
feature of elasticity-induced turbulent flows.

The functional form of the velocity power spectra,
P ∼ k−3.3, suggests that the power of fluctuations of
velocity gradients scales like k−1.3. An integral of k−1.3

diverges for k → 0 and converges at k → ∞. This means
that the main contribution to the fluctuations of the ve-
locity gradients and the velocity differences at all scales
comes from the largest eddies, having dimensions of the
whole system (the diameter of the channel or the gap
between the plates). This conclusion has an immediate
implication for mixing in the flow: it should result in the
same type of patterns and in functionally the same statis-
tics as in the case of a completely homogeneous flow,
V(r, t) = V0(t)+ ∂V

∂r (t)(r − r(0)), randomly varying in
time (r is the position vector).

Such a flow is a realization of the so-called Batch-
elor regime of mixing [10.125], and the problem of
the statistics of a tracer (dye) distribution in it has
been solved analytically recently [10.118, 132, 133].
The Batchelor regime occurs at small scales (below
the Kolmogorov dissipation scale [10.79, 117]) in usual
(high-Re) turbulence, and is rather difficult to real-
ize in the laboratory otherwise. Therefore, the elastic
turbulent flow in the channel provided a very con-
venient experimental system for quantitative study of
mixing in this regime [10.77, 104–106]. The experi-
mental results on the correlation functions and PDF of
dye concentration, and on their dependence on mixing
time, agreed very well with the theoretical predic-
tions [10.77, 105, 106]. A practical message of the
experiments is that very viscous liquids can be ef-
ficiently mixed in curvilinear channels at very low
flow rates by adding high-molecular-weight polymers
at very low concentrations. This method of mixing,
we believe, can find some industrial and laboratory
applications [10.134].

10.4 Measurements for Large-Eddy Simulations

The choice of measurement technique for experimen-
tal turbulence research depends upon how turbulence
is defined, in particular what type of decomposition is
envisioned. In the classical Reynolds-averaged Navier–
Stokes (RANS) decomposition, turbulence is defined
as the deviation from the ensemble-averaged mean
velocity field (Sect. 10.1.2) [10.4, 6]. For statistically
stationary flows, ergodicity is often assumed and en-
semble averaging is replaced with the more-practical
method of time averaging. Hence for RANS, point
measurement techniques such as hot wires or LDV

that record long time records of turbulence signals
are appropriate and have a long history of applica-
tions to turbulence research (Sect. 10.1.1). Combined
with time averaging, these signals allow one to mea-
sure the mean velocity and moments of the velocity,
for instance classical Reynolds stresses σRe

ij = −u′
iu′

j ,
where an overbar denotes statistical (ensemble or time)
averaging. Such data have supported model devel-
opments by providing detailed databases to which
RANS simulation results can be compared, and have
also provided fundamental insights into turbulent flow
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that have inspired and tested concepts for model
developments.

In large-eddy simulation (LES) of turbulence [10.4,
135, 136], the most-often used decomposition involves
spatial, three-dimensional filtering, rather than time av-
eraging. In LES, the effects of the unresolved motions
are included in the equations through new stresses (mo-
mentum fluxes) that must be parameterized by means
of closure relations, and experimental data can be
employed to support model development and the val-
idation of numerical simulations. Since the type of data
needed differs in significant aspects from that which
is classically employed in the context of RANS, these
measurement techniques are covered separately in the
present section. The section briefly reviews LES and the
specific data requirements for LES (Sect. 10.4.1), and
then describes the experimental methods that have been
employed to obtain such data starting with arrays of
point measurement techniques (Sect. 10.4.2) and optical
planar velocimetry measurement methods (Sect. 10.4.3).
Sample results from the latter applied to studies of LES
models are presented in (Sect. 10.4.4). The application of
optical volumetric techniques for 3-D velocity measure-
ments are described in (Sect. 10.4.5). Scalar fluctuation
measurements using optical techniques and their appli-
cations to the study of LES variables of interest to scalar
mixing and combustion are reviewed in Sect. 10.4.6.

10.4.1 Large-Eddy Simulation
and Data Requirements

In LES, the objective is to solve equations for the veloc-
ity field convolved with a spatial filter at a scale ∆. The
filtered velocity field is defined according to

ũi (x) =
∫∫∫

ui (x′)G∆(x− x′)d3x′ , (10.99)

where G∆(x) is a filter function (here assumed to be spa-
tially homogeneous, i. e., only a function of x− x′, for
simplicity), of characteristic scale ∆. An example is the
Gaussian filter G∆(x) = [6/(π∆2)] exp(−6x2/∆2). The
decomposition of the velocity field into large (resolved
or filtered) and small [unresolved or subgrid-scale stress
(SGS)] scales may be performed using other types of fil-
ters [10.4,136,137] such as the spectral cutoff filter and
the box, or top-hat, filter. The spectral cutoff filter has the
desirable property that it is also a projection in the sense
that twice-filtered fields are equal to single-filtered fields
and it thus cleanly separates between scales. A drawback
is that, when filtering spatially localized phenomena, it
causes nonlocal oscillatory behavior and, since the filter

has negative lobes, the resulting stress tensor does not
follow some important realizability conditions [10.138].
The box filter, on the other hand, has good spatial lo-
calization but does not allow unambiguous separation
between scales because of spectral overlap. The Gaus-
sian filter has intermediate localization properties in both
physical and spectral space, although it is closer to the
box filter and also has spectral overlap. Convolving the
Navier–Stokes equations with such filters yields the LES
equations for incompressible flow

∂ũi

∂t
+ ũ j

∂ũi

∂x j
= − 1

ρ

∂ p̃

∂xi
+ν∇2ũi − ∂

∂x j
τij + f̃i ,

∂ũi

∂xi
= 0 ; (10.100)

fi is the external forcing and τij is the subgrid-scale
stress (SGS) tensor defined as

τij = ũiu j − ũi ũ j . (10.101)

This tensor arises due to the spatial filtering of the
nonlinear term in the Navier–Stokes equations, and is the
LES analog of the classical Reynolds stress in RANS.
To highlight the analogy, we note that the classical
(kinematic) Reynolds stress σRe

ij can also be written as

−σRe
ij ≡ u′

iu′
j = uiu j − ūi ū j , where an overbar still de-

notes statistical (ensemble or time) averaging. With an
SGS model (closure), i. e., replacing τij with an expres-
sion in terms of the filtered resolved velocity ũ, the LES
equations may be discretized at a spatial resolution on
the order of the filter scale ∆.

The most popular models for the subgrid-scale stress
belong to two classes: eddy viscosity and similarity
(or nonlinear) models. The first was introduced by
Smagorinsky [10.139] and bears his name. It reads, for
the deviatoric part of the stress (= τij − 1

3τkkδij )

τ S
ij = −2(C∆

s ∆)2|S̃|S̃ij , (10.102)

where S̃ij is the filtered stain rate and |S̃| =
√

2S̃ij S̃ij is

its magnitude. The Smagorinsky coefficient C∆
s must be

specified [10.140], or it may be determined dynamically
from the simulated large-scale fields as proposed by
Germano et al. [10.141]. This procedure was based on
the Germano identity [10.142],

Lij = τij (α∆)− τij (∆) , (10.103)

relating the SGS stresses at scales α∆ and ∆, where
α > 1 and typically α = 2 (an overbar denotes filtering
at the scale α∆). The tensor Lij is the so-called resolved
stress tensor defined as

Lij = ũi ũ j − ¯̃ui ¯̃u j . (10.104)
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Substituting the Samgorinsky model for the two
stress terms on the right-hand side results in

Lij − 1

3
Lkkδij = (C∆

s

)2
Mij ,

where Mij = −2∆2
[

α2
(

Cα∆
s

C∆
s

)2

∣
∣S̃
∣
∣S̃ij −|S̃|S̃ij

]

. (10.105)

Assuming scale invariance, i. e., Cα∆
s = C∆

s , one can
determine C∆

s based on variables available during
LES. Minimizing the ensemble-averaged error between
the right- and left-hand sides of this equation leads
to [10.141, 143, 144]

(

C∆,dyn
s

)2 = 〈Lij Mij〉
〈Mij Mij〉 . (10.106)

The dynamic model has been used extensively in
numerous applications of LES (see reviews in Pi-
omelli [10.145] and Meneveau and Katz [10.146]). For
an overview of several other eddy-viscosity SGS mod-
els, see Lesieur and Metais [10.135] and Meneveau and
Katz [10.146].

The second type of model is related to the similarity
model of Bardina et al. [10.147] and was originally intro-
duced based on analysis of direct numerical simulation
data. Further evidence was obtained from detailed anal-
ysis of experimental data, as reviewed in Sect. 10.4.4
below. A computationally convenient version of this
model is the nonlinear model [10.148–150] that is ex-
pressed in terms of the resolved velocity gradient tensor
as

τNL
ij = cA∆2 Ãik Ã jk , Ãij = ∂ũi

∂x j
. (10.107)

Both models may be linearly combined to form
so-called mixed models [10.147]. These models also
bear a resemblance to so-called deconvolution mod-
els [10.151].

For the transport of a scalar c (e.g., concentra-
tion, temperature), the filtered scalar transport equation
yields SGS fluxes of the form qi = ũi c− ũi c̃ [10.152].
To quantify mixing of a conserved scalar, its vari-

ance ˜c2 − c̃2 and the scalar-variance dissipation rate
χ = γ [ �(∇c) · (∇c)−∇c̃ ·∇c̃] are often used but must be
modeled since they are not resolved in LES [10.153,
154]). In chemically reacting flows, unresolved scalar
consumption rates are often written in terms of the dif-
ference |̃∇c|− |∇c̃| [10.155], which is also not resolved
due to the nonlinearity inherent in the absolute value.

Studies of LES and SGS modeling based on em-
pirical data can be divided into two broad categories
Piomelli et al. [10.156]: a posteriori tests and a priori
analysis. In a posteriori tests, the results from a sim-
ulation that utilizes a particular SGS model to be
studied are compared with available data. These data
can originate from direct numerical simulation (DNS)
or from experiments, these being complementary ap-
proaches. DNS provides full databases with all fields
resolved in three dimensions, but at limited Reynolds
numbers. Experimental data may provide access to
high-Reynolds-number flows in possibly complex flow
conditions, but acquisition of multicomponent and mul-
tipoint velocity experimental data is challenging.

For a posteriori tests the data are processed sta-
tistically before comparing with LES output in order
to provide mean velocity profiles, rms distributions,
spectra, etc.. Since the LES only provides the filtered
variables, for meaningful comparisons two options are
available:

1. The subgrid model provides missing statistics and
one may compare the statistics of the unfiltered
fields.

2. The data must be filtered at a scale comparable to
the LES filter scale and the statistics of the filtered
fields are compared.

A posteriori tests are considered to be unambiguous
tests of the combined performance of a SGS model cou-
pled with its numerical implementation. Because of their
integrated nature, they do not normally provide much in-
sight into the detailed physics of a model and the reasons
why they do, or do not, work.

In a priori analysis, one focuses upon the quanti-
ties to be modeled, such as the SGS stress or force as
computed directly from data according to their defini-
tion (10.101), and compares them to model expressions
that may depend upon local filtered large-scale vari-
ables. Conversely, a priori analysis allows one to focus
on particular features of a model under more controlled
conditions. However, a priori tests do not account for the
feedback that may occur between the SGS model and the
resolved scales in an actual simulation. Consequently, it
has been found that good a priori behavior does not nec-
essarily imply good performance in simulations (e.g.,
the similarity model). Nevertheless, by isolating specific
features of the SGS physics and models, a priori stud-
ies have motivated significant fundamental advances in
LES and SGS modeling.

In both a posteriori and a priori studies, one re-
quires well-resolved data that must be filtered in space.
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Since LES simulates a range of scales, and one wishes
to resolve significant parts of the small-scale motions,
the measurement technique must be able to resolve
a significant range of length and time scales. These re-
quirements typically imply that multipoint measurement
techniques are required in experiments to support LES
and SGS model developments. Experimental techniques
that can record multipoint data are needed also because
LES is often required to predict more than just single-
point statistics, for instance spectra or spatial correlation
functions.

One of the most interesting aspects of the interac-
tions among small and large scales in LES is the rate at
which energy is transferred between these scales. From
the transport equations for resolved and SGS kinetic en-
ergy (e.g., Piomelli et al. [10.157]), this exchange can
be identified as the term

Π∆ = − 〈τij S̃ij
〉

, (10.108)

often called the SGS kinetic-energy dissipation rate.
A cascade of kinetic energy from large to small scales
is characterized by positive values of Π∆. Many SGS
stress models are calibrated by matching the modeled
and real SGS dissipation, making it a central param-
eter that needs to be measured during a priori studies.
Measurement of Π∆ consists of evaluating as many com-
ponents of the SGS stress tensor and filtered strain-rate
tensor as are available from the measurement instru-
ment, evaluating the tensor contraction, and time or
ensemble averaging to obtain a statistically meaning-
ful result. For isotropic turbulence filtered in the inertial
range, the SGS dissipation is almost equal to the viscous
dissipation rate [10.4,137,140]. As described below, of-
ten only a subset of the tensor components needed to
evaluate the contractions in (10.108) are available. For
instance, if two components of velocity are available in
the (x1, x2) planes, a two-dimensional (2-D) surrogate
of SGS dissipation may be evaluated according to

Π∆−2D = −(〈τ11 S̃11〉+〈τ22 S̃22〉
+2〈τ12 S̃12〉) . (10.109)

For isotropic turbulence these in-plane contributors
constitute 7/15 of the total value. To measure the model
coefficients in a priori tests, the ensemble-averaged SGS
dissipation can be matched to the measured values. For
instance, for the Smagorinsky model this leads to the
following expression

(C∆
S )2 = Π∆

∆2
〈

(2S̃ij S̃ij )
3
2
〉 , (10.110)

in which the numerator and denominators can be meas-
ured.

10.4.2 Arrays of Single-Point Instruments
for Studies of SGS Dynamics

Classical single-point measurement techniques in-
clude hot-wire anemometers (Sect. 5.2), laser Doppler
anemometers (Sect. 5.3.1), sonic anemometers (Sect.
5.7), Pitot probes, etc. Using a single-point sensor only
temporal filtering can be performed. Using Taylor’s
hypothesis this can be interpreted as one-dimensional
spatial filtering in the streamwise direction. Resolving
sufficient spatial resolution usually means that good
high-frequency response is required (eliminating, for
instance, Pitot probes from consideration).

Following this approach and using only single-
point sensors (hot-wire probes), Meneveau [10.158]
and Meneveau and O’Neil [10.159] analyzed data in
grid turbulence to study stress–velocity correlations
and the scaling of dissipation as a function of length
scale, respectively, and O’Neil and Meneveau [10.160]
considered turbulence in a cylinder wake. Porté-Agel
et al. [10.161] studied turbulence and scalar trans-
port in the atmospheric boundary layer using data
from a single sonic anemometer. The accuracy of such
one-dimensional (1-D) filtering and Taylor’s hypothe-
sis have been addressed for wall-bounded flows using
DNS [10.162], LES [10.163], and field-measurement
data using 2-D filtering (Porté-Agel et al. [10.164], see
below). The results show that one-dimensional filtering
does not sufficiently filter out the cross-stream variabil-
ity of the turbulence. For quantitatively accurate results,
these analyses show that at least two-dimensional filter-
ing should be used.

The two-dimensional data thus required can be ob-
tained using optical techniques based on light sheets
(Sect. 10.4.3 and Sect. 10.4.4). If one is limited to point
sensors, an array of point sensors arranged along a line
perpendicular to the mean velocity must be used. This
approach has been proposed by Tong et al. [10.165]
and applied in Porté-Agel et al. [10.164, 166] and Horst
et al. [10.167] for sonic anemometer measurements in
the atmospheric boundary layer. It has also been ap-
plied to hot-wire measurements in laboratory turbulence.
Compared to fully 3-D filtering, the accuracy of 2-D fil-
tering and Taylor’s hypothesis was found to be quite
good based on the DNS [10.162], LES [10.163], and
atmospheric field [10.168] studies.

For laboratory turbulence studies using hot-wire ar-
rays, the spatial and temporal resolutions of each sensor
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is typically on the order of about 0.5 mm and 10–20 kHz,
respectively. Turbulence in wind-tunnel flows typically
has Kolmogorov scales on the order of 0.1–0.2 mm and
advection velocities on the order of 10 m/s, and thus
frequencies on the order of 50 kHz. Therefore, typical
hot-wire probes under-resolve the Kolmogorov scale and
Kolmogorov advection frequency in the flows consid-
ered by factors of about three to five. Also, the spacing
between sensors in an array significantly exceeds the
Kolmogorov scale ηK, typically by factors of five or
more. Thus, these measurements do not fully resolve the
viscous dissipation range of turbulence. However, just
as Reynolds stresses are dominated by the large-scale
turbulence fluctuations and their measurement does not
require resolution of the viscous range [10.4], in LES
the SGS stresses or scalar fluxes are dominated by
scales near the filter scale ∆. Thus to measure the SGS
momentum or scalar fluxes with reasonable accuracy,
measurement resolutions of ∆/10 to ∆/5 are often con-
sidered to be sufficient. Thus, for instance, an experiment
with spatial resolution of 5ηK allows accurate measure-
ment of SGS fluxes at scales of 25 to 50ηK, i. e., scales
of interest in the inertial range of turbulence.

A complete analysis of the errors incurred when not
fully resolving the entire range of scales is difficult to
perform and depends upon the variables of interest. For
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Fig. 10.61 Three-dimensional radial energy spectra in
decaying isotropic turbulence. The solid and dashed
lines represent the results from LES (using the dy-
namic Smagorinsky model) and experiments, respectively.
The experimental spectra are shown in their entirety
without filtering. The filter cutoff is at wavenumber
k1 = π/∆ = 78.5 m−1. The test-filter scale is at k1 = π/2∆.
(after Kang et al. [10.169], with permission)

instance, the error analysis presented in Cerutti and Men-
eveau [10.170] shows that, when evaluating the average
value of the trace of the SGS tensor (〈τii〉) from four
probes separated by a distance ∆/2 using a discrete box
filter in the cross-stream direction, errors are on the order
of 6%. This analysis is based on analytical integration
of a theoretical spectrum where one assumes an ideal
inertial range of turbulence. Evaluating the actual un-
certainty in more complex flows with anisotropic and
inhomogeneous statistics is a challenging task.

Results from a priori studies using arrays of
point sensors include the works of Cerutti and Men-
eveau [10.170] and Cerutti et al. [10.171], who used
four-probe hot-wire arrays in a wind tunnel to mea-
sure filtered turbulence signals and SGS stresses. The
results were used to quantify so-called spectral hyper-
viscosity models. Later, Kang and Meneveau [10.172]
used hot-wire arrays for a study of SGS anisotropy in
a turbulent wake, showing that the covariance tensors of
SGS quantities and filtered velocity gradients became
more isotropic at small scales. However, for third-order
moments associated with energy flux and SGS dissi-
pation, the approach to isotropy was exceedingly slow.
Kang and Meneveau [10.173] quantified the direct ef-
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Fig. 10.62 Probability density function of the filtered
velocity increment δũ1 = ũ1(x1 +r)− ũ1(x1) at a displace-
ment r = ∆ and at 48 mesh sizes downstream of the active
grid. The filter size was ∆ = 0.08 (m). The velocity incre-
ments are normalized with their root-mean-square values.
Dashed line: experimental data; dotted line: Smagorin-
sky model; dashed-dot line (indistiguisheable from dotted
line): dynamic Smagorinsky model; solid line: dynamic
mixed nonlinear model (after Kang et al. [10.169], with
permission)
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fect of coherent structures in a cylinder wake on SGS
dynamics and found that they had a surprisingly strong
impact across scales, even at filter scales significantly
smaller than the size of the coherent structures. Thus the
approach to isotropy appears much slower than is as-
sumed in most models for many practical applications
of LES. Chen et al. [10.174] used hot- and cold-wire
arrays consisting of three hot- and cold-wire probes to
study a heated turbulent jet flow. Their study focused on
joint statistics in the context of filtered density function
methods in LES.

Array-filtered data have also been used for a posteri-
ori tests of LES turbulence models. Kang et al. [10.169]
generated a database from measurements in a wind tun-
nel (a remake of the Comte-Bellot and Corrsin [10.175]
turbulence decay experiment) behind an active grid.
Active grids can generate turbulence at significantly
higher Reynolds number [10.176] than passive grids
and hence are a useful tool for turbulence generation
in LES studies, which typically focus on high-Re flows
(Reλ ≈ 720 was achieved at the first measurement sta-
tion of Kang et al. [10.169]). The energy spectra at four
downstream distances from the grid, ranging from 20
to 48 grid-mesh sizes, were measured and documented
for subsequent initialization of, and comparison with,
LES. The data were recorded using an array of four
X-wire probes with which different filter sizes could
be achieved by varying the probe separation. Besides
the spectra, higher-order statistics of the filtered veloc-
ity were quantified by measuring probability density
functions, hyperflatness and skewness coefficients of
two-point velocity increments. The data were used to
study the ability of LES to reproduce both the spectral
and higher-order statistics of the resolved velocity field.
Specifically, the Smagorinsky, dynamic Smagorinsky,
and dynamic mixed nonlinear models were considered.
Overall, it is found that these various LES models
predicted accurate low-order statistics and spectra of
resolved scales in isotropic turbulence during the de-
cay. For instance, Fig. 10.61 shows the time evolution
of radial energy spectra deduced from the experimen-
tal data; the solid lines are the results from LES using
the dynamic model. As can be seen, there is very good
agreement in the range of wavenumbers resolved by the
LES, except for a small pile-up of energy next to the
cutoff wavenumber.

To quantify the ability of LES to reproduce higher-
order statistics, probability density functions of filtered
velocity increments were measured and compared to
LES; the results are shown in Fig. 10.62. It can be
seen that the three models underpredicted the inter-

mittency of longitudinal velocity increments at small
distances.

Turbulence in the atmospheric surface layer also
poses important modeling challenges for LES. Var-
ious experimental field campaigns to deploy arrays
of sonic anemometers have been undertaken. Tong
et al. [10.163] and Porté-Agel et al. [10.164] per-
formed experiments in which a horizontal array of sonic
anemometers, at a single height, was used to sample
the wind turbulence fluctuations. A next generation of
experiments [10.166, 167, 177, 178] incorporated an-
other horizontal array of sonic anemometers at a second
height, allowing vertical gradients to be evaluated in
conjunction with 2-D horizontal filtering. Such a config-
uration allowed for the computation of the full filtered
strain-rate tensor, and comparisons of all tensor com-
ponents and associated geometric alignments. A priori
studies of the Smagorinsky model coefficient measured
again using (10.110) were performed [10.178]. Results
were used to quantify the effects of atmospheric thermal
stratification and distance to the ground on the charac-
teristic trends of the coefficient. Kleissl et al. [10.179]
used test filtering at various scales to examine the
performance of the dynamic (see [10.141]) and scale-
dependent dynamic (see [10.180]) models based on the
data. They found that the scale-dependent version of
the model gave much better predictions of the coeffi-
cients and the trends that had been observed in Kleissl
et al. [10.178].

10.4.3 Planar Particle Image Velocimetry
(PIV) for SGS Dynamics and LES

The ideal experimental data for a priori evaluation of
SGS stress models for LES must simultaneously re-
solve a wide range of length scales at a large number of
measurement locations. Consequently, the instantaneous
spatial distribution of two or three velocity components
in sample planes provided by particle image velocime-
try (PIV) (Sect. 5.3.2) is an ideal tool for obtaining such
data. Spatial filtering of the instantaneous velocity distri-
bution, typically using a box filter, provides the resolved
flow, which can then be derived to obtain the in-plane
components of the filtered velocity gradient tensor, fre-
quently used in SGS stress models. The SGS stresses
can also be calculated directly, based on the definition
given in (10.101). Planar PIV provides entire planes of
filtered and SGS variables, while arrays of single-point
measurements described in Sect. 10.4.2 provided such
data only along a single coordinate (time). 2-D maps of
the local, instantaneous SGS dissipation, (Π(x, t)), de-
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fined as in (10.108) but without the averaging operator,
can also be obtained from planar PIV data. Its instanta-
neous value can be positive, i. e., energy flowing from
resolved to SGS scales or negative, i. e., backscatter of
energy from subgrid to resolved scales. However, its
ensemble-averaged value (10.108) is typically, but not
always, positive, as described in detail in this section.

Planar PIV data only provides the in-plane com-
ponents of (contributors to) the SGS dissipation. The
first application of PIV data to evaluate SGS stress
models was reported in Liu et al. [10.149] using 2-D
data obtained in the far field of a round jet. Bearing
in mind that these measurements were performed dur-
ing the early 1990s, double-exposure film photography
was the only means of obtaining PIV data that could be
spatially filtered at different scales to measured trends.
Their 56 × 56 mm negatives were scanned and converted
to 5000 × 5000 pixels arrays, and autocorrelation anal-
ysis [10.181] was used to calculate the velocity, taking
advantage of the unidirectional flow in the jet. The dis-
sipation rate and related scales of the turbulence were
estimated by calculating the ensemble-averaged, radial
two-dimensional spectra of both velocity components.
Fitting a Kolmogorov spectrum with a -5/3 slope line to
the inertial part of these spectra provided the dissipation
rate.

To account for the missing out-of-plane components,
Liu et al. [10.149] used various estimates based on as-
sumed local turbulence isotropy. Several spatial filters
were used to calculate the SGS stresses and filtered
velocity gradients, including:

1. A box or top-hat filter, i. e., a spatially averaged ve-
locity over a domain with size ∆ surrounding a point.
The filtered area size ranged from 8 ×8 to 32 ×32 ve-
locity vectors. Because of its simplicity, it has been
the most popular method.

2. A truncated Gaussian filter.
3. A spectral cutoff filter, which inherently involved

significant truncation errors in a velocity field with
finite size. Consequently, spectral cutoff filters have
had very limited use.

To be consistent with the data that would be available
during LES, spatial velocity gradient were calculated us-
ing coarse grids, i. e., at scales of the filtered field. The
results enabled direct observations of the spatial distri-
butions of stresses in comparison to modeled values.
Lack of agreement between the measured stresses and
the predictions of the Smagorinsky model with a fixed
coefficient was clearly evident, as also confirmed by
calculation of the correlation coefficients between meas-

ured and predicted stresses. These trends confirmed prior
findings based on direct numerical simulations at lower
Reynolds numbers [10.147, 148].

10.4.4 Case Studies and Sample Results
Using Planar PIV Measurements

To examine the relationships between flow structures
at different scales, Liu et al. [10.149] decomposed the
velocity field into logarithmic bands. Observed simi-
larity and coherence between structures in consecutive
bands led to a reformulation of the stress scale-similarity
model,

τL
ij = cLLij , (10.111)

where an overbar indicates filtering at scale α∆(α ≥ 1),
and Lij is the resolved stress (10.104), i. e., the stress
that would be obtained by filtering products of the re-
solved velocity components available from the LES data.
For α = 1, the scale-similarity model coincides with the
Bardina et al. [10.147] model. The measured correlation
coefficients of the similarity model with the measured
stress were substantially higher than those of the eddy-
viscosity closures, in agreement with visual comparisons
between distributions of measured and modeled values.
The model coefficient was also calculated by matching
the modeled and measured SGS dissipation, i. e.,

CL = 〈τij S̃ij〉
〈Lij S̃ij〉

. (10.112)

The experimental values were CL ≈ 1. The first-
order approximation of the similarity model, the
nonlinear (or Clark model, Clark et al. [10.148]) model
(10.107), maintained a high correlation with measured
stresses. To avoid stability problems during simulations,
already observed by Bardina et al. [10.147], these sim-
ilarity models need to be combined with eddy-viscosity
model, leading to a mixed model (for a review of the rele-
vant literature, see Meneveau and Katz [10.146] and Vre-
man et al. [10.181]). These models also maintained the
high correlation with the measured stress, but the eddy-
viscosity term contributed to a positive SGS dissipation,
reducing problems associated with numerical instability.

Using the PIV data of Liu et al. [10.149], Mene-
veau and Katz [10.182] explicitly evaluated the errors
and established the accuracy with which models repro-
duced flow features at scales falling between the grid and
test filters. The analysis demonstrated that the mixed
nonlinear model yielded less error than the dynamic
Smagorinsky and dynamic mixed model involving the
similarity model.
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Bastiaans et al. [10.183] used 2-D particle track-
ing velocimetry (PTV) to examine the SGS stresses,
dissipation, and model predictions in a confined free
convection flow generated by a transitional thermal
plume. Their measured distributions of in-plane stress
components and SGS dissipation rate showed regions
of mean-energy backscatter within the plume, and on
both sides of the impingement region on the upper wall
of their facility. A priori testing of the Smagorinsky
model showed reasonable qualitative agreement for the
shear and wall-normal stress, except for regions located
close to the wall, but their values differed within the
plume. Predictions of normal SGS stress components
by the dynamic model with a wide range of coefficients
showed some improvements, but their values were still
underestimated. For the shear stress, the dynamic model
predictions had the wrong sign. However, inherently, the
dynamic model provided reasonable values for the mean
SGS dissipation rate. Near the no-slip wall, the predic-
tions of Π∆ depended on how the dynamic procedure
was implemented.

Liu et al. [10.184] studied experimentally the re-
sponse, evolution, and modeling of SGS stresses during
rapid straining of turbulence. A unique experimental
setup generated nearly isotropic turbulence with very
low mean velocity in a water tank by means of four
symmetrically located spinning grids. Spatially uniform
rapid axisymmetric expansion, i. e., an axisymmetric
stagnation-point flow, was generated by pushing two
disks towards each other in the central portion of the
tank. The rod connected to each disk was pushed by
a cam, which was driven by precision stepping motors.
In order to produce time-independent straining, the dis-
tance between the plate and the stagnation point xp(t)
had to be of the form xp(t) = xp(t0) exp[−S∗(t − t0)],
where S∗ was the mean strain rate. Consequently the
speed of the plates was U(t) = S∗xp(t). The shape
of the cams was designed to produce the desired
displacement.

The velocity was measured using 2-D PIV on a hor-
izontal plane containing the axis of the plate and the
stagnation point. The light sheet was generated by a cop-
per vapor laser, and images were recorded on 35 mm
film using a movie camera operating at 33 frame/s. An
electro-optical image shifting technique involving a fer-
roelectric liquid crystal [10.185] was used to eliminate
the problem of directional ambiguity in the double-
exposure images. Each dataset consisted of 10 images.
Results of 10 such experiments were used during the
data analysis. The initial dissipation rate ε0 and Kol-
mogorov scale, η0 = (ν3/ε0)1/4, were again estimated

from radial two-dimensional spectra of both velocity
components, which had clear inertial ranges with a −5/3
slope. One-dimensional spectra obtained for perpendic-
ular planes were used for confirming that local isotropy
indeed existed. Subsequently, the rms values of veloc-
ity fluctuations provided the integral scale L0 = u′3/ε0
the Taylor microscale, λ = u′(15ν/ε0)1/2, and the Taylor
microscale Reynolds number, Reλ = u′λ/ν (=290). The
dimensionless straining parameter was S∗k0/ε0 = 17,
where k0 was the turbulent kinetic energy prior to
straining.

Ensemble and spatial averaging of the PIV data for
each phase of the straining process provided S∗, and spa-
tial box filtering provided in-plane SGS stresses and the
velocity gradient tensor Ãij . When straining started, the
initially isotropic turbulence became anisotropic, with
the compressed τ11 increasing and becoming scale de-
pendent immediately, while the extended τ22 responded
slowly, eventually also increasing, but remaining scale
independent. To elucidate the phenomena, the velocity
was decomposed into a turbulent part, uT

i (xi , t), and an
applied straining part, Ui (xi , t). Accordingly, the SGS
stress was decomposed into three elements: a turbulence
part τT

ij , a cross-term τC
ij , and an applied straining part

τM
ij , where

τT
ij =�uT

i uT
j − ũT

i ũT
j ,

τC
ij =�uT

i U j − ũT
i Ũ j +�UiuT

j − Ũi ũ
T
j ,

τM
ij =�UiU j − ŨiŨ j = ∆2

12

∂Ui

∂xm

∂U j

∂xm
. (10.113)

For spatially uniform mean straining: τM
11 =

(∆2/12)〈S̃11〉2, τM
22 = (∆2/12)〈S̃22〉2, τM

12 = 0. Analy-

sis of the data showed that 〈τT
ij 〉 ∼ ∆

2
3 , in agreement

with Kolmogorov scaling, and that τC
ij ∼ ∆. The data

also confirmed τM
ij ∼ ∆2. At large filter scales, all the

stress elements became comparable. The measured data
were compared to predictions of rapid distortion the-
ory (RDT [10.186]). Comparing the evolution of the
predicted and measured normal stress components, the
experimental results were more isotropic than RDT
predictions. The evolution of the anisotropy tensor

bτ
ij = rij

rkk
− 1

3
δij ,

rij (t) = [τij (ti )]spatially and ensemble-averaged

[τij (t0)]spatially and ensemble-averaged
,

(10.114)

where ti represents a certain phase in the straining
process, is shown in Fig. 10.63 below (Fig. 12 in Liu
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et al. [10.184]). As is evident, bij became increas-
ingly isotropic with decreasing scale. However, even
at the largest scale considered (280η), bij is still less
anisotropic than the RDT prediction. This trend is not
surprising since the measured characteristic time scale
for eddies of size ∆, T∆ = ε1/3∆2/3, is comparable to
the time scale of the applied straining. Thus, the basic
assumption of RDT, namely that S∗−1 	 T∆, does not
apply to that study.

Analysis of correlation coefficients between the
modeled and measured SGS stresses showed that rapid
straining did not affect the high correlation values for
the similarity model, and only slightly increased the low
correlation coefficients for the Smagorinsky model. An-
other method for evaluating models was based on the
squared error between the real and modeled SGS force,
i. e., the divergence of the SGS stresses. The error of the
Smagorinsky model was significantly larger than that of
the similarity model but both were substantial. Trends of
the ensemble-averaged SGS dissipation for each phase
of the straining process were also compared to those
calculated based on eddy-viscosity and similarity mod-
els. During straining the SGS dissipation increased (as
expected) and became scale dependent, increasing with
filter size. The measured SGS stress model coefficients,
calculated using pairs of equations combining (10.110)
and (10.112), showed that straining decreased CL by
more than 50%, and more than doubled C2

s . The lat-
ter indicated that a model with fixed coefficients would
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Fig. 10.63 Evolution of the mean subgrid-scale stress during strain-
ing of turbulence, as measured using planar PIV. Shown is the
anisotropy tensor bij of normalized stress rij . The solid line and
upper set of symbols: 11 component; dashed line and lower set
of symbols: 22 component. Stars: ∆/η = 280, rhombs: ∆/η = 80,
triangles: ∆/η = 40, circles: ∆/η = 20; lines: 2-D filtered RDT
prediction (Liu et al. [10.184], with permission from CUP)

underpredict dissipation, in contradiction to the expec-
tation that the Smagorinsky model should overdissipate
energy in highly strained flows. To explain these trends,
the contributions of the turbulent, cross- and applied
straining parts of the SGS stress were examined sepa-
rately, and showed opposing trends. The turbulent part
decreased during straining, in agreement with McMil-
lan and Ferziger [10.187]. Conversely, the dissipation
associated with the cross-term increased substantially,
and remained high during straining. The applied strain-
ing part increased during the acceleration phase, and
slightly decreased during the constant-straining stage.
The opposing trends of the similarity and eddy-viscosity
models during rapid straining motivated the introduction
of a mixed model of the form

τmix
ij = σcLLij −2(1−σ)

(

C∆
s ∆
)2|S̃|S̃ij . (10.115)

Using previously determined empirical coefficients
for each model, i. e., cL = 1 and C∆

s = 0.09, the fitted
value of σ = 0.30 was remarkably accurate in predicting
the correct total SGS dissipation throughout the entire
experiment, including the acceleration stage. The sim-
ilarity term reproduced the effects of the mixed and
mean terms whereas the Smagorinsky term was simi-
lar to the dissipation by the turbulent stresses. However,
model coefficients that reproduced the correct amount
of SGS dissipation severely underpredicted the magni-
tude of 〈τij〉 both before and during the distortion. For
〈τ11〉 there was a discrepancy of nearly a factor of 3.

Conditional averaging of the data of Liu
et al. [10.184] was also used by Meneveau and
Katz [10.188] to study how regions of large-scale strain-
ing, rotation, and energy cascade rate were affected the
SGS force and dissipation rate. The locally isotropic
jet data showed that the SGS force surrounding points
of large strain-rate magnitude was nearly radial. In
a divergence-free velocity field, the SGS force could
only affect the resolved pressure field. Being directed
outwards, the SGS force decreased the resolved pressure
in regions of high strain-rate magnitude. Similar trends
were obtained in regions of large dissipation, but there
was no effect of the resolved vorticity. In the rapidly
distorted flow, the SGS force in regions of large pos-
itive dissipation decreased the resolved pressure, and
opposed the mean deformation. In regions of large en-
ergy backscatter, the SGS force acted to favor the mean
deformation. In terms of model performance, the mixed
model fared better than the Smagorinsky or the sim-
ilarity models alone. However, there were substantial
discrepancies between the modeled and predicted forces.
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The study of the effect of rapid distortion on the
dynamics of SGS stresses was expanded in Chen et al.
[10.189, 190]. A larger experimental setup (Fig. 10.64)
was used to generate a controlled planar straining–
relaxation–destraining cycle of initially isotropic turbu-
lence.

Locally isotropic turbulence at moderately high
Reynolds numbers, with very low mean velocity, was
again generated using four symmetrically located ac-
tive grids. The uniform planar straining was applied
by translating a piston vertically at prescribed veloc-
ities. The piston occupied almost the entire width of
the 20 cm-wide tank. The bottom surface of the piston
had rounded corners to prevent possible flow separation,
which was critical when the flow was destrained. The
piston was driven by a precision, programmable, linear
electric actuator.

The piston maximum velocity was 1 m/s, and its
maximum displacement was 76.2 cm. The sample area
for PIV measurements, 9 × 9.5 cm, was located near the
center-bottom of the tank. The images were recorded
using a 2K × 2K digital camera at 5 Hz, this time in
a cross-correlation mode, synchronized with the piston
phase. To increase the number of phases being examined
to 48, data were acquired with varying initial delays.
The size of the interrogation windows was 32 × 32 pix-
els, which with 50% overlap provided 121 × 121 vectors
with a spacing of 0.7 mm. At every phase, 1000 instan-
taneous realizations gave a sufficient ensemble set for
statistical convergence. The evolution of ensemble- and
spatially averaged strain rate during the experiments is
shown in Fig. 10.65. Spatial spectra at different locations
confirmed the existence of local isotropy and homo-
geneity, and provided estimates for the dissipation rate,
for the Kolmogorov scale η0 ∼ 130 µm, L0 = 0.13 m,
Reλ ∼ 400, and Smaxk0/ε0 ∼ 9.5, where the subscript
zero refers to conditions prior to straining.

The Reynolds stress components responded as ex-
pected to the applied straining (see Fig. 11 of Chen
et al. [10.190]). During the first half of the straining
phase, with increasing strain magnitude 〈u′

1u′
1〉, the

stress in the extended direction decreased while 〈u′
2u′

2〉,
the stress in the contracted direction, increased. Subse-
quently, until the end of the relaxation period, 〈u′

2u′
2〉

decreased gradually and 〈u′
1u′

1〉 remained approxi-
mately constant. At the end of the relaxation regime,
the turbulence had not yet returned to an isotropic state.
During destraining, the compressed 〈u′

1u′
1〉 increased

rapidly, while 〈u′
2u′

2〉 continued with its decreasing
trend, reaching a minimum value later than the destrain-
ing peak. A comparison of the measured stresses and
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Fig. 10.64a,b Schematic diagram of facility for rapid straining and
destraining turbulence experiment. (a) Tank and piston and a sketch
of the spinning grids. (b) Instrumentation used to record PIV data,
phase-locked with the piston motion cylce (after Chen et al. [10.190]
with permission from CUP)

anisotropy tensor to the predictions of RDT showed that
RDT gave the correct trends but overestimated 〈u′

2u′
2〉

and underestimated 〈u′
1u′

1〉, thus overpredicting the de-
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Fig. 10.66 Contour plot of the mean SGS stress anisotropy ten-
sor component (11) as a function of dimensionless time during
the straining–destraining cycle, and as function of the filter scale
∆/η. The top bar shows the corresponding Reynolds stress
anisotropy as a function of time. Measurements were performed
using planar PIV (after Chen et al. [10.190], with permission from
CUP)

Fig. 10.65 Evolution of mean strain, spatially averaged
rate S11 (squares) and S22 (triangles) during straining and
destraining experiment (after Chen et al. [10.189], with
permission from ASME). The error bars represent the stan-
dard deviation of spatial distribution. Measurements were
performed using PIV

Ψ = −〈u′
iu

′
j〉∂〈ui〉

∂x j
≈ −〈u′

1u′
1〉

×
∂〈u1〉
∂x1

−〈u′
2u′

2〉∂〈u2〉
∂x2

, (10.116)

well approximated from the in-plane components, fol-
lowed the amplitude of the applied strain during the
straining period. Once the straining stopped, Ψ van-
ished. During the destraining period, the production rate
became negative initially, and turned to positive values,
which were much smaller than those during the strain-
ing phase. The occurrence of negative production was
a result of S(t) = ∂〈u1〉/∂x1 = −∂〈u2〉/∂x2 becoming
negative while

〈

u′
1u′

1
〉

<
〈

u′
2u′

2
〉

.
For homogeneous turbulence, common wisdom is

that SGS variables in the LES context will tend to their
RANS counterparts as the filter scale approaches the
integral scale of turbulence. The PIV data obtained in
the strain–destraining experiment were particularly well
suited to verify such expectations for a spatially ho-
mogeneous, but temporally highly complex, flow. To
perform this analysis, the SGS stress was calculated over
scales ranging from 25 to 430η0. Figure 10.66 (Chen
et al. [10.190]) shows the evolution of bτ,2D

11 , the mean
2-D surrogate of the anisotropy tensor of the subgrid
scales, where

bτ,2D
ij = 〈τij〉− 1

2
〈τkk〉 δij , (10.117)

along with the 2D surrogate of the corresponding
Reynolds stress anisotropy tensor component, bRe,2D

11 ,
where

bRe,2D
ij = 〈u′

iu
′

j (t)
〉

/
〈

u′
iu

′
j (t0)

〉

− 1

2

〈

u′
ku′

k(t)
〉

/
〈

u′
ku′

k(t0)
〉

δij (10.118)

(definitions used here differ from (10.114) since the
present flow is planar while in the experiments of Liu
et al. [10.184] it was axisymmetric). As is evident, the
lag in the response of bτ,2D

11 to the applied straining in-
creases with filter scale, i. e., the small scales respond
earlier than the large scales. This trend is consistent with
RDT, in contrast to the energy cascade process, in which
the energy is first fed into the large scales, before cas-
cading to small scales. Figure 10.66 also confirms that,
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when the spatial filter scale approaches the integral scale,
the response lag and magnitude of the SGS stress tend
to those of the Reynolds stress. Note that for these data
L0/η0 ≈ 930, i. e., the largest filter scale, is still less than
50% of the integral scale.

A comparison between the trends of the turbulence
production rate and those of 〈Π∆−2D〉, presented in
Fig. 10.67 (Chen et al. [10.190]). Prior to straining and
during the relaxation period, the SGS dissipation was
nearly scale independent. However, it became scale de-
pendent during the straining and destraining periods.
The SGS dissipation peak during destraining was only
about 50% of the peak during straining, in spite of the
fact that the amplitudes of straining and destraining were
about the same. For large filter size, at the beginning
of the destraining phase 〈ΠD-2D〉, became negative, i. e.,
there was energy backscatter, also consistent with the oc-
currence of negative production during the same period.
This was caused by differences in the initial conditions,
which for the straining phase was isotropic turbulence
but for the destraining phase involved anisotropic tur-
bulence that arose from a relaxation period that was
too short to allow the turbulence to return to isotropy.
When the contributions to the SGS dissipation were
decomposed into turbulent, mixed, and mean straining
parts, the turbulent contribution was by far the most
dominant. These results further confirm that, as ∆ ap-
proaches L0, the mean SGS dissipation tends toward
Ψ . The difference in their magnitudes occurs in part
due to the scale gap, but mostly due to the missing out-
of-plane components in 〈ΠD-2D〉. Chen et al. [10.190]
also examined the evolution of energy spectra during
the straining–destraining cycle. This analysis confirmed
that small scales responded earlier than large scales to
the straining. Furthermore, they also showed that RDT
gave relatively good predictions during early phases of
the cycle, especially at large scales, for which the un-
derlying assumptions of RDT were better satisfied. As
relaxation started, the data and predictions deviated from
each other, as expected.

The evolution of the Smagorinsky coefficient C2
s was

measured [10.189] from the PIV data (using (10.110));
C2

s decreased as straining or destraining started since
2∆2

〈∣
∣S̃
∣
∣ S̃ij S̃ij

〉

responded more quickly to the applied
strain than the SGS dissipation, but then increased
above the equilibrium value. This deviation increased
with ∆. The standard dynamic Smagorinsky coeffi-
cient, (C∆,dyn

s )2, also calculated from the data but using
(10.106) with α = 2, was compared to (C∆

s )2. Results
showed that the dynamic model overpredicted the re-
sponse to straining and destraining. Furthermore, the
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Fig. 10.67 Contour plot of mean SGS dissipation rate as a function
of dimensionless time during the straining–destraining cycle, and as
a function of filter scale ∆/η. The top bar shows the corresponding
Reynolds production as function of time. The dashed line denotes
the zero contour, meaning that in the enclosed top U-shaped region,
the mean SGS dissipation is negative. (After Chen et al. [10.190],
with permission from CUP)

scale-dependent dynamic model [10.161, 179] was also
tested, now involving a second test-filter scale of 4∆. Re-
sults did not improve and, in parts of the cycle, were even
worse. Examination of the coefficients of the nonlinear
dynamic mixed models showed only limited improve-
ments over the standard dynamic Smagorinsky model
results. The data were used to trace the origin of these
behaviors to scale-dependent variations of the response
time of turbulence to the applied straining. They showed
that, even in a spatially simple (but temporally complex)
flow, serious modeling challenges for LES remain.

Use of PIV data for the analysis of SGS dynamics
in spatially complex flow environments with nonuni-
form mean flow poses further special challenges. For
example, the flow structure within turbomachines in-
volves interactions between multiple wakes generated
by upstream blades with wakes and blades located down-
stream. Consequently, the spatial scales of the mean flow
and turbulence are comparable in magnitude to the res-
olution of PIV measurements. Spatial filtering of such
a flow field separates both the mean (phase-averaged)
flow as well as the turbulence to the mean and sub-
grid parts, each with its own kinetic energy and fluxes.
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As described in Chow et al. [10.191], the existence of
multiple energy and flux terms may lead to confusion
about the relationships between the RANS production
rate (Ψ ) and the SGS dissipation of kinetic energy. Their
experiments were performed in a two-stage axial tur-
bomachine flow-visualization facility containing fluid
(a solution of NaI in water) with an optical index of
refraction that matched that of the acrylic blades. The
unobstructed view of the entire stage enabled 2-D and
stereo PIV measurements in numerous sample planes.
Data provided insight into the flow within turboma-
chines at unprecedented levels of detail, enabling the
investigation of various wake–blade, wake–wake, and
wake–boundary layer interactions. Such data provided
a unique database for both a posteriori and a priori test-
ing of turbulence models. The data have already been
used for a posteriori testing of RANS models [10.192].

For a priori LES studies, the data were used to
examine the SGS dissipation in a near-rotor wake.
There the PIV data showed that the phase-averaged
SGS dissipation could be negative, even when the
Reynolds production rate was positive. Negative mean
SGS dissipation was also measured within the stator of
a centrifugal pump [10.193]. An attempt to elucidate this
paradoxical result led to the identification of all the rel-
evant kinetic-energy and energy-flux terms that resulted
from spatial filtering, followed by ensemble averaging of
data as one would do while analyzing the SGS dynam-
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Fig. 10.68a–d Distributions of (a) Kmr
rel (b) Kms (c) K fr , and (d) K fs normalized by U2

tip3 × 10−3 measured using PIV in
an index-matched turbomachine facility. The gray mask around the blade covers points where spatial filtering overlaps
with the blade (after Chow et al. [10.191], with permission from AIP)

ics. The total spatially filtered and ensemble-averaged
kinetic energy, 〈K̃〉, was decomposed into four parts,

〈K̃〉 ≡ 0.5〈ũiui〉 = Kmr + Kms + K fr + K fs ,

(10.119)

where Kmr = 0.5〈ũi〉〈ũi〉 and Kms = 0.5(�〈ui〉〈ui〉−
〈ũi〉〈ũi〉) are the mean resolved (mr) and the
mean subgrid (ms) kinetic energies, respectively;
K fr = 0.5〈ũ′

i ũ′
i〉 is the fluctuating resolved (fr) kinetic

energy, and K fs = 0.5(�〈u′
iu′

i〉−〈ũ′
i ũ′

i〉) is the fluctu-
ating subgrid (fs) kinetic energy. Distributions of these
components for the rotor near wake, using a box spatial
filter of 5 × 5 vectors (≈ 25% of the near wake width),
are presented in Fig. 10.68

The values of Kmr
rel , the only non-Galilean invari-

ant term, are presented in the rotor frame of reference;
Kms has a two-layer structure as the boundary layers on
both sides of the blade extend to the wake region. This
represents the kinetic energy lost when a nonuniform
mean flow field is spatially filtered, and has nothing
to do with the turbulence. It decays at a faster rate
than the other terms, in part due to wake spreading
and the use of a fixed filter size, which increases the
mean resolved part at the expense of the mean subgrid
part. The distribution of K fr, the resolved part of the
turbulent kinetic energy, is biased toward the suction
side, indicating higher injections of resolved turbulence
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Fig. 10.69 A diagram showing the components of the ki-
netic energy and energy fluxes between them (after Chow
et al. [10.191], with permission from AIP)

from the suction-side boundary layer. Regions of ele-
vated turbulence on both sides of the rotor wake are
caused by chopped wake segments of the upstream
blades.

The evolution equations for each of the four kinetic-
energy parts can be used to define various energy fluxes
across the various regions. Specifically, it was shown
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Fig. 10.70a–e Distributions of
(a) Π(mr,ms), (b) Π(mr,fr),
(c) Π(mr,fs), (d) Π(ms,fs), and
(e) Π(fr,fs). All quantities are nor-
malized by U3

tip/c310−3 (after Chow
et al. [10.191], with permission from
AIP)

in Chow et al. [10.191] that defining the following

stresses and strain rates as τm
ij = �〈ui〉〈u j〉− 〈ũi〉〈ũ j〉,

τ
f

ij ≡ 〈˜u′
iu

′
j〉−〈ũ′

i ũ
′
j〉, τ ′

ij = τij −〈τij〉, S′
ij = Sij −〈Sij〉

and Rr
ij = −〈ũ′

i ũ′
j〉, the energy fluxes between the dif-

ferent kinetic energy parts are

Π(mr,ms) = −τm
ij 〈S̃ij〉 ,

Π(mr,fs) = −τ f
ij〈S̃ij〉 ,

Π(mr,fr) = Rr
ij〈S̃ij〉 ,

Π(ms,fs) = �Rij〈Sij〉− R̃ij〈S̃ij〉 ,

Π(fr,fs) = − 〈τ ′ S̃′
ij
〉

. (10.120)

In these expressions the energy fluxes are denoted
as Π (donor, receiver). For clarity, the relationships be-
tween the various terms and fluxes are illustrated in
Fig. 10.69, and the distributions of in-plane contribu-
tions to these flux terms are presented in Fig. 10.70.
The sum of energy fluxes from the resolved to subgrid
scales, i. e., in the horizontal direction in Fig. 10.69, is
the ensemble-averaged SGS energy flux of (10.108)

Π∆ = −〈τij S̃ij〉 = Π(mr,ms)

+Π(mr,fs)+Π(fr,fs) . (10.121)
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Fig. 10.71a,b Optical setup of: (a) the dual-view, hybrid
off-axis HPIV system; and (b) reconstruction and scanning
systems. (After Tao et al. [10.194], with permission from
CUP)

The sum of fluxes from the mean components to
the fluctuating parts, i. e., downward in Fig. 10.69, is the
filtered kinetic-energy production rate,

Ψ̃ = �Rij〈Sij〉 = Π(mr,fr)+Π(mr,fs)+Π(ms,fs) .

(10.122)

As is evident, Ψ̃ and P̃ have only one common
term Π(mr,fs). Note that Π(mr,ms) involves only the
mean flow, i. e., it has nothing to do with the turbulence,
but it has a substantial impact on the SGS dissipation.
The negative areas seen in Fig. 10.70 emanating from

the boundary layers on both sides of the blade indicate
flux from the subgrid to the resolved scales due to the
growth of the wake. The highest positive flux occurs
from the mean subgrid to the fluctuating subgrid kinetic
energy [Π(ms,fs)]. This term dominates the total pro-
duction rate, i. e., most of the turbulence is produced by
the subgrid mean flow. Negative production of resolved
turbulence [Π(ms,fr)] occurs downstream of the blade
trailing edge as the boundary-layer turbulence is fed into
a region with adverse velocity gradients. This analysis
highlights that the production and SGS dissipation rate
may have substantially different trends and magnitudes
in spatially nonuniform flows. The results also highlight
the usefulness of planar PIV data with good spatial reso-
lution in elucidating important concepts at the interface
between LES and RANS.

10.4.5 Holographic PIV Measurements
of SGS Dynamics

Holographic particle image velocimetry (HPIV) is an
experimental technique that provides three-dimensional
velocity distributions and their gradients within a sample
volume with extended depth. This technique consists of
recording double-exposure holograms of a flow seeded
with particles, and determining the 3-D velocity distribu-
tions by measuring the displacements of these particles.
Until recently, holograms have been recorded only on
high-resolution film, and then reconstructed optically to
create a 3-D image of the original sample volume. The
3-D images are scanned to obtain 2-D slices through
the 3-D volume, and then analyzed using various PIV-
or PTV-based techniques. Various methods for record-
ing holograms have been developed with optical setups
ranging from simple but resolution-limited, inline holog-
raphy to complex, high-resolution off-axis holography
setups [10.194–201]. Achieving the 3-D vector distri-
butions that can be filtered spatially at different scales,
an ideal requirement for studying SGS dynamics, has
been a challenge. Consequently, there have been very
few applications of HPIV to address issues relevant to
LES.

Tao et al. [10.194, 200] adapted an off-axis op-
tical technique that had been introduced by Zhang
et al. [10.197]. As illustrated in Fig. 10.71, this hy-
brid system combined the advantages of both inline
and off-axis holography without having their drawbacks.
In this setup, the subject beam illuminated the sample
volume along the optical axis and the film recorded
forward-scattered light from particles, similar to in-
line holography. However, a separate beam was used
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as the reference. A spatial high-pass filter was intro-
duced between the sample volume and the film drive.
It consisted of two identical lenses separated by twice
their focal lengths and a pin installed at the focus of
the first relay lens. The unscattered part of the subject
beam was focused by the first relay lens and blocked
by the pin. However, the light scattered from particles
could still reach the film with minimum obstruction.
This system reduced the speckle noise associated with
inline holography, and allowed an increase in the in-
tensity of the subject beam without overexposing the
film.

This hybrid method provided the two velocity com-
ponents that were perpendicular to the optical axis at
high accuracy (≈ 1%). The third component was signif-
icantly less accurate due to the depth-of-focus problem,
namely that the traces of a particle persisted in out-of-
plane sections over a substantial depth of about 1 mm.
Several potential methods to overcome or at least alle-
viate this problem have been introduced, but none has
succeeded in providing data in all three directions at
the same level of precision in applications involving
large volumes. The only available option to maintains
a comparable level of accuracy was to record two per-
pendicular (or inclined) holograms simultaneously, as
shown in Fig. 10.71a. Each hologram provided two vel-
ocity components and the 3-D data was obtained by
combining the results. Using correlations, the redun-
dant velocity component (out of the plane in the sketch)
helped in precision matching of the two sets. Subse-
quently, Sheng et al. [10.201] introduced a technique that
maintained the advantages of recording two orthogonal
views, but required only one window and one recording
system. This method was based on placing a mirror in the
test section that reflected the object beam at an angle of
45◦. Particles located in the volume in which the incident
and reflected beams from the mirror overlapped were il-
luminated twice in perpendicular directions. Both views
were recorded on the same hologram. Recently, (Sheng
et al. [10.202]) showed that inline digital holographic
microscopy substantially alleviated the depth-of-focus
problem (but did not eliminate it) to a level that enabled
measurements of 3-D particle motions at high resolution
using a single view. Additional background on digital
holography can be found in Meng et al. [10.203].

The HPIV measurements reported in Tao
et al. [10.194, 200] were performed within a fully de-
veloped turbulent water flow in a square duct with
a width H of 57 mm, and center-line mean velocity U
of 2.1 m/s. The sample volume was 57 × 57 × 45 mm3.
The water was seeded with neutrally buoyant 20 µm

particles at a concentration of 8–12 /mm3. Double-
exposure holograms, delayed by 60 µs, were recorded,
and reconstructed using the setup of Fig. 10.71b. The
illumination angle accounts for reference-beam angle
and wavelength differences. A video camera equipped
with a microscope objective automatically scanned the
sample volume at a resolution of 4.9 µm/pixel, patched
the images, enhanced them, and determined the veloc-
ity using in-house-developed PIV procedures [10.204].
The interrogation window size was 192 × 192 pixel
(0.93 × 0.93 mm2). Unlike typical PIV, but similar to
Hart [10.205], the images were compressed during ac-
quisition and the correlation was computed directly from
the compressed data. This approach maintained the high
magnification without paying the penalty of a large
database.

For the evaluation of SGS stress models for LES,
the measurements focused on the 3-D velocity fields
away from the immediate vicinity (5.25 mm) of the walls
(y+ > 103). With 65% overlap between the windows,
each data set contained 136 × 130 × 128 vectors with
a spacing of 0.33 mm. A sample 3-D velocity map is pre-
sented in Fig. 10.72. Based on the measured spectra, the
turbulent length scales were: η ≈100 µm, λ ≈ 3.4 mm
and Reλ ≈ 310. The data were filtered by a 3-D, spa-
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Fig. 10.72 Sample three-dimensional instantaneous vector map of
turbulent flow in a square pipe measured using the setup shown in
Fig. 10.71 (After Tao et al. [10.194], with permission from CUP)
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tial box filter at ∆ = 3.3 mm (= 33η), i. e., in the inertial
range of turbulence, which provided the SGS stresses,
SGS dissipation, along with the filtered vorticity and
strain-rate tensor. The uncertainty was about 2% for
instantaneous velocity, and 15% for filtered velocity gra-
dients. Data quality was evaluated by determining how
well it satisfied the divergence-free condition.

Tao et al. [10.194, 200] examined the alignment
trends of filtered vorticity and SGS stress components
with respect to the local orientations of the eigenvec-
tors of the filtered strain-rate tensor. Probability density
functions (PDF) of scalar parameters characterizing
the tensorial eigenvalue structure (following Lund and
Rogers [10.206]) showed that the most probable strain
state was axisymmetric extension, and the most probable
SGS stress state was axisymmetric contraction. Regions
of high SGS dissipation were strongly correlated with
these preferred strain-rate and stress topologies. The
nonlinear model showed the same trends but overpre-
dicted the occurrence of the preferred stress state.

The relative alignment between SGS stress and
strain-rate tensors is a fundamental issue in turbulence
modeling since eddy-viscosity model assumes that they
are aligned. During analysis, the eigenvalues of S̃ij were
denoted as αs, βs and γs, where αs ≥ βs ≥ γs, and the cor-
responding eigenvectors were αs, βs and γs. Similarly,
α−τ ,β−τ and γ−τ denoted unit vectors aligned with
the most compressive, intermediate, and most extensive
eigenvectors of the deviatoric part of −τij , respectively.
The data showed that the filtered vorticity vector was
preferentially aligned with βs, the intermediate strain-
rate eigenvector, in agreement with previous numerical
and experimental data [10.207–209]. The vorticity was
also preferentially aligned perpendicularly to γt but had
no preferred direction in the α−τ–−β−τ plane [10.200].

Three angles were needed to define the alignment of
a symmetric tensor in a coordinate system defined by
the eigenvectors of another symmetric tensor.

Two angles, e.g., φ(α−τ −βs) and cos[θ(α−τ −αs)],
define the orientation of one of the eigenvectors of the
SGS stress tensor (α−τ in this example) in a coordinate
system defined by the filtered strain-rate eigendirections.
The third angle described the orientation of another SGS
stress eigenvector with respect to the projection of an
axis of the SGS strain rate onto a plane perpendicular
to the first SGS eigenvector. This choice preserved sta-
tistical consistency, i. e., when tested against a random
velocity field these variables generated a uniform 3-D
joint PDF.

Figure 10.73a and b show the 3-D joint PDF of align-
ment between the filtered strain-rate and the SGS stress

tensors obtained by analyzing nine instantaneous veloc-
ity distributions. The 3-D alignment is presented twice
using different basic axial directions in order to demon-
strate the dominant features; Fig. 10.73a shows the
alignment of the most contracting SGS stress direction
α−τ better, whereas Fig. 10.73b illustrates the alignment
of γ−τ , the more extensive stress, more clearly. It is ob-
served that γ−τ is preferentially aligned at 32◦ to γS,
i. e., cos[θ(γ−τ −γs)] ≈ 0.85, irrespective of the other
angles. From Fig. 10.73a it is evident that there are ac-
tually two distinct regions with high probability peaks.
The two preferred 3-D alignments of this bimodal be-
havior are illustrated by inserts for clarity. The same
trends were subsequently also identified in DNS and
atmospheric data [10.210], indicating that these trends
were not limited to the present flow geometry. Clearly,
the SGS stress eigenvectors were not aligned with the
filtered stain rate, in contradiction to the basic assump-
tions of eddy-viscosity models. Conditional averaging
demonstrated that the bimodal behavior was related to
the vorticity magnitude. The configuration denoted by
αβγ–βαγ was much more pronounced in regions of
high vorticity and the configuration αβγ–αβγ became
equally or more dominant in regions with intermedi-
ate levels of vorticity. Some of these trends could be
explained based on analysis of the nonlinear model as-
suming the resolved vorticity was aligned with βs and
that the strain-rate structure was axisymmetric expan-
sion. This alignment trend persisted, with varying angles
and peak probabilities, throughout the conditional sam-
plings based on the magnitudes of SGS dissipation,
vorticity, and strain rate [10.194].

Joint PDFs involving the measured and the nonlinear
model for SGS dissipation showed significant differ-
ences in the trends, even though the nonlinear model
stress eigenvectors were preferentially aligned to the
same direction as those of the measured stresses. Using
a mixed model, the SGS dissipation PDFs agreed bet-
ter with the experimental data. However, in regions with
high strain rate, high vorticity, and especially where the
strain rate had a plane shearing or axisymmetric contrac-
tion topology, the mixed model still produced excessive
negative SGS dissipation.

Using the same data, van der Bos et al. [10.211] ex-
amined the effects of SGS motions on the dynamics
of Ãij (10.107) based on the restricted Euler equa-
tions [10.212, 213], which was amenable to analytical
solution. They showed that the tensor ∂2τk j/∂xi∂xk,
i. e., the gradient of the SGS force, appeared in the
transport equation of Ãij . Following Cantwell [10.213]
they examined the two invariants of Ãij , namely
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Fig. 10.73a,b The joint PDF of the relative alignment between the eigenvectors of S̃ij and −τd
ij : (a) results based on

eigenvector α−τ and including sketches illustrating the alignment of the SGS stress eigenvectors at the points of peak
probability, and (b) based on γ−τ . In the coordinate system shown, a random alignment would correspond to a uniform
probability density of (π/2)−2 ≈ 0.396. (After Tao et al. [10.194], with permission from CUP)
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Q∆ = − Ãim Ãmi/3 and R∆ = − Ãim Ãmk Ãki/3. The ef-
fects of the SGS stress tensor on Q∆ and R∆ was
quantified unambiguously by evaluating conditional av-
erages that appear in the evolution equation for the joint
probability distribution function of these invariants. The
results showed that the SGS stresses opposed the for-
mation of the inherent finite-time singularity along the
Vieillefosse tail, which led towards R∆ > 0 and Q∆ < 0,
and that the effect was significant. Trends in the SGS
dissipation and other variables were quantified in dif-
ferent parts of the (Q∆,R∆) plane. A priori tests of
the Smagorinsky, nonlinear, and mixed models showed
that all reproduced the real SGS stress effect along the
Vieillefosse tail, preventing the finite-time singularity,
but they all failed in other regions of the (Q∆,R∆) plane.
The data were also used to suggest improvements to the
mixed model.

10.4.6 Scalar Concentration Measurements
for SGS Mixing
and Combustion Studies

Predicting the transport of scalars caused by turbulence
is important for various applications such as combus-
tion, mixing, aero-optics. As mentioned before, the
prediction of subgrid variance and the scalar-variance
dissipation rate are crucial ingredients in a number of
LES closures for scalar transport and combustion. To
measure these variables experimentally one requires
well-resolved measurements of the scalar field (e.g.,
scalar concentration, or temperature). Several tech-
niques for measurements of scalar fields exist. Probably
the most commonly employed technique is based on
laser-induced fluorescence (LIF). Planar laser-induced
fluorescence (PLIF) is described in Sect. 7.4. By as-
suming a relationship between the recorded intensity
of the emitted light and the concentration of the fluo-
rescent dye in the flow, maps of concentration can be
recorded.

Scanning a light sheet at very high speed across
a volume, Dahm et al. [10.214] reconstructed quasi-
3-D distributions of scalar concentration and followed
its time evolution. Based on these data, Cook and Ri-
ley [10.153] analyzed various models for the subgrid
scalar variance

˜c2 − c̃2 (10.123)

and explored predictions from so-called presumed PDF
models of mixing. In canonical turbulent flows the spec-
tral characteristics of scalar distributions quite similar

to those of the velocity field (including spectral slopes
of -1.4 to -1.7 in the inertial–convective subrange), the
scalar subgrid variance is also expected to be dominated
by the largest of the unresolved scales. Thus spatial res-
olution is not typically required to reach the smallest
scales of the scalar field (typically the Batchelor scale),
but rather some fraction of the filtering scale, such as
∆/5 to ∆/10.

Studies of the SGS scalar fluxes

qi = ũi c− ũi c̃ (10.124)

require simultaneous measurement of the scalar con-
centration and velocity. Such measurements can be
performed with coupled PIV and LIF (Su and Mun-
gal [10.215]). Analysis of such data has recently been
used to study SGS scalar fluxes in a cross-flow tur-
bulent jet (Sun and Su [10.216]). For the study of
SGS turbulent heat fluxes in the atmosphere, arrays
of sonic anemometers allow simultaneous measure-
ment of velocity and temperature, and the evaluation
of SGS heat fluxes and their properties [10.166, 217].
Since scalar fluxes are expected to be dominated by
the largest unresolved scales, spatial resolution down
to about ∆/5 to ∆/10 is expected to be sufficient to
resolve the most important aspects of the SGS scalar
flux.

The same is not true when one wishes to evaluate
the scalar dissipation rate

χ = γ ( �(∇c)(∇c)−∇c̃∇c̃) (10.125)

for which scalar gradients must be resolved at the
small scales (i. e., the Batchelor scale). Only very
well-resolved data can be used to evaluate the scalar
dissipation rate.

PLIF has also been used to measure the scalar surface
density for modeling of turbulent combustion [10.218].
The surface density at the subgrid scales can be quanti-
fied by the difference

|̃∇c|− |∇c̃| (10.126)

and requires the evaluation of scalar gradients at the
smallest scales before taking the absolute value and fil-
tering. Due to the limitations of planar LIF, only two of
the three gradient terms can be captured and assumptions
about the third direction must be made when interpreting
the results.
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