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Nondimensio2. Nondimensional Representation
of the Boundary-Value Problem

Given that an experiment can be considered
to represent a physically realizable boundary
value (bv) problem and given that the derived
measurements are to represent aspects of the
solution to the bv problem, it is rational to extend
this understanding such that a maximum amount
of information can be obtained from a given
experiment. The first portion Sect. 2.2.1 establishes
the bases for obtaining information regarding the
flow associated with a prototype (the object/flow
of actual interest) from measurements made in
a model study. This section focuses on the large
class of flows for which a Newtonian fluid and
its governing equations establish the model-to-
prototype information exchange.

Dimensional analysis Sect. 2.2.2 provides
a complement to Section 2.1 with a less struc-
tured - and therefore a more flexible - approach
to problems that extend beyond those readily
addressed by the Sect. 2.2.1 material. The im-
portant issue of collecting experimental results in
non-dimensional groups is addressed in Sect. 2.2.2.

The discussion of self-similarity Sect. 2.2.3 ad-
dresses the immense compaction of experimental
data that is made possible for those flows that ex-
hibit this property. The bases for, and utilization
of, self-similarity are explored in detail.
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34 Part A Experiments in Fluid Mechanics

2.1 Similitude, the Nondimensional Prototype and Model Flow Fields

An important class of experiments in fluid mechanics is
that in which a model study of a prototype is to provide
reliable information on the predicted flow properties of
the associated prototype. It is this class of experiments in
which the concept and principles of similitude are used
to ensure a reliable transfer of information from the
model study to the prototype. Specifically, dimensional
measurements from the model (e.g., quantities such as
pressure, velocity, angular speed, aerodynamic drag and
lift) are used to predict the numerical values for the
same quantities that would be present in the prototype
flow field.

The fundamental basis for similitude is firmly
grounded in the description of an experiment as a bound-
ary, and possibly an initial, value problem. If the model
flow can be made to represent exactly the same bound-
ary (initial) value problem, then, of course, the solution
to the model and prototype problems must be the same.
The solution, as noted above, is represented by the exper-
imental data acquired from the well-defined experiment.
Since an exact solution often cannot be ensured one can
substitute an adequate solution in order to gain useful
predictions of the prototype’s flow field.

This section of the Handbook is to provide guidance
on how these in principle concepts can be transformed
to in practice guidelines for representative application
areas.

2.1.1 Governing Equations – Newtonian
and Incompressible

Linearly viscous (Newtonian) fluids (air, water, oils,
etc.) are widely present in fluid mechanics applications.
Their ubiquity serves as part of the basis for the first
restriction (Newtonian fluids in an incompressible flow
environment) that is considered in this section.

The governing equations (with this restriction) are
known for prototype and model flows. If the boundary
and, if appropriate, initial conditions can also be made
identical for the two flows, then identical solutions can
be expected. This expectation is typically experienced
in an experimental environment. Interesting exceptions
can, and do, occur. For example, if one is investigating a
steady-state flow, the observed values may show a strong
sensitivity to the starting conditions (the initial transient
period) for a given experiment. If this condition occurs,
then different steady-state behaviors may exit as a result
of differences in the initial transient period. Obviously,
if the flow is turbulent, then only the appropriately aver-

aged results can be predicted for the prototype from the
measured model values.

The designation of an incompressible flow for the
prototype and, therefore, for the model is one that
includes many applications. The term incompressible
must, of course, apply to the fluid. The common
phrase incompressible flow indicates a flow in which
Dρ/Dt = 0 is adequately met. For gases, this is of-
ten characterized by the Mach number ≤ 0.3, where
ρ/ρ0 ≤ 0.956 for an isentropic flow at this Mach num-
ber. Liquid flows form one segment of this class of
flows, although dissolved gases that can lead to water
hammer and explosions in a submerged liquid environ-
ment are two examples in which the incompressible
assumption would not be physically appropriate. Low-
speed gas flows are a second (and large) segment of
this class. There are only two attributes of the flow field
to be characterized for an incompressible flow: the ve-
locity V(x, y, z, t) and the pressure p(x, y, z, t) fields,
where Cartesian coordinates are used to indicate the spa-
tial and temporal dependencies of the dependent (V, p)
variables. Cartesian coordinates are used for symbolic
convenience. The derived results are applicable to any
coordinate system.

It is affirmed that the analyst will be able to iden-
tify a characteristic length (L) and velocity (U) to scale
the problem. In some cases the selections for U and
L will be apparent. The flow past an airfoil that is not
influenced by the conditions at its lateral ends is ad-
vanced as an example of the apparent choices for U and
L (Fig. 2.1). In other cases (Sect. 2.1.6), L and U may
have to be created from other characteristic properties
of the prototype flow field.

Using U and L , the governing equations can be made
nondimensional (for an incompressible flow) as

DV∗

Dt∗
= −∇∗ p∗

k + 1

Re
∇∗2

V∗ , (2.1)

∇∗V∗ = 0 , (2.2)

Re = UL

ν
, (2.3)

where p∗
k = (p+ρ gh)/ρU2, V∗ = V/U and x∗ = x/L ,

y∗ = y/L , z∗ = z/L . Note, ν = µ/ρ is the kinematic
viscosity.

The term pk clearly combines the (static) pressure
and the gravitational body-force term as expressed by
the elevation, h, above a datum plane. The ability to
express the net force effect caused by ∇ p and by ∇ρ gh
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Nondimensional Representation 2.1 Similitude, the Nondimensional Prototype and Model Flow Fields 35

Fig. 2.1 Streamlines from a time averaged LES calculation
of the flow past a Valeo CD airfoil as abstracted from the
work of Moreau et al. [2.1]. Courtesy of D. R. Neal

permits this useful combination. Two other aspects of
this form of the equations are noteworthy.

1. Any other body force (electrical, magnetic, etc.) that
can be expressed using the gradient operator can be
incorporated with (p and ρ gh), and

2. If the flow of a uniform density fluid exists in a sub-
merged environment, then the portion of the pressure
field that balances the body force effect need not be
explicitly considered in the problem formulation.
Specifically, the hydrostatic variation of pressure
(∂p/∂z = −ρ g) does not contribute to the dynamics
of the flow in such a submerged environment.

Examples wherein the electrical forces act as surface
and not body forces include electrohydrodynamics and
leaky dielectrics.

Identical governing equations for model and pro-
totype are, therefore, obtained if the Reynolds number
(Re) is the same for the two flows. This is a neces-
sary (if viscous effects are present) but not a sufficient
condition for similitude. It is also a condition that, in gen-
eral, is easily satisfied when the similitude experiment
is established.

�
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Fig. 2.2 Half-span model of an airplane

2.1.2 Boundary Conditions

Identical – or adequately identical – boundary condi-
tions is often the greatest challenge for ensuring the
same boundary-value problem between model and pro-
totype. As a simple example, consider that the airfoil
shape of Fig. 2.1 is the mid-span shape of a wing that
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Fig. 2.3a–g A sinusoidally pitching airfoil as an example of an
externally imposed reduced frequency. Note: i) the mean stream-
wise velocity (ū and the transverse voriticy (ω̄z) for A = 2 degrees
oscillation amplitude are shown. ii) k = πC f/U0

Part
A

2
.1



36 Part A Experiments in Fluid Mechanics

is attached to an airplane fuselage. If the wing were to
be tested at model scale, then not only would the span-
to-mid-chord-length ratio need to be represented but the
flow at the wing root should also be accurately repre-
sented. This would require a full model of the airplane in
order to ensure that the flow at the attachment location of
the wing to the fuselage is properly represented. In order
to make the model as large as possible for a given wind
tunnel, a half model (attached to the tunnel wall as shown
in Fig. 2.2) is often used in order to allow a larger length
ratio: Lm/Lp in the model study. (Note: [( )m = ( )model,
( )p = ( )prototype].) A challenging aspect of such a model
study is to ensure that important surface features: ma-
terial roughness, (vents, hinges, etc.) are represented to
proper scale. If the chord length is C (C now replaces
the generalized L), then the rivet head diameter (d) and
its protrusion (δ) should be the same relative size: (d/C)
and (δ/C), for the model and the prototype. These details
can be relaxed only if it is shown that such length ratios
do not influence the flow parameters of interest. A chal-
lenge in wind tunnel studies is also presented by the
bounding tunnel walls. If the imposed straight stream-
lines of the tunnel are different from the free streamlines
(same nondimensional distance from the model), then
the model-to-prototype common boundary conditions
constraint would be violated. Adaptive tunnel walls and
open test sections are two approaches to address this
inherent conflict between using as large a model as
possible for a given tunnel cross section.

2.1.3 Initial Conditions

If the flow field is one that temporally evolves from an
initial condition, then the characterization of the initial
conditions, in a manner that mimics that of the boundary
conditions, must be established. The nondimensional
representation of the evolving time will be

t∗ = tU

L
. (2.4)

2.1.4 Parameters that Influence
the Solution to the Boundary-Value
and/or the Initial-Value (BV/IV)
Problem

Nondimensional Time
There are two types of nondimensional times that must
be considered in experimental fluid mechanics: the re-
duced frequency (ωR) and Strouhal number (St).

Consider a flow field in which an external forcing
function provides a controlling influence on the flow

field. For example, the airfoil of Fig. 2.1 might be oper-
ated with a sinusoidal pitching motion where its angle
of attack: α(t), is described as

α(t) = α0 sin ωt ;
this flow field is shown schematically in Fig. 2.3. A nec-
essary condition for similitude between model and
prototype will be that the imposed time variation is sim-
ilar. Namely, the model and prototype must have equal
reduced frequencies

ωR|m =
(

ω0L

U∞

)
m

= ωR|p =
(

ω0L

U∞

)
p

. (2.5)

The nondimensional α0 is itself a similarity parameter
between the model and prototype. Note that, in this case,
the characteristic length L is designated as the chord
length C and the characteristic velocity U is designated
as U∞.
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Fig. 2.4a,b Vortex shedding from a cylinder as an example
of an intrinsic Strouhal number (a) A representation of
the vortex shedding behind a cylinder (b) Strouhal number
versus Reynolds number [2.2]
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Nondimensional Representation 2.1 Similitude, the Nondimensional Prototype and Model Flow Fields 37

In contrast to the imposed (ω0) time scale, which is
characterized as a reduced frequency, the Strouhal num-
ber (St) represents a derived (or flow-field-dependent)
time scale as in the case of vortex shedding. Here, the
shedding frequency ( f ) of, for example, the flow past
a cylinder (Fig. 2.4) represents a nondimensional quan-
tity that is dependent upon the governing parameter for
such a flow. Namely,

ST = fd

U0
= function(Re) ,

since, as stated above, the Re is the controlling parameter
in the equation of motion.

Froude Number
Consider a flow in which the gravitational body force
influences the velocity field. Specifically, consider a flow
in which the gradient of (ρ gh) must be considered in
the BV problem. Figure 2.5, in which an airfoil serves
as a hydrofoil near the free surface, provides a specific
example.

Let H represent the immersion depth to the 1/4
chord location of the hydrofoil. It is considered to be ap-
parent that the flow over the hydrofoil will be influenced
by this immersion depth if H/C is sufficiently small.
H/C then becomes a length scale ratio that defines one
of the boundary conditions of the BV problem.

The relative body force effect is, for this BV prob-
lem, expressed by the nondimensional parameter:

Froude no. = FR = ρU2
0

ρ gC
= U2

0

gC
(2.6)

for this ρ = constant (below the free surface) BV prob-
lem.

For completeness, it is noted that h, the elevation
above a datum plane, was made nondimensional with
the chord length as (h/C) in order to isolate the Froude
number as a governing parameter in this BV problem.

The relative influence of the gravitational body force
is expressed by two parameters: H/C and (U2

0 /gC). It

Fig. 2.5 A near-free-surface hydrofoil flow

is instructive to note that a large value of H/C renders
U2/gC irrelevant. Physically, it is observed that a pla-
nar free surface above the submerged hydrofoil indicates
that the hydrofoil will not experience a dynamically sig-
nificant influence on its pressure distribution from the
body force term.

It is quite difficult to satisfy both Re and FR match-
ing in an application where both play important roles.
The hydrofoil of Fig. 2.5 provides a relevant example.
Specifically, for matched Froude numbers:

U2

gC

∣∣∣∣
m

= U2

gC

∣∣∣∣
p

and matched Reynolds number values,

UC

ν

∣∣∣∣
m

= UC

ν

∣∣∣∣
p

,

the combined constraints require that

U2
m

U2
p

= Cm

Cp
= νm

νp

Up

Um

or

U3
m

U3
p

= νm

νp
. (2.7)

It is apparent that liquids with the indicated ratio of ν

values would be difficult to find (in bulk) if Um and Up
were very different.

The practical solution, in those cases (e.g., sur-
face ships) where the FR is the dominant parameter,
is to match the FR and to make corrections for the Re
mismatch.

Densimetric Froude Number
Consider that the approach airflow, for the airfoil of
Fig. 2.1, experiences a strong temperature increase as
a result of absorbing thermal energy from a heated air-
foil. It can clearly be expected that the wake of the
airfoil will be influenced by these elevated temperatures.
Specifically, the wake fluid would be lifted by the buoy-
ancy provided by the surrounding ambient temperature
fluid acting on the heated wake fluid.

The control parameter that ensures similarity be-
tween model and prototype would be the densimetric
Froude number

FR|D = (∆ρ)gC

ρ0U2
0

, (2.8)

where ∆ρ would express a characteristic density change
in the airflow and ρ0 would be the density of the ap-
proach flow. [Since, for a perfect gas, p = ρRT and
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38 Part A Experiments in Fluid Mechanics

the absolute pressure can be taken to be a constant, the
∆ρ/ρ0 value could be obtained from a characteristic
temperature change as −∆ρ/ρ0 = ∆T/T0 if ∆T/T0 is
sufficiently small: (∆T/T0) � 1.] Again, it is noted that
the elevation term, h, is made nondimensional with C in
this example.

As noted before, it would not be expected that
a condition of complete similarity would be obtained. If
density effects are dominant, then Re corrections would
have to be made in the model results while the densito-
metric Froude number was held constant between model
and prototype.

Weber Number
Surface tension effects, the presence of mechanical
stresses that are present at the gas–liquid or the gas–
liquid–solid boundary, can be an important factor in
establishing the behavior of a liquid flow bounded by
a gaseous medium. The basic property that describes
the effect of the surface tension is the parameter σ or the
surface tension force per unit length.

It is important to understand that σ is introduced in
order to preserve the continuum mechanics understand-
ing that the pressure is isotropic. That is, that pressure
is unchanged in the neighborhood of the free surface
whereas the normal stresses in the plane of, and those
normal to, the gas–liquid interface are not equal. If the
physical problem under consideration admits the intro-
duction of a single quantity, σ , to describe the complex
physical chemistry (Sect. 3.1.2) at the gas–liquid inter-
face, then the Weber number (We) will be represented
in the problem description as

We = ρU2 L

σ
. (2.9)

If the prototype involves significant surface tension ef-
fects as well as viscous effects, then the challenge would
be to equate both parameters as:

ρ
UL

µ

∣∣∣∣
m

= ρ
UL

µ

∣∣∣∣
p

and

ρ
U2 L

σ

∣∣∣∣
m

= ρ
U2 L

σ

∣∣∣∣
p

or

µU

σ

∣∣∣∣
m

= µU

σ

∣∣∣∣
p

, (2.10)

where the indicated ratio is referred to as the capillary
number. Hence the liquid materials and the velocities

would have to be selected to satisfy the capillary num-
ber constraint if a condition of similitude were to be
established.

If the σ , µ and U values cannot be so manipulated,
the experimentalist can attempt to bracket the correct
condition or to make analytical adjustments to the data
to gain an approximation to the complete similitude
condition.

2.1.5 Governing Equations –
Newtonian and Compressible

The Lagrangian (or material) derivative of the den-
sity of a fluid dynamic particle (fixed mass element)
can be used to define a compressible flow succinctly.
Namely,

Dρ

Dt
�= 0 (2.11)

denotes a compressible flow.
Thompson [2.3] provides an excellent introduction

to similitude considerations for compressible flows; this
reference is recommended for a more thorough exposi-
tion of the compressible flow issues considered in this
section.

A fundamental statement of the conservation of mass
for an Eulerian cube can be written as

0 = ∂ρ

∂t
+∇ ·ρV (2.12)

from which

∇ · V = − 1

ρ

Dρ

Dt
(2.13)

follows.
Thompson makes use of (2.13) to develop a nondi-

mensional representation of ∇ · V as {[2.3] (3.46)}

∇ ·U = c2
0

c2

(
M2

0

2
U ·∇U2 −U · G̃

)

+ c2
0

c2

l0

c0l0

(
M0

2

∂U2

∂τ
− ρ0

ρ

∂ P̃

∂τ

)

− ρ0c2
0

ρc2

M2
0

Re0

[
U ·∇2U

+
(

µν

µ
+ 1

3

)
U ·∇(∇ ·U)

]

+ 1

Re0

T0

ν0

(
∂ν

∂T

)
p

(
u2

0

cpT0
γ̃ + 1

Pr
∇2T̃

)
,

(2.14)
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Nondimensional Representation 2.1 Similitude, the Nondimensional Prototype and Model Flow Fields 39

where the nondimensional values are defined as {[2.3]
(3.45)}

U = u

u0
, G̃ = Gl0

c2
0

, X = x

l0
,

P̃ = P

ρ0c0u0
, τ = t

t0
, γ̃ = l2

0

µu2
0

γ ,

T̃ = T

T0
, (2.15)

and the parameters {[2.3] (3.47)}
Mach number: M0 ≡ u0

c0
,

Reynolds number: Re0 ≡ ρ0u0l0

µ
,

Prandtl number: Pr ≡ µcp

k
, (2.16)

arise naturally in the subject equation. The nomencla-
ture for this subsection is adapted from Thompson’s text.
As noted, that presentation is strongly recommended for
those interested in compressible flows and the present
nomenclature change will facilitate the use of that refer-
ence. For completeness, it is noted that V = u, L = l0,
and g = G when comparing the present nomenclature
to that of Thompson. Note that G represents the body
force and γ represents the dissipation or degradation of
kinetic energy to the thermal form.

It is apparent that the addition of compressibility
adds greatly to the complexity of the similitude con-
siderations. It is also apparent that mutually satisfying
the Mach number and Reynolds number constraints for
a given model study will be essentially impossible as
shown by the following.

Substitute the Mach-number-based velocity ratio
into the Reynolds number as

u0|m
u0|p = ρ0l0|p

ρ0l0|m
µm

µp
= c0|m

c0|p .

Isolate the length ratio as

l0|m
l0|p = ρ0|p

ρ0|m
(

µm

µp

c0|p
c0|m

)
. (2.17)

Consider the representative application of a high-
speed aircraft (M0 = 3.5) that is to be evaluated in
a model study. A length ratio of 50:1 would be typically
enforced by the available tunnel size. The bracketed
term, the right-hand side of (2.17), will be sensitive to
the model-to-prototype temperature ratio. To decrease
(µm/µp), the model study temperature would need to be

reduced since, for a gas, ∂µ/∂T > 0. Given the low tem-
perature of the prototype environment (at altitude) this
is a difficult condition to achieve. To increase c0|m/c0|p
would require the opposite condition: an elevated tem-
perature of the model flow.

A pressurized tunnel would address the (ρ0|p/ρ0|m)
ratio but this is at the price of mechanical complexity
and limited capability to match the required length ratio.

The practical solution is to match the Mach num-
ber values (independent of the length ratio) and attempt
to address Reynolds number issues via computational
corrections.

2.1.6 Flows for Which U and L
May Not Be Apparent

Some flows, unlike the airfoil example discussed above,
do not offer an apparent length or velocity scale. This
section provides examples that suggest strategies to ex-
tract fabricated length and/or velocity scales in such
circumstances. The fabricated scales then allow the
experimentalist to directly utilize the parameters as
described above.

A U-Tube Flow
Figure 2.6 shows a U-shaped tube with, at time t ≤ 0, an
elevated liquid column on one side. The fluid viscosity
and density are ν and ρ and the tube diameter is D.
The initial elevation difference is h(0). If a model study
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Fig. 2.6 A U-tube flow
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40 Part A Experiments in Fluid Mechanics

were to be made of the prototype, it is apparent that
the Reynolds number should be used as the similarity
parameter with D as the length scale.

Since the flow will start with the release of the hold-
ing pressure (either negative on the high side or positive
on the low side) there is no velocity for t ≤ 0. The
elevation difference can, however, be used to express
a characteristic velocity as

U = √
gh (2.18)

from which

Re = UD

ν
=

√
gh(0)D

ν

would provide a necessary condition for model-to-
prototype similarity.

If surface tension were important in the prototype,
then the Weber number would also have to be matched
as

We = ρU2 L

σ
= ρgh(0)D

σ
.

It is interesting to observe that, if We is important for
the prototype, then

σm

σp
=

{
µ [gh(0)]1/2}

m{
µ [gh(0)]1/2}

p

. (2.19)

That is, σm and σp must satisfy this additional constraint.
If We is not important for the prototype, the experimen-
talist would need to ensure that it is also not important
in the model study.

A Single Stream Shear Layer
One of the many possible examples of a flow without
a defined length scale is that of a single stream shear
layer. Figure 2.7 presents a schematic representation of
such a flow which, in its idealized form, draws fluid from
y = −∞ by the entrainment action of the infinitely wide
primary flow whose velocity scale is U0.

Morris and Foss [2.4] provide a detailed examina-
tion of the developing region in which the separating
turbulent boundary layer gradually loses its identity and
a self-preserving single stream shear layer is established.
As emphasized in that reference, and in the numerous
prior studies cited by these authors, this is a flow without
a defined length scale.

By convention and because it provides a well-defined
experimental length scale, the momentum thickness at
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Fig. 2.7 The momentum thickness at x = 0 for a single
stream shear layer: the flow’s length scale

x = 0 is utilized as the reference condition for both the
separating boundary layer and the evolving shear layer.
Specifically, in the cited study, Rθ(0) = U0θ(0)/ν was
4860 at x = 0 and the self-preservation condition for the
shear layer was established by x/θ(0) = 200. The re-
quired length to establish self-preservation is a function
of Rθ , as discussed in detail in that reference.

For completeness, it is worth noting that a planar jet
(width w) is a flow with a defined length scale. In that
flow, the role of θ(0) becomes one of a characterizing
length scale ratio, θ(0)/w, but the Reynolds number
would be characterized as

Re = wU0

ν
,

if the jet, and not the separating shear layer at the sides
of the jet, was the focus of the investigation. It can be
readily appreciated that the jet flow, especially the region
near the jet exit, will be influenced by the momentum
thickness at the jet exit and, if turbulent, the relevant
characteristics of the turbulent motion at the jet exit.
These features constitute the influence of the boundary
conditions on the solution.

However, as discussed by Yarin in Sect. 2.3, at
sufficiently large streamwise locations the idealization
that the jet nozzle width is effectively zero and the
exit velocity is effectively infinite (in such a manner
that the line-source momentum flux, Ṁ, describes each
downstream plane’s momentum flux) leads to a condi-
tion of self-similarity. An extension to this modeling
idealization is that all flows with the same Ṁ value
and sufficient streamwise distance will have the same
flow fields given the same distance from the apparent
origin.
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A Spinning Disc
Consider a flat and spinning disc whose diameter extends
far beyond the central region of experimental interest.
A flow from the central region outward will be estab-
lished by the spinning motion. There is no apparent
length scale in this problem albeit the viscous effects
(i.e. Re) obviously play an important role in the resulting
velocity field.

The angular speed, ω, combined with the fluid kine-
matic viscosity, ν, can be combined to form a velocity
scale

U ∼ √
ων , (2.20)

as well as a length scale

L ∼
√

ν

ω
. (2.21)

Not surprisingly, with these definitions, the Re value
becomes unity:

Re =
√

ων
√

ν/ω

ν
= 1 (2.22)

and, as a result, all nondimensional and nonturbulent
velocity fields are identical. That is, V∗(r∗, z∗) will be
the same for any ν and ω, where

V∗ = V(r, z)

U
(2.23)

and

r∗ = r

L
, z∗ = z

L
. (2.24)

A turbulent flow established by the rotating discs will
have the same scaling parameters and its time-averaged
quantities will, similarly, be identical at the same (r∗,
z∗) positions.

This example problem is also a celebrated example
of a clever analytical solution. It was carried out by von
Kármán [2.5] and is presented in detail by White [2.6].
The latter reference does not make explicit use of the
above result that Re = 1; however, this result is fully
compatible with White’s presentation. Specifically, from
(3-183) of [2.6]

vr = rωF(z∗) , vθ = rωG(z∗) ,

vZ = √
ωνH(z∗) , p = ρωνP(z∗) . (2.25)

It is evident, using the symbols of (2.20–2.24) above, that
White’s equations (3-183) are compatible with the mes-
sage of this section. Specifically, with the normalization
provided by (2.20)

v∗
z = H(z∗) and p∗ = P(z∗) ,

and with the added normalization provided by (2.21),

v∗
r = r∗(Fz∗) and v∗

θ = r∗(Gz∗) . (2.26)

It is useful to note that the von Kármán solution
(2.25, 26) is a good example of the self-similarity solu-
tions that are considered in Sect. 2.3.

The viewpoint expressed in this presentation does
differ with White in a substantive manner with re-
gard to the cited experimental result (from the work
of Kobayashi et al. [2.7]) that instabilities occur for

Re = ωr2

ν
= 8.8 × 104

with the added result that turbulence is observed at Re =
3.2 × 105.

The disagreement can be stated as follows: It is not
correct to state these values as a Reynolds number since
Re ≡ 1 in the understanding of this section. Rather, the
quoted values are simply nondimensional (radii)2 and
their universal values attest to the present statement
that all such flows are in a condition of similitude with
unit Re.

To carry the argument further for its instructive
value, consider that two experimentalists were to make
measurements using large but different disc diameters.
Large, in this context, would be an r0 value whose r∗

0 is
much larger than 3.2 × 105. If the experimentalists used
the same ω value and their large, but finite, disc sizes
(r0) to specify a Reynolds number as they examined the
issue of when does turbulence occur, they would con-
clude that the transition value for r/r0 would be different
in the two experiments.

It is instructive, in this example, that the similarity
parameters for an idealized (r0 → ∞) experiment yield
a more useful result than the similarity parameters (U0 =
r0ω, L = r0) that would be suggested by the physical
experiment.

Finally, for this example, it is considered to be evi-
dent that the von Kármán solution will be invalid as the
observation location approaches the coordinates r → r0
for z � r0 and for smaller r as z increases (where r0 is
the radius of the experimental plate).
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2.2 Dimensional Analysis and Data Organization

The organization and interpretation of experimental data
is an essential activity that requires careful thought.
There is not a specific recipe for organizing data. Inge-
nuity, insight, analysis, and creative ideas are needed.
However, there are some concepts and methods that
will provide guidance. One basic principle is that the
simplest relationship will have the fewest number of
variables. Another basic principle is that the simplest
relationship will use nondimensional variables. Di-
mensional analysis is the basic procedure to produce
nondimensional variables, but it needs to be refined
and supplemented. Section 2.2 will present the elements
of dimensional analysis followed by several examples
that illustrate exceptional cases and supplemental tech-
niques. The examples demonstrate the general features
of dimensional analysis. They provide results that could
in some cases be obtained from familiar analyses of
fluid mechanics. The agreement between the dimen-
sional analysis results and those from general fluid
mechanics will give confidence in the ability of dimen-
sional analysis to give valuable results in complex new
problems.

The presentation of numerical results should have
the most extensive validity. This is not always done.
Consider the following formula to predict the flow rate
of natural gas through a pipeline. Based on experimen-
tal data the following is an algebraic curve fit used in
industry.

Q0 = 737
T0

p0
d2.53

(
p2

1 − p2
2

LmGTf

)0.510

(2.27)

where Q0 is the standard cubic feet per day, T0 is the
reference temperature in ◦R, p0 is the reference pressure
in psia, d is the pipe dimeter in inches, Tf is the fluid
temperature in ◦R, Lm is the pipe length in miles, p1
is the initial pressure in psia, p2 is the final pressure in
psia, G specific gravity referenced to air at 60 ◦F and
14.696 psia.

The constants in (2.27) implicitly have units raised
to irrational powers. For example, d2.53 must be com-
pensated for by a length dimension with power of
−2.53. It would be inappropriate to use this formula
for a CO2 pipeline. Such dimensional formulas exist in
most applied fields and are quite useful. However, from
a scientific viewpoint a simpler and universally valid for-
mula could be developed, one that in principle could be
applied to CO2. The data used to produce (2.27) could
have been organized into a more universal form.

2.2.1 Variables, Function List,
and Extra Information

A physical experiment, event, or situation is in principle
described quantitatively by a mathematical function. It
is a mathematical necessity to have one dependent vari-
able. The remaining variables are independent variables
or parameters as we choose to regard them. Whether
a variable is independent or a parameter is a physical
choice. A correct list of variables requires knowledge
of physics and is sometimes not an easy task. After
a variable list is established, one should employ known
physical equations and extra assumptions that reduce the
number of variables.

As an example consider the question of the pres-
sure drop between two stations, denoted as 1 and 2, in
a straight pipe when the flow is incompressible. The
variables are p pressure, z elevation, ρ density, ν kine-
matic viscosity, Q volume flow rate, g acceleration of
gravity, D pipe diameter, ε relative roughness of pipe
wall, L length of pipe between 1 and 2. Consider the
second pressure as the dependent variable.

p2 = f (p1, ρ, Q, D, L, ε, ν, g, z1, z2) . (2.28)

We have already used some knowledge of the physics
in making this list. Velocity is not included because it is
given by the flow rate divided by the cross-section area.
The temperature of the fluid is not included because
heat transfer effects are separated from flow effects in
incompressible flow.

The problem can be simplified if we observe the
kinetic energy equation (1.71) for incompressible flow.
It is written in average values as

(
p2 +ρ

1

2
V 2

2 +ρgz2

)
−

(
p1 +ρ

1

2
V 2

1 +ρgz1

)

= −
∫

Φ dA dx = hL . (2.29)

To be more precise one sometimes uses a coefficient
in front of V 2

1 to account for the shape of the velocity
profile. Here Φ is the viscous dissipation. The integral
over the cross section dA and pipe length dx represents
the head loss hL between stations 1 and 2. We assume
the flow in the straight pipe is fully developed so that
the velocities at 1 and 2 are the same. Moreover, the
dissipation depends on the velocity profile, which is
unchanged along the length and does not depend on
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Nondimensional Representation 2.2 Dimensional Analysis and Data Organization 43

z or p. Comparing (2.28) and (2.29) we write

(p2 +ρgz2)− (p1 +ρgz1) = f1(ρ, Q, D, L, ε, ν) .

(2.30)

Furthermore, we propose that the dissipation should in-
crease directly with the length of the pipe. To be precise∫

Φ dA dx = L
∫

Φ dA.

(p2 +ρgz2)− (p1 +ρgz1)

= L f2(ρQ Dεν) ,

P2 −P1

L
≡ (p2 +ρgz2)− (p1 +ρgz1)

L
= f2(ρ, Q, D, ε, ν) . (2.31)

Thus, based on physics and guesswork the number of
variables has been reduced from 11 to six. Moreover it
will not be necessary to test at different values of p1 or
different changes in elevation, or even different lengths
of pipes.

2.2.2 Dimensions and Scale Ratios

The basis of simplifying mathematical relationships that
contain physical variables is dimensional analysis. We
may define two categories of variables. Things that are
counted are dimensionless. For instance, the number of
molecules or the number of people in a room is di-
mensionless. Things that are measured require that we
essentially compare the item to a scale that has a defined
unit. An example here is the length of a room or its floor
area. The size of a scale unit is arbitrary. There are no
universal natural size units that are relevant to all phys-
ical processes. Dimensional analysis employs the fact
that a physical event is independent of the scale units
used to measure the variables.

Consider a length variable that has a size l when
measured with a certain length unit. If a new length unit
is used the value becomes l̂. The dimension symbol L is
the ratio of the new unit to the old unit

l̂ = lL . (2.32)

In a similar way a time unit could be changed with scale
unit ratio T or a mass unit could be changed with a scale
unit ratio M

t̂ = tT , (2.33)

m̂ = mM . (2.34)

We could also imagine a force unit with a scale change
ratio F.

f̂ = fF . (2.35)

The symbols F, M, L , and T stand for scale change
ratios for an imaginary process of changing units.

It is a fact of experience that three dimensions are
sufficient to measure any physical quantity. These are
called primary dimensions and may be taken as M, L ,
and T . Equivalently we could take F, L , and T as pri-
mary dimensions. However, the choice of four primary
dimensions is redundant and requires, in general, that we
expand the list of variables to include a unifying dimen-
sional constant. The choice F, M, L , and T requires the
unifying constant gc with dimensions ML/FT 2. In prin-
ciple, equations such as Newton’s second law should be
written with the constant included.

F = ma

gc
(2.36)

Here F is force and a is the acceleration. Current custom
is to write equations as if a consistent system of units is
employed. The dimensional constant is required in the
English Engineering system, but not in the international
SI system.

All other physical variables have dimensions that are
combinations of the primary dimensions raised to some
power. For example a velocity is

v̂ = dl̂

dt̂
= d(lL)

d(tT )
= L

T

dl

dt
= L1T−1v . (2.37)

To be precise, the value of a variable in new units x̂ is
related to the size in old units x by

x̂ = xMa LbT c . (2.38)

Bridgman [2.8] first derived this equation. Not all scale
units will change in this manner. A pressure measured
in decibels does not fit this relation. The Richter scale
for earthquake intensity or the Rockwell hardness scale
for metals are other examples of units that do not obey
Bridgman’s equation. However, all physical concepts
can be measured with primary units so that they obey
the Bridgman equation.

2.2.3 Natural Scales
and Repeating Variables

As an introduction to the essential elements of
dimensional analysis consider the problem of the incom-
pressible flow at speed V over a cylinder of diameter D.
The fluid density is ρ and its viscosity is µ. The ques-
tion is what is the frequency ω of the von Kármán vortex
street? The proposed mathematical function is

ω = f (V, D, ρ, µ) . (2.39)

Part
A

2
.2



44 Part A Experiments in Fluid Mechanics

It is useful to form a dimensional matrix that contains
the coefficients a, b, c of Bridgman’s (2.38) for each
variable. For instance the frequency equation is

ω̂ = ωT−1 . (2.40)

The powers 0, 0, −1 are placed in the matrix.

ω V D ρ µ

M 0 0 0 1 1

L 0 1 1 −3 −1

T −1 −1 0 0 −1

Here we have chosen M, L , and T as the primary
dimensions.

Consider the variables V , D, and ρ. What combina-
tion of these variables will produce a variable with the
dimension of length? The obvious answer is D. What
combination of these variables will produce a variable
with the dimension of time? The answer is D/V . What
combination of these variables will produce a variable
with the dimension of mass? The answer is ρD3. Instead
of measuring mass quantities in units of kilograms, we
will use the value of ρD3 as the unit. This is a natu-
ral unit for this physical phenomenon. Length, time, and
mass units that are associated with the physical event are

Levent = D ,

Tevent = D

V
,

Mevent = ρD3 . (2.41)

The frequency variable has the dimension of 1/T
and the viscosity variable has the dimensions of
mass/(length-time).

ω

[
1

T

]
, µ

[
M

LT

]
. (2.42)

Multiplying frequency and viscosity to eliminate the
appropriate units produces nondimensional variables:

Π1 = ω(
D

V
) = ωV

D
, Π2 = µD(D/V )

ρD3 = µ

ρDV
.

(2.43)

One can observe that Π1 is the reduced frequency and
Π2 is the reciprocal of the Reynolds number that was
introduced in Sect. 2.1. This method of producing nondi-
mensional variables is known as the method of scales.
The mass, length and time units that society has defined
in order to quantify physical variables are arbitrary and

are not inherent to the physical event under study. We
can form mass, length, and time units from variables
associated with the event. Using these as units essen-
tially produces nondimensional variables of a universal
magnitude.

Let us look at the method of scales in a more gen-
eral context. Consider a physical experiment that has n
dimensional variables. There is one dependent variable
that we write on the left-hand side

xn = f (x1, x2, x3, . . . , xn−1) . (2.44)

A given experiment might have several dependent vari-
ables of interest, but we should deal with them and their
functions one at a time. A physical process is indepen-
dent of the units used to make the measurements. Thus,
in the rescaled units the same function holds

x̂n = f (x̂1, x̂2, x̂3, . . . , x̂n−1) . (2.45)

Let us use three primary dimensions. If the scale units
were changed, the first three variables would change
according to

x̂1 = x1 Ma1 Lb1 T c1 ,

x̂2 = x2 Ma2 Lb2 T c2 ,

x̂3 = x3 Ma3 Lb3 T c3 . (2.46)

All other x variables would change by similar relations.
a, b, c are known coefficients of the Bridgman equations.

Consider the following question, is there a combi-
nation of x1, x2, x3 in (2.46) that, when raised to some
powers, α, β, γ , has the dimension of mass? The choice
of the first three variables in the list is arbitrary. The vari-
ables can be renumbered or relisted as we see fit. The
variables chosen as x1, x2, x3 are called repeating vari-
ables. Let the combination that produces a mass scale
yM be

yM = xαM
1 xβM

2 xγM
3 . (2.47)

After a change in scale units the value would be

ŷM = (x̂1)αM (x̂2)βM (x̂3)γM . (2.48)

Inserting the relations (2.47) and (2.48) into (2.41) yields

ŷM = (x̂1)αM (x̂2)βM (x̂3)γM

= xαM
1 xβM

2 xγM
3 MαMa1+βMa2+γMa3

× LαMb1+βMb2+γMb3 TαMc1+βMc2+γMc3 . (2.49)

However, by design we want yM to have the dimension
of mass. Thus, we require that

ŷM = yM M1L0T 0 . (2.50)
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Comparing (2.50) and (2.49) shows that that the powers
of M, L , and T obey the relations

αMa1 +βMa2 +γMa3 = 1 ,

αMb1 +βMb2 +γMb3 = 0 ,

αMc1 +βMc2 +γMc3 = 0 . (2.51)

For given choices of x1, x2, and x3 the coefficients a,
b and c are known, and values αM, βM and γM are
to be found. Cramer’s rule says that a unique solution
of the nonhomogeneous equation set is possible if the
determinate of the coefficient matrix is not zero.

det

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
�= 0 (2.52)

In other words the rank of the coefficient matrix must be
three. The rank is the size of the largest square submatrix
that has a nonzero determinate. If the variables x1, x2,
x3 are chosen so that the rank of the dimensional matrix
is three we will be able to form a mass scale from them.

We can continue to form a combination variable with
the dimension of length using the same x1, x2, x3. The
algebra problem to find another set of coefficients αL,
βL, γL is the same problem as (2.50) except that the
inhomogeneous right hand side is now 0, 1, 0. A solution
is still guaranteed because the coefficient matrix (2.51)
is unchanged and it rank is still three. Moreover, the
same process can be repeated to produce a time variable.
Bridgman’s equations for the length and time units are

ŷL = yL M0L1T 0 , (2.53)

ŷT = yT M0L0T 1 . (2.54)

The critical issue is that the choice of repeating vari-
ables x1, x2, x3 is valid for all three problems if the
rank of their dimensional matrix is three. If so, x1, x2,
x3 are said to be dimensionally linearly independent,
and they may be organized into combinations that have
dimensions of mass, length, and time.

2.2.4 Π Theorem

Consider any variable in the function (2.44) except x1,
x2, and x3. For convenience call it x4. The Bridgman
equation for x4 is

x̂4 = x4 Ma4 Lb4 T c4 . (2.55)

Dividing (2.55) by (2.49, 53) and (2.54) yields the nondi-
mensional Π variable

Π̂4 ≡ x̂4

(ŷM)a4 (ŷL )b4 (ŷT )c4

= x4 Ma4 Lb4 T c4

(yM M)a4 (yL L)b4 (yT T )c4
, (2.56)

x̂4

(ŷM)a4 (ŷL )b4 (ŷT )c4
= x4

(yM)a4 (yL )b4 (yT )c4
,

Π̂4 = Π4 . (2.57)

The variable Π4 is nondimensional and its size is univer-
sal in the sense that it is independent of the measuring
units.

The Π theorem tells us how many nondimensional
variables are needed for a given problem with dimen-
sional variables. The Π theorem can be stated as follows.

Theorem 2.1
If the physical problem is described by a function of n
dimensional variables

xn = f (x1, x2, x3, . . . , xn−1)

and the rank of the dimensional matrix is r, then the func-
tion may be reorganized into nondimensional variables
that are n −r in number

Πn−r = f (Π1,Π2, . . . ,Πn−r−1) .

Obviously r cannot be greater that the number of dimen-
sions, but it can be less. It is not a unique solution because
a multiplication of two variables say Π1Π2 = Π3 is
a nondimensional variable while any power Πα = Π4 is
also a valid nondimensional variable. Any answer that
uses all the dimensional variables and has n −r nondi-
mensional variables is valid. A rigorous proof of the Π

theorem can be found in [2.9].

2.2.5 Example with Rank Less than
the Number of Dimensions

As an example where the rank of the dimensional ma-
trix is smaller than the number of dimensions, consider
a shock wave in a perfect gas. Let the thermodynamic
state in front of the shock wave be specified by p1, ρ1
and the type of gas denoted by the specific heat ratio γ .
The state of motion is fixed by the initial velocity V1
that is measured from a coordinate system fixed to the
wave. Our interest is in the pressure after the shock p2.
With some experience in fluid mechanics we know that
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the function describing this problem has the form

p2 = f1(p1, ρ1, V1, γ ) , (2.58)

The dimensional matrix has three dimensions.

p2 p1 ρx V1 γ

M 1 1 1 0 0

L −1 −1 −3 1 0

T −2 −2 0 −1 0

Try p1, ρ1 and V1 as repeating variables. They will
not work because the determinate of the coefficients of
p1, ρ1 and V1 is zero. Using p2 or γ as a repeating vari-
able will not correct the situation. The determinate of
any 3 × 3 square submatrix is zero, so the rank is not
three. However, the determinate of any 2 × 2 square sub-
matrix is nonzero, hence the rank is two. The Π theorem
predicts that the relation (2.58) can be reorganized with
5−2 = 3 nondimensional variables.

Since the problem does not have three linearly in-
dependent variables, the method of scales or the other
standard textbook methods does not work and we must
reorganize. The purpose of the reorganization is to place
zeros in one of the rows or columns of the dimensional
matrix. To do this we will consider p2/p1 as a variable
instead of p2. This is equivalent to dividing (2.57) by
p1.

p2

p1
= 1

p1
f1(p1, ρ1, V1, γ ) = f2(p1, ρ1, V1, γ ) .

(2.59)

The dimensional matrix for f2 is

p2/p1 p1 ρx V1 γ

M 0 1 1 0 0

L 0 −1 −3 1 0

T 0 −2 0 −1 0

One can check that the rank is still two. The
Π theorem still guarantees that we can form three
nondimensional variables for f2. We note from the di-
mensional matrix that p1 and ρ1 can only occur in the
combination p1/ρ1 and the function must have a simpler
form.

p2

p1
= f3

(
p1

ρ1
, V1, γ

)
. (2.60)

The dimensional matrix for the f3 problem is

p2/p1 p1/ρ1 V1 γ

M 0 0 0 0

L 0 2 1 0

T 0 −2 −1 0

The rank is now one, so there are 4−1 = 3 nondi-
mensional variables for the f3 problem. By inspection
of the dimensional matrix, a solution will contain the
combination V1/

√
(p1/ρ1). An answer is

p2

p1
= f4

(
V1√
p1/ρ1

, γ

)
. (2.61)

The dimensional matrix for f4 is all zeros and (2.61) con-
tains only nondimensional variables. We have used all
the dimensional variables of (2.58) and produced three
nondimensional variables. Equation (2.61) is a sim-
pler relation as predicted by the Π theorem. Those
familiar with compressible flow of a perfect gas will
recognize that

√
p1/ρ1 = √

γ RT/γ = a/
√

γ , where a is
the speed of sound. Thus, the nondimensional variable
V1/

√
(p1/ρ1) is the Mach number Ma divided by

√
γ .

2.2.6 Example with Redundant Dimensions

Previously we noted that the choice F, M, L , and
T requires the unifying dimensional constant gc with
dimensions ML/FT 2. In principle, equations like New-
ton’s second law should include the constant:

F = ma

gc
. (2.62)

A change in the scale units would change the value of
gc. For example

gc = 32.2
lbmft

lbfs2 = 980
Kgmm

Kgfs2 .

Consider a problem

xn = f (x1, x2, x3, . . . , xn−1) . (2.63)

In the FMLT system the function is

xn = f (x1, x2, x3, . . . , xn−1, gc) . (2.64)

The dimensional matrix includes the dimensional con-
stant gc.

x1 x2 . . . xn gc

F −1

M 1

L 1

T −2
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The additional dimension increases the rank by one
and the unifying constant increases the number of vari-
ables by one. There is no effect on the Π theorem’s
prediction of the number of nondimensional variables.
There are other examples of dimensional unifiers. If we
have angles and use the degree as a unit there would
be a dimensional unifier 2π/360 with units of 1/degree.
Next, we will illustrate the use of extra dimensions where
temperature denoted by Θ is used. The unifying con-
stant is R with dimensions L2/(ΘT−2). Again consider
a shock wave in a perfect gas. This time the initial ther-
modynamic state will be specified by initial pressure
p1, and temperature T1. The pressure after the shock is
again the dependent variable. The physical function in-
cludes R (i. e., the constant R = p/(ρT ) for a perfect
gas) as a variable. This compensates for the use of Θ as
a dimension

p2 = f (p1, V1, T1, γ , R) . (2.65)

One finds the dimensional matrix as

p2 p1 T1 V1 R γ

M 1 1 0 0 0 0

L −1 −1 0 1 2 0

T −2 −2 0 −1 −2 0

Θ 0 0 1 0 −1 0

The rank of this matrix is three (the determinant of
any four variables is zero). Thus, there are not four vari-
ables that are dimensionally independent. From the Π

theorem we must have 6−3 = 3 nondimensional vari-
ables. If we produce three nondimensional variables and
use all variables in the function list, we have a solution to
the problem. Inspection of the dimensional matrix shows
that p2/p1 can be one variable because pressures are the
only variables with mass dimensions. Another combina-
tion that must occur must is RT1 because they are the
only variables with temperature dimensions. Hence, the
functional form must be

p2

p1
= f (RT1, V1, γ ) . (2.66)

The dimensional matrix is now

p2/p1 RT1 V1 γ

M 0 0 0 0

L 0 2 1 0

T 0 −2 −1 0

Θ 0 0 0 0

Checking the Π theorem shows that the rank is one
and there should be 4−1 = 3 nondimensional variables.
Thus, we have not altered the problem by leaving out p1
by itself. The final list of nondimensional variables is

Π1 = P2

P1
, Π2 = γ , Π3 = V1√

RT1
. (2.67)

We have satisfied the Π theorem because all dimensional
variables have been used in producing three nondimen-
sional variables. This is the same result arrived at in
(2.61) since RT1 = p1/ρ1.

2.2.7 Anatomy
of a Nondimensional Variable

The formulation of nondimensional variables based on
the Π theorem leads to non-unique answers. Mathemati-
cally the various forms are equally valid. However, some
forms are more useful than others. Let us consider the
anatomy of a nondimensional variable. Specifically, we
consider a nondimensional variable (other than a param-
eter). The general form is

Π = x − xRef

xScale
. (2.68)

In physical events a variable has a natural reference,
which may be zero, and often a preferred scale unit. It
is desirable that the nondimensional variable be a rea-
sonable numerical size, say 0.01–100. In addition to
variables, another physical interpretation of some nondi-
mensional numbers is that of a parameter. In the case
of a parameter the nondimensional variable is often
interpreted as a ratio of physical quantities or scales.

Π = xScale A

xScale B
. (2.69)

For example, the Reynolds number is often interpreted
as a ratio of inertia effects to viscous effects. A fuller
discussion of physical interpretation of parameters is
given later.

The origin of a coordinate system is arbitrary, so
position variables always have a natural reference.
Sometimes we implicitly include the reference in stat-
ing the problem. For example, in flow over a flat plate
we take the distance variable from the leading edge.
This sets the distance coordinate reference implicitly. In
compressible flow the absolute pressure is important and
the reference pressure must be zero. In incompressible
flows the pressure in the flow field increases in the same
amount that the pressure at a reference location p∞ in-
creases. Thus, the correct nondimensional pressure is of
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the form

Πp = p− p∞
pScale

. (2.70)

Whenever a quantity is governed by only gradient ∇x
terms, a reference is arbitrary since ∇(x + xRef) = ∇x.

2.2.8 Nonuniqueness of Scales

Scale units in a nondimensional variable depend on the
choice of repeating variables. Consider the following
problem discussed by White [2.10] (attributed to Profes-
sor Jacques Lewalle) and by Çengel and Cimbala [2.11].
A body falls under gravity g from a height position S0
above the ground with an initial vertical velocity V0.
The height of the body S at any time t is under study.
The initial vertical velocity V0 will be considered as
a positive quantity so there will be two problems, one
problem for V0 upward and another for V0 downward.
The dimensional function is

S = f (t, V0, g, S0) . (2.71)

There are five variables and the rank of the dimensional
matrix is two so there must be three nondimensional
variables. The form of these depends on the choice
of repeating variables. White gives the following op-
tions for nondimensional functions (the exact answer is
of course known; S = S0 + V0t − (1/2)gt2). These vari-
ables are related as power products of the original Π

variables; S∗∗ = S∗α, t∗∗ = t∗α, and t∗∗∗ = t∗/
√

α. As
remarked earlier if Π1 and Π2 are nondimensional, then
Π3 formed by and product of powers, Π3 = Πn

1 Πm
2 , is

also nondimensional. It is not necessary that a problem
have a single set of repeating variables. For example,
another relation S∗ = f4(t∗∗, α) is possible if we would
substitute t∗ = t∗∗/α into S∗ = f1(t∗, α). The physical
meaning of the scales is:

S0 Initial distance above the ground;

Table 2.1

Repeating variables Distance variable Time variable Parameter Function form

S0, V0 S∗ = S
S0

t∗ = t
S0/V0

α = gS0
V2

0
S∗ = f1(t∗, α)

g, V0 S∗∗ = S
V2

0 /g
t∗∗ = t

V0/g α = gS0
V2

0
S∗∗ = f2(t∗∗, α)

S0, g S∗∗∗ = S∗ = S
S0

t∗∗∗ = t√
S0/g

α = gS0
V2

0
S∗∗∗ = f3(t∗∗∗, α)

Table 2.2

Repeating variables Distance variable Time variable Parameter Function form

g, V0 Ŝ = S−S0
V2

0 /g
t̂ = t

V0/g None Ŝ = f̂ (t̂)

V 2
0 /g Distance measure of the trajectory. If V0 is

upward, S maximum is V 2
0 /2g above S0;

S0/V0 Time to travel S0 at speed V0;
V0/g Time measure of the trajectory. If V0 is up-

ward, V0/g is the time to reach S maximum;√
S0/g Time to fall distance S0 if V0 is zero is√

2S0/g.

The parameter α or
√

α can be interpreted as ratios of
these times or distances.

2.2.9 Reference

If a variable has a natural reference it reduces the number
of variables by one. Essentially we add a little physical
knowledge to the problem and simplify the result. In
the falling body problem of Sect. 2.2.8 the origin of the
coordinate can be placed at the initial particle position
without affecting the physics. Equivalently we can con-
sider S − S0 as the dependent variable. This will give an
even simpler answer than those of Sect. 2.2.8

S − S0 = f (t, V0, g) . (2.72)

The dimensional matrix is now

S− So t Vo g

M 0 0 0 0

L 1 0 1 1

T 0 −1 −1 −2

With a rank of two there will be 4 − 2 = 2
nondimensional variables (Table 2.2).Recognizing that
nondimensional variables have natural references pro-
duces a sharper result.

The exact answer is

Ŝ = ±t̂ − 1

2
t̂2

⎧⎨
⎩

+ if V0 is upward ,

− if V0 is downward .
(2.73)
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Fig. 2.8 Simplest nondimensional representation of the
falling body solution

Now we have a function of only two variables. The
solution is displayed in Fig. 2.8. In this figure the position
of the ground is Ŝground = −α = −gS0/V 2

0 .

2.2.10 Scales Chosen
for Experimental Purposes

It is often desirable to choose the dependent and indepen-
dent variables to match the variables being changed in
the experiment. Then the repeating variables are chosen
from the remaining variables. As an example consider
the problem of determining the volume of an earth crater
produced by an explosive charge. The explosion is at
the surface of a soil that lacks cohesion; a soil like sand.
A related problem is the crater formed by impact of a pro-
jectile or meteor. The dependent variable of interest is the
crater volume V . Characteristics of the explosive charge
are the energy per unit mass of the charge ec, the mass
of the charge mc, and the density of the charge ρc. The
acceleration of gravity is g, soil density ρ, and the angle
of repose Φ. It requires some knowledge of the process
to produce the proper list of variables. Sometimes extra
variables are included only to be shown by experiments
to be extraneous. Functionally, the problem is

V = f (ec, mc, ρc, g, ρ,Φ) . (2.74)

The dimensional matrix is

V ec mc ρc g ρ Φ

M 0 0 1 1 0 1 0

L 3 2 0 −3 1 −3 0

T 3 −2 0 0 −2 0 0

In choosing the repeating variables, note that a re-
peating variable may appear in several of the final
nondimensional variables. Thus, we avoid V because
we want it to appear in only one Π variable. It is the
dependent variable. In the tests a centrifuge is used to
effectively change the acceleration of gravity. Hence, we
would like to use g as a major test independent variable
and have it occur in only one Π group. Thus it should
not be a repeating variable. Also the soil density ρ will
not be varied and we would like to isolate its effect into
one Π variable. Since Φ is already nondimensional, the
repeating variables should be chosen from ec, mc, and
one of the densities, say ρc. The determinant of these
three variables (ec, mc, ρc) is nonzero so the rank is
three. Hence, ec, mc, and ρc are dimensionally indepen-
dent and may be formed into scales for the MLT units
as follows:

M ∼ mc , L ∼
(

mc

ρc

)1/3

,

T ∼ e−1/2
c

(
mc

ρc

)1/3

. (2.75)

The remaining variables that were not used in scales,
V , ρ, g, and Φ are m − r in number. This is just the
number of nondimensional variables predicted by the Π

theorem. They are taken one at a time and made non
dimensional by eliminating MLT as required. We have
used all the variables in the original list and produced
n −r nondimensional variables. Hence, the Π theorem
is satisfied. In nondimensional form the final function is

V

mc/ρc
= f

[
g

ec

(
mc

ρc

)1/3

,
ρ

ρc
, Φ

]
. (2.76)

As intended, variations in g can be used to simulate
variations in the explosion strength ec. If it is arranged
so that variable occurs in only one Π group, the effect
can be assessed by changing not the variable itself, but
by changing another variable in that Π group.

From a series of experiments with Φ constant,
Schmidt and Housen [2.12] found that for explosions
(2.75) may be represented by the power relation

V

mc/ρc
= 0.218

(
ρ

ρc

)0.002
[

g

ec

(
mc

ρc

)1/3
]−0.464

.

(2.77)

The dependence on ρ/ρc is negligible according to the
experiments. This is another useful aspect of dimen-
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sional analysis. The effect of soil density has been shown
to be unimportant with experiments where only g and
ρc are varied.

2.2.11 Nondimensional Variables
Interpreted as Physical Ratios

Next, we try and reorganize the results of the ex-
plosion problem of Sect. 2.2.10 into a form that has
a physical interpretation. We can consider a nondi-
mensional variable as the ratio of two, dimensional,
physical quantities. Let us divide the quantities in the
explosion problem into two groups; those that charac-
terize the soil and crater, ρ. V , and g, and those that
characterize the charge, mc, ρc and ec. Listed below
are physical concepts that are characterized by param-
eter groups for the charge and the crater. The mass of
material from the crater is ρV , the size of the crater
is characterized by V 1/3 the time to move the soil
in a gravity field g is scaled by V 1/6g−1/2 and so
on.

Quantity Dimensions Crater Charge

Mass M ρV mc

Length L V 1/3 (mc/ρc)1/3

Time T (V/g3)1/6 (mc/ρc)1/3e−1/2
c

Volume L3 V mc/ρc

Density ML−3 ρ ρc

Velocity LT−1 g1/2V 1/6 e1/2
c

Acceleration LT−2 g ec(ρc/mc)1/3

Force–weight MLT−3 ρgV ec(ρc/m2
c)1/3

Momentum MLT−1 ρg1/2V 7/6 e1/2
c mc

Energy ML2T−2 ρgV 4/3 ecmc

We ignore the ρ/ρc dependence as it is negligible
in (2.77). Let us replace the power 0.464 by a rational
fraction. After some trial and error choose 3/7 (which
is equal to 0.428). This will leave the variable mc with
a power of one. A little algebra shows that (2.74) is
roughly equivalent to

ρcV 7/6g1/2

mce1/2
c

= Characteristic momentum of crater

Characteristic momentum of charge

= 0.2187/6 = 0.169 . (2.78)

So the results indicate that the momentum ratio is almost,
but not quite, constant for the explosion crater formation
process.

2.2.12 Scales Found from Boundary
Conditions and Equations

In many cases we know at least some of the equations and
boundary conditions that govern a situation. They can
be used as a guide in forming nondimensional variables.
The object is to define variables so that the boundary
conditions and equations contain pure numbers or, if that
is not possible, a minimum number of nondimensional
parameters. As an illustration we consider the flow in
a slot with a moving upper wall, the Couette–Poiseuille
problem. The lower wall will be y = 0 and the upper
wall y = h. Two effects drive the flow. The upper wall is
sliding with velocity V0 and there is a constant pressure
gradient dp/dx. The dependent variable is the velocity
profile v(y).

v = v(y, h, V0, µ, dp/dx) (2.79)

The differential equation and boundary conditions that
govern the flow are

0 = − dp

dx
+µ

d2v

dy2
, v(y = 0) = 0 ,

v(y = h) = V0 . (2.80)

The Π theorem applied to (2.79) predicts that the prob-
lem is governed by three nondimensional variables. We
have already assumed a reference value for y by setting
the lower wall to zero. From the boundary conditions it
is obvious that variables of reasonable size will be

y∗ = y

h
, v∗ = v

V0
. (2.81)

Substituting for the dependent variable and transforming
the independent variable gives

0 = − dp

dx
+µ

d2(v∗V0)

dy∗2

(
dy∗

dy

)2

,

0 = − h2

µV0

dp

dx
+µ

d2v∗

dy∗2 . (2.82)

The problem now contains a nondimensional parameter

P = − h2

µV0

dp

dx
. (2.83)

In nondimensional variables the problem is

0 = P + d2v∗

dy∗2 , v∗(y∗ = 0) = 0 ,

v∗(y∗ = 1) = 1 . (2.84)
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We expect a nondimensional answer v∗(y∗,P ) with
three nondimensional variables as the Π theorem pre-
dicts. Sometimes, nondimensionalizing the equations
results in fewer nondimensional variables, however, in
this case it does not.

2.2.13 Limiting Cases

If a parameter is very large, or very small, the other
nondimensional variables must have the proper scales.
Consider a nondimensional relationship that contains
a parameter and we are interested in the behavior as the
parameter takes on an extreme value. Say the relation is

Π1 = f (Π2,Π3) (2.85)

and Π3 → ∞ is of interest. It makes no difference
whether the extreme value is 0 or ∞ as we could re-
define the parameter as Π̂3 = 1/Π3. It is important
that the nondimensionalized dependent variable remain
bounded and nonzero in this limit; 0 < Π1 < ∞. Of-
ten the nondimensional variable needs to be redefined
in order to remain bounded. We will consider three
examples.

In the Couette–Poiseuille flow problem of (2.38) we
nondimensionalized the velocity by the wall velocity V0.
What if the cases we are interested in have a very small
V0. This corresponds to very large value of the parameter
P . Thus small V0 actually means small compared to the
quantity −(h2/µ)dp/dx. This latter quantity is a meas-
ure of the maximum velocity caused by the pressure
gradient. The parameter P has the physical interpreta-
tion as the ratio of the velocity caused by the pressure
gradient to the velocity caused by the wall motion. In
the limit P → ∞ the variable v∗(y∗,P ) becomes un-
bounded. The velocity v∗ has been nondimensionalized
by the wall velocity which is improper when the pres-
sure gradient dominates the flow. A hint of the difficulty
is that the differential equation in (2.84) has an infinite
term as P → ∞. The correct dependent variable for
small wall velocities is

v̂ = v

− h2

µ
dp/dx

= v∗

P
. (2.86)

In terms of this variable the problem is

0 = 1+ d2v̂

dy∗2 , v̂(y∗ = 0) = 0 ,

v̂(y∗ = 1) = 1

P
→ 0 . (2.87)

A properly nondimensionalized variable is bounded in
the limit.

The next example is a little more complex. Consider
the falling body problem of Sect. 2.2.8. What if the ini-
tial velocity V0 is zero? This does not fundamentally
change the problem, but the previously used nondimen-
sional variables of (2.70) are not appropriate as they all
involve V0.

Ŝ = f̂ (t̂) , Ŝ = S − S0

V 2
0 /g

, t̂ = t

V0/g
. (2.88)

Another way to look at this problem is to ask what
is the behavior of Ŝ = f̂ (t̂) as t̂ → ∞? Applying the Π

theorem to (2.72) without V0

S − S0 = f (t, g) (2.89)

shows that only one nondimensional variable is needed.
We could find this in the usual way or we can ask
ourselves what combination of Ŝ and t̂ will eliminate
V0. If the initial velocity V0 is zero the nondimensional
variable is

S̃ = Ŝ

t̂2
= S − S0

gt2
= const . (2.90)

In fact, we see from the exact answer (2.73) that as
t̂ → ∞, Ŝ/t̂2 = −1/2.

For a final example we consider the pressure. In
compressible flow the pressure has a thermodynamic
role, as well as a mechanical role, and the absolute
pressure occurs in the equation of state. The nondi-
mensional pressure has a zero reference and the scale
is some reference pressure. In incompressible flow the
scale unit depends on the flow situation. Consider an
incompressible flow with a reference velocity U0 and
a reference length L . What is the proper pressure scale
pS for a nondimensional pressure

p∗ = p− pRef

pS
. (2.91)

Let us write the x-direction momentum equation and
nondimensionalize the velocities with U0 and the lengths
with L .

ρ

(
u

∂u

∂x
+v

∂u

∂y

)
= −∂p

∂x

+µ

(
∂2u

∂x2 + ∂2u

∂y2

)
,

ρU2
0

(
u∗ ∂u∗

∂x∗ +v∗ ∂u∗

∂y∗

)
= −pS

∂p∗

∂x∗ + µU

L

×

(
∂2u∗

∂x∗2 + ∂2u∗

∂y∗2

)
.

(2.92)
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There are three possibilities. If the inertia and pres-
sure terms are dominant, the pressure scale is pS = ρU2

0
and the viscous term will be small if the Reynolds num-
ber ρUL/µ = Re is large. If the viscous and pressure
terms are dominant, the pressure scale is pS = µU0/L
and the inertia term will be small if the Reynolds num-
ber Re is small. If all terms are important then either
scale is useful and the Reynolds number is moderate.

2.2.14 Singular Perturbations

In Sect. 2.2.13 the dependent variable Π1 as required to
be well behaved as the parameter Π3 approached a limit.

Π1 = f (Π2,Π3) as Π3 → 0 or ∞ . (2.93)

The situation for this section is more complex in that the
dependent variable Π1 is well-behaved for a range of the
Π2 variable, but is ill behaved for another range of Π2.
Mathematically this type of behavior is called a singular
perturbation. One set of nondimensional variables is not
appropriate for the whole space region. Wall boundary
layers are the common example.

Here we consider the fluctuations of pressure on the
wall under a turbulent boundary layer. The wavenumber
k of a fluctuation of wavelength λ is

k = 1

2π
·λ . (2.94)

The spectral density φ(k) is a function such that its
integral gives the mean square pressure.〈

p′2〉 =
∫

φ(k)dk . (2.95)

The fluid is characterized by a density ρ and kine-
matic viscosity ν while the turbulent boundary layer
has a thickness δ and a characteristic velocity u∗ (this is
the friction velocity). The spectrum is the dimensional
function

φ = φ(k, ρ, ν, δ, u∗) . (2.96)

The boundary layer has two length scales: the thickness
of the turbulent region is δ and the viscous scale is ν/u∗.
The largest fluctuations scale with δ while ν/u∗ meas-
ures the smallest possible fluctuations. The physics of
the turbulent fluctuations at these two different scales is
different. Low-wavenumber fluctuations are inviscid and
high-wavenumber fluctuations are viscous. Straightfor-
ward dimensional analysis with inviscid parameters ρ,
u∗, δ as repeating variables produces the nondimensional
form

φ

ρ2u4∗δ
= φ

(
k1δ,

u∗δ
ν

)
. (2.97)

For convenience we define the nondimensional variables
as

Φ = φ

ρ2u4∗δ
, K = k1δ , Re = u∗δ

ν
. (2.98)

The Reynolds number Re is the ratio of the boundary
layer thickness to the viscous length scale. In terms of
these variables the result is

Φ = Φ(K, Re) . (2.99)

For high Reynolds numbers

Φ0 = Φ0(K ) ≡ Φ(K, Re → ∞) . (2.100)

In the limit Re → ∞ the spectrum is finite for low
wavenumbers (frequencies), however, it approaches zero
for high wavenumbers.

To obtain the spectrum function valid for the high
wavenumbers we must rescale both the dependent and
independent variables

Φ∗ = φ

ρ2u3∗ν
= Φ Re , k∗ = k1

u∗/ν
= K

Re
.

(2.101)

The proper wavenumber rescaling, say for instance
K/ Re, K/ Re1/2, or K/ Re2/3, depends on the physics
of the process. This must be determined by analysis or
experiment.

For high wavenumbers the correct nondimensional
form is

Φ∗ = Φ∗(k∗, Re) , (2.102)

Φ∗
0 = Φ∗

0(k∗) ≡ Φ∗(k∗, Re → ∞) . (2.103)

This nondimensional form scales the wavenumber by
the viscous length and is valid only for high wavenum-
bers. Thus, depending on the range of the independent
wavenumber variable, there are two different nondimen-
sional forms that are of order one.

2.2.15 Overlap Behavior
and Composite Expansions

Singular perturbation problems have one set of nondi-
mensional variables for small values of the independent
variable, and another set for high values of the in-
dependent variable. These independent variables are
related by the parameter that is taking on a limit.
One might expect, and it is indeed true, that there is
a range of moderate values of the independent vari-
able where either set of variables is valid. This is
called the overlap region. The behavior of the func-
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tions in the overlap region is called the common part.
The common part depends only on the amount of
rescaling needed to make the dependent variable well
behaved.

If no rescaling of the dependent variable is needed
then the common part is a constant. Ordinary bound-
ary layers fall into this category. If the rescaling of the
dependent variable is a power law of the parameter,
then the common part is also a power law in the inde-
pendent variable. In the pressure spectrum problem of
Sect. 2.2.14 the rescaling was Re−1. The corresponding
overlap behavior is

Φ0 ∼ 1

K
as K → ∞ , (2.104)

Φ∗
0 ∼ 1

k∗ as k∗ → 0 . (2.105)

These are really the same equation because of the rela-
tions (2.98)
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Fig. 2.10 (a) The pressure spectrum function Φ0(K ) valid
for low wavenumbers. (b) The pressure spectrum function
φ∗

0(k∗) valid for high wavenumbers
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Fig. 2.9 Experimental measurement of the pressure spectrum of the
turbulent atmosphere (after [2.13])

Φ0 ∼ 1

K
,

Φ0 Re ∼ Re

K
,

Φ∗
0 ∼ 1

k∗ . (2.106)

Figure 2.9 shows experimental data taken on the
atmospheric boundary layer at a very high Reynolds
number. The frequency axis is equivalent to the
wavenumber axis since they are connected by a con-
vective velocity ω = kUc. The overlap region where
the spectrum falls as a minus one power is obvious.
This spectrum is a combination of an inviscid spectrum
Φ0(K ) and a viscous spectrum Φ∗

0(k∗). Sketches of the
Φ0(K ) and Φ∗

0(k∗) functions are given in Fig. 2.10. At
a lower Reynolds number the drop off of the viscous
part of Fig. 2.9 would occur at a lower frequency. If
the Reynolds number is low enough, the overlap region
disappears.

Another subtle type of overlap is where a defect law
matches to a single function law. In this instance the
behavior is logarithmic. A more complete description of
overlap behavior is found in Panton [2.9, 14].

Experiments cannot be conducted at infinite values
of a parameter, say the Reynolds number. Singular per-
turbations have a different mixture of the two different
functions as the parameter changes. The importance of
this mixing depends on the exact nature of the functions.
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Fig. 2.11 Experimental measurement of the Reynolds stress across
a pipe for several Reynolds numbers in the outer distance variable
Y (after [2.15])
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Fig. 2.12 Experimental measurement of the Reynolds stress across
a pipe for several Reynolds numbers in the inner distance variable
y+ (after [2.15])

Table 2.3 Length scales

Lengths Formula Interpretation

Flow region size L Characteristic length scale of flow pattern

Viscous diffusion distance
√

νt Distance viscous shear stress or vorticity diffuses in time t

Mean free path length λ Typical distance a gas molecule travels between collisions

Thermal conduction distance
√

αt Distance thermal energy is conducted in time t

Capillary length
√

σ
ρg Length scale for interface shape in gravity field

Kolmogorov
(

ν3
ε

)1/4
Size of smallest turbulent eddy

For laminar boundary layers it is not very important. For
turbulent wall layers is not too important for the veloc-
ity profile. A situation where explicit variation of the
parameter needs to be accounted for in the data analysis
is the Reynolds stress in pipe flow. For pipe (or chan-
nel) flow the nondimensional Reynolds stress 〈uv〉 is
a function of the distance from the wall Y = y/R and
the Reynolds number Re = u∗ R/ν.

−〈uv〉
u2∗

= G(Y, Re) . (2.107)

Figure 2.11 shows experimental data for the Reynolds
stress in turbulent pipe flow. For high Reynolds numbers
theb outer form of this relation is

G0(Y ) = G(Y, Re → ∞) . (2.108)

Analysis shows that the exact equation for G0 is

G0 = 1−Y . (2.109)

Away from the wall, Y > 0.2, the data in Fig. 2.11 fol-
low (2.109), but near the wall, Y < 0.2, the data do not
follow G0 = 1−Y . At the wall G0(0) = 1 is invalid and
a rescaled independent variable is required. The proper
independent variable scaling near the wall is

y+ = yu∗
ν

= Y Re . (2.110)

Near the wall the proper inner representation of the
Reynolds stress is a different relation.

−〈uv〉
u2∗

= g(y+, Re) . (2.111)

Figure 2.13 shows the experimental data in the inner
representation. For high Reynolds numbers the inner
form of this relation is

g0(y+) = g(y+, Re → ∞) . (2.112)
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Table 2.4 Velocity scales

Velocity Formula Interpretation

Flow U Velocity imposed in a boundary specification
Sound a Speed of an acoustic wave in a still medium

Viscous diffusion
√

ν
t Velocity of the diffusion of viscous region at time t

Friction velocity u∗ ≡
√

τ0
ρ

Convenient scale in wall turbulence

Thermocapillary 1
µ
∂σ/∂x Velocity from surface tension gradient opposed by viscosity

Kolmogorov (νε)1/4 Characteristic velocity fluctuation of smallest turbulent eddy

Near the wall, y+ < 20, the data collapse to a single
curve and follow (2.112), but away from the wall, y+ >

20, the data do not follow g0 = g0(y+).
The overlap region between the inner and outer func-

tions has a constant common part GCP = G0(Y → 0) =
1 = g0(y+ → ∞).

At finite Reynolds numbers the Reynolds stress does
not fit either representations for all distances. For this
reason G0 and g0 are not experimentally observed.
A composite expansion is a combination of the two
functions into a single uniformly valid representation.
A composite expansion contains the first effects of
Reynolds number. An additive composite expansion is

−〈uv〉
u2∗

= g0(y+)+ G0

(
Y → y+

Re

)
− GCP

= g0(y+)+ (1−Y )−1 = g0(y+)− y+

Re
.

(2.113)

Since we know G0(Y ) = 1−Y and GCP = 1, there is
only one unknown function g0(y+) in (2.113). Solv-
ing this equation allows the data to be corrected for
Reynolds number effects

g0(y+) = − 〈uv〉
u2∗

∣∣∣∣
data

+ y+

Re
. (2.114)

Figure 2.12 shows data processed according to (2.114).
Experimental data at a variety of Reynolds numbers is
plotted in Fig. 2.13, where, within the experimental un-
certainty, it falls onto a single curve. The line on Fig. 2.13
is drawn also considering channel flow experiments and
direct numerical simulations.

The composite expansion (2.113) is plotted in
Fig. 2.13, which shows that the Reynolds number effect
is well represented by a composite expansion.

2.2.16 Common Scales
and Nondimensional Parameters

Nondimensional parameters can be interpreted as a ratio
of dimensional properties. The dimensional properties of

the ratio can be length scales, time scales, velocity scales,
forces, fluxes, energies, or other physical concepts. The
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Fig. 2.13 Experimental measurement of Reynolds stress represented
as the inner function g(y+) (after [2.15])
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Fig. 2.14 Experimental measurement of Reynolds stress compared
with the composite expansion (2.113) where g0 is a curve fit of
Fig. 2.12 (after [2.15])
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Table 2.5 Nondimensional parameters

Name Symbol Definition Comparison ratio

Biot number Bi h
κ/L Convection heat transfer/conduction heat transfer

Bond number Bo
g(ρ−ρ f )L2

σ
Buoyancy force/surface tension force (geometric length/capillary length)2

Capillary number Ca µV
σ

Viscous effect/surface tension effect

Cavitation number Cav p−pv

ρV2 Pressure difference from vapor pressure/dynamic pressure

Drag coefficient CD
FD

1/2ρV2 Ax
Drag force/dynamic pressure times cross section area (for aircraft planform area)

Eckert number Ec V2
cp∆T Kinetic energy/enthalpy change

Ekman number E ν

fR L2 Viscous force/Coriolis force (Coriolis frequency fR = 2 sin θΩ for earth rotation)

Fourier number F αt
L2 Heat conduction rate/energy storage rate

Friction coefficient Cf
τ

1/2ρV2 Shear stress/dynamic pressure

Friction factor f hL D/L

1/2V2 Head loss (viscous dissipation) in pipe of length D/incoming kinetic energy

Froude number Fr V2
gL Kinetic energy/gravity potential Inertia force/gravity force

Grashof number Gr gα∆TL3

ν2 Bouyancy force/viscous force

Head loss coefficient K hL
1/2V2 Head loss (viscous dissipation)/incoming kinetic energy

Knudsen number Kn λ
L Mean free path/flow length

Lift coefficient CL
FL

1/2ρV2 Ax
Lift force/dynamic pressure times cross section area (for aircraft planform area)

Mach number M V
a Velocity/speed of sound

Marangoni number Ma L
µα

∂σ/∂x Thermocapillary flow/thermal conduction

Nusselt number Nu hL
k Nondimensional heat convection coefficient

Peclet number Pe VL
α

= Re Pr bulk heat transfer/conduction heat transfer

Prandtl number Pr
µcp

k Viscous diffusion effect/thermal diffusion effect

Pressure coefficient Cp
p−pRef
1/2ρV2 Pressure change/dynamic pressure

(Euler number)

Rayleigh number Ra gα∆TL3

νk Modified Grashof number Gr Pr

Reynolds number Re VL
ν

Inertia effects/viscous effects

Richardson number Ri gα∆TL
V2 Bouyancy force/inertia force

Rossby number Ro V
fR L Rotation time/flow time (Coriolis frequency fR = 2 sin θΩ for earth rotation)

Stanton number St h
ρcpV Heat transfer/thermal capacity of fluid

Strouhal number St fL
V Frequency/(flow time)−1

Weber number We ρV2 L
σ

Dynamic pressure/surface tension

exact problem under consideration and the definition of
the nondimensional parameter determine the specific in-
terpretation. For example, the Reynolds number is a ratio
of an inertia force to a viscous force. The inertia effect
is proportional to ρU2 (twice the kinetic energy per unit
volume) and the shear stress proportional to µU/L

Re = ρUL

µ
= ρU2

µU/L
. (2.115)

However, in boundary layers and entrance length prob-
lems the shear stress is proportional to µU/δ. Here δ is
the thickness of the viscous region and is δ ∼ √

νL/U .

Hence

Re = UL

ν
= L2

νL/U
=

(
L

δ

)2

. (2.116)

A high Reynolds number indicates that the layer is thin
compared to the length L . In the boundary layer the
shear stress and inertia force are of equal importance.
Nevertheless, the Reynolds number is some measure of
viscous effects and inertia effects. Table 2.3 gives some
length scales and Table 2.4 velocity scales that are typi-
cally defined. In Table 2.5 the reader will find common
nondimensional parameters and a typical interpretation.
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2.3 Self-Similarity

Certain flows lend themselves to some idealization
which consists of excluding a length, time or velocity
scale. This is the first sign that self-similar behavior is
expected. In many important cases self-similar asymp-
totics attract real flow patterns even though the latter
are polluted by some minor non-ideal details. Then,
self-similar asymptotics are realizable experimentally
and attract the initially non-self-similar flow fields. Be-
ing recognized, self-similarity can relatively readily be
found analytically or numerically. Moreover, the very
recognition of flow self-similarity, even without finding
the corresponding solution, enables one to detect im-
portant general features in the pile of raw experimental
(or numerical) data, dramatically reduces the volume
of the experimental work needed for flow characteriza-
tion, and makes data processing highly effective. In the
present chapter the self-similarity approach is elaborated
through particular examples of viscous Navier–Stokes
flows, the boundary layer and gas dynamics flows, as
well as a flow with the free surface. In most cases both
hydrodynamic and thermal flow fields are considered
and the general procedure that establishes self-similarity
is demonstrated.

2.3.1 General Causes of Self-Similar
Behavior in Certain Situations
in Fluid Mechanics and Heat Transfer

Hydrodynamic and heat transfer problems are gener-
ally described by partial differential equations (PDEs),
which implies that their solutions depend on several
variables (say, spatial coordinates and/or time). The
equations of motion responsible for the hydrodynamic
part are nonlinear (for example, the Navier–Stokes equa-
tions), or reduce to linear equations in certain simple
cases. The thermal balance equation is typically linear,
but even in the simplest cases it can be solved only af-
ter the fluid mechanical part of the problem has been
disposed of and the flow field established. As a rule,
solution of linear and nonlinear PDEs is a much more
complicated task than that of ordinary differential equa-
tions (ODEs) where functions of a single variable are
sought. Fortunately, in certain cases of practical impor-
tance PDEs with the corresponding initial and boundary
conditions can be reduced to ODEs subject to related
conditions.

Such a reduction is possible if the problem at hand
lends itself to some idealization. For example, one can
consider:

• a semi-infinite depth of a fluid (instead of a finite
depth) in contact with a horizontally moving infinite
plate,• a pointwise vortex core (instead of a finite one) in
viscous fluids,• fluid suction from a wedge into an infinitesimally
thin (instead of a finite) slit at the wedge tip,• viscous fluid flow, forced or due to natural con-
vection, along a semi-infinite (instead of a finite)
plate,• jets issuing from a pointwise nozzle or buoyant
plumes generated by a pointwise heat source (instead
of finite ones),• gas flows due to pointwise explosions in air (instead
of finite-size ones),• capillary waves generated by impact of a pointwise
droplet or a stick (instead of finite ones) onto a thin
layer of fluid.

In all these cases the idealization consists of ex-
cluding a length scale (or possibly a time or velocity
scale) from the problem [2.16]. The latter is the first
sign that self-similarity can exist in the given problem
and its description can be reduced to ODEs. There are,
however, certain restrictions. For example, there is no
guarantee that the physical parameters of interest tend
to finite nonzero values anywhere in the flow domain at
the limit corresponding to the length scale (in fact, one
of the given parameters) tending to zero. Where such
finite nonzero limits exist, we are dealing with com-
plete self-similarity (also called self-similarity of the
first kind), which can be fully established by means of
dimensional analysis [2.17]. Only such cases are con-
sidered in the present chapter. The situation, however,
can be more complicated when the above mentioned
limit tends to zero or infinity, or tends to no limit
and demonstrates power-law asymptotics. In such cases,
we are dealing with incomplete self-similarity (or self-
similarity of the second kind). Then the exponents of
the power-law asymptotics (scaling) cannot generally
be found by applying dimensional analysis, but rather
as the eigenvalues of the relevant eigenvalue problems.
Nevertheless, the asymptotics could be fully determined
only via matching the power-law tails to the fully non-
self-similar part of the solution (which is not always
possible) [2.17].

As mentioned above, self-similarity is easily rec-
ognizable and relatively readily found analytically or
numerically. It also enables one to detect the instruc-
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tive invariant features sometimes buried under the pile
of raw experimental or numerical data. Moreover, the
very recognition of intrinsic self-similarity in a certain
case, even without finding the corresponding solution,
dramatically reduces the volume of experimental data
needed for characterizing the flow, as is shown in brief
in the next subsection.

2.3.2 Implications of Self-Similarity
in Experimental Studies

The idea of disregarding the detailed flow structure at
certain points (for example, at the exit of a small nozzle
releasing a jet) inevitably leads to localized singulari-
ties. At the origin of a jet flow the velocity becomes
infinite, while for example the momentum flux remains
finite. In spite of the singularity, such a self-similar so-
lution is useful if the actual flow tends to the self-similar
one far from the nozzle. If such is the case, we can con-
clude that in the far field the memory of the initial details
at the nozzle exit has already faded and only such an in-
tegral characteristic as the momentum flux is important.
One could actually argue that the self-similar solution
should not necessarily attract any jet flow originating
from a near-field zone, since this has not been rigor-
ously proven so far. In other words, it is not proven that
the flow field in a real non-self-similar jet will tend to
the flow field corresponding to the idealized self-similar
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Fig. 2.15 (a) Suddenly accelerated plate (b) Vibrating plate

situation. However, in most fluid-mechanical cases in-
volving boundary layers near a solid wall or free flows
(as in jets and plumes), self-similar asymptotics attract
the flow pattern even though the latter is initially polluted
by some minor details, and as soon as the memory of the
latter has faded (as in the far field of the jet) self-similar
behavior is expected. The very fact that self-similar be-
havior is realizable experimentally shows that it attracts
the initially non-self-similar flow fields.

Self-similar behavior can also be disrupted by the
presence of unaccounted-for distant walls. A jet, for
example, is never fully free, since certain confine-
ments are present. Nevertheless, actual flow structures
at sufficient distances from such walls agree fairly well
in many cases with the idealized self-similar ones.
This makes them valuable intermediate asymptotics
of a real flow field. The self-similar solutions can be
described as a tiny island in the ocean of non-self-
similar flows but, their influence extends far into the
latter.

The fact that the flows in the far field of, say,
a steady turbulent submerged axisymmetric jet are
expected to be self-similar has major implications re-
garding the measurement strategy in experimental study
of the jet. Self-similarity implies that the longitudinal
velocity in the jet is given by u = uax(x)Φ(η), where
uax(x) is the axial velocity, and the self-similar vari-
able η = const · y · xβ , β being a known exponent. An
experimenter has to measure only uax(x) and the ve-
locity profile in a single jet cross section x = x∗ and
the values of the self-similar variable η∗ in this cross
section are derived from y using x∗. The measured ve-
locity values u are also normalized by uax(x∗), and the
function Φ(η∗) = u/uax (x∗) is then established in the
cross section x = x∗. However, self-similarity also im-
plies that the same function describes the normalized
velocity profile in all other cross sections of the jet in the
far field, hence, no additional measurements are needed
there. The fact that the flow is expected to be self-similar
(which can be established a priori even without solving
the equations of motion) permits drastic reduction of the
volume of measurements.

In the following subsections the self-similarity ap-
proach will be elaborated through particular examples,
beginning with the simplest ones. In Sect. 2.3.3 several
examples of viscous Navier–Stokes flows are consid-
ered. Section 2.3.4 deals with flows in boundary layers,
including forced and natural convection as well as lam-
inar and turbulent flows. In Sect. 2.3.5 a self-similar
flow in gas dynamics is shown, while in Sect. 2.3.6 self-
similarity in a free surface flow is discussed. In all cases,
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the general procedure which establishes self-similarity
is demonstrated. Where possible, reference is made only
to the monographs in which the original works can be
found.

2.3.3 Particular Examples
of Self-Similar Navier–Stokes Flows

Suddenly Accelerated Flat Plates
(Stokes’s First Problem)
and the Corresponding Thermal Problem
on a Suddenly Cooled Slab

Consider an infinite plate at y = 0, in contact with a vis-
cous fluid at y ≥ 0 (Fig. 2.14a). Both plate and fluid
were at rest at t < 0, while at the initial time t = 0 the
plate begins to move in the x-direction with a velocity
U = const. The kinematic viscosity of the fluid is ν. Pres-
sure is uniform in the fluid domain, and fluid entrainment
by the plate is described by the reduced Navier–Stokes
equations with the appropriate initial and boundary con-
ditions: the no-slip condition at y = 0 and the condition
that the fluid is always at rest at infinity [2.18]. Namely,

∂u

∂t
= ν

∂2u

∂y2 (2.117)

with the initial conditions

t = 0 ; u = 0 (2.118)

and boundary conditions

t > 0 :
⎧⎨
⎩

y = 0 , u = U ,

y = ∞ , u = 0 .
(2.119)

The assumption that the fluid domain is semi-infinite,
0 ≤ y ≤ ∞, is an idealization of real situations where the
domain is sufficiently large but finite in the y-direction.
Due to the idealization the problem does not contain any
given length scale. To normalize the problem (2.117–
2.119) any arbitrary length scale L can be used, whereas
the time scale becomes L2/ν, where the dimensionality
of ν is [ν] = m2/s. The velocity scale can certainly be
taken as U . The dimensionless problem reads

∂u

∂t
= ∂2u

∂y2 (2.120)

with the initial and boundary conditions

t = 0 , u = 0 ,

t > 0 :
⎧⎨
⎩

y = 0 u = 1

y = ∞ u = 0 ,
(2.121)

where t, y and u are rendered dimensionless by L2/ν, L
and U , respectively. Any solution of (2.120, 121) should
have the form u = f (t, y), such that the arbitrary length
scale L is automatically absent in the final result. This
is the case with the function

f (t, y) = F(η) , η = y

t1/2
, (2.122)

since for any L , η = y/(νt)1/2. Any dependence of f on
t and y, other than that of (2.122), does not exclude an
arbitrary L which should not appear in the solution. The
solution (2.122) is called self-similar and depends on the
self-similar variable η. The fact of self-similarity, as es-
tablished above, obviates the need to solve an equation.
Once it has been established, a particular function F can
be found experimentally using a time series for the ve-
locity u at a certain location y. On the other hand, in the
present case the self-similar solution can easily be found
after (2.122) has been substituted in (2.120) and the re-
sulting ordinary differential equation solved with the
boundary conditions as per (2.121). The corresponding
self-similar solution reads

u

U
= 1− erf

(
y

2(νt)1/2

)
, (2.123)

where

erf(z) = 2√
π

z∫
0

e−ζ2
dζ (2.124)

is the error function.
It is emphasized that, if a gap of a finite width W

filled with fluid (0 ≤ y ≤ W) is considered, a length
scale L = W should be taken. No self-similarity would
arise in that case. The self-similar solution serves, how-
ever, as a reasonable approximation of such a case at
times when the presence of the wall at y = W is still not
strongly felt by the flow, i. e., at t significantly shorter
than W2/(4ν). During this time interval the self-similar
solution represents itself as an intermediate asymptotics
of the non-self-similar situation [2.17].

A kindred thermal problem arises in the case where
material occupying a semi-infinite space 0 ≤ y ≤ ∞ and
having an initial temperature Ti is brought at t = 0 at
y = 0 into contact with a refrigerator of temperature
T0 < Ti. The self-similar solution for the temperature
field T reads

T − T0

Ti − T0
= erf

(
y

2(αt)1/2

)
, (2.125)

where α is the thermal diffusivity of the material in
question, [α] = m2/s.
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Lack of Self-Similarity
in the Case of a Vibrating Flat Plate
(Stokes’s Second Problem)

The reason for lack of self-similarity can be more subtle
than in the case discussed in the preceding subsection.
Consider, for example, a vibrating plate in contact with
a viscous fluid (Fig. 2.14b). The problem is given by
(2.117–2.119) with the no-slip condition replaced by

y = 0 , u = U cos ωt , (2.126)

where U and ω are the amplitude and frequency of the
vibration. In spite of the fact that the fluid domain is
semi-infinite, a given length scale arises from the given
parameters as L = √

ν/ω. Then, self-similarity is not
expected. In such cases, typically a numerical solution
should be sought, but in the present case an analytical
non-self-similar solution is available [2.16, 18]

u

U
= e−ky cos (ωt − ky) , (2.127)

where k = [ω/(2ν)]1/2 = 2−1/2L−1. This shows how the
flow field depends on t and y separately, rather than on
a self-similar variable.

Vorticity Diffusion
The vorticity transport equation is obtained by applying
the curl operator to the Navier–Stokes equation. In the
case of planar motion shown in Fig. 2.15, the vorticity
transport equation takes the form [2.19]

∂w

∂t
= ν

r

∂

∂r

(
r
∂w

∂r

)
. (2.128)

It is assumed here that the flow depends only on the
radial coordinate r, while being circularly symmetric.
The vorticity w = curlv, v being the velocity vector, has
a single nonzero component, which is the one normal

�

�

�

Fig. 2.16 Vorticity diffusion. The initially pointwise vortex
is located at r = 0

to the flow plane in Fig. 2.15. Its magnitude is denoted
by w. Consider the evolution of an initially pointwise
vorticity line normal to the flow plane and located at
r = 0 (Fig. 2.15). Its strength is characterized by the
initial circulation Γ0, which implies that the velocity
distribution at t = 0 is given by

t = 0 , vθ = Γ0

2πr
(2.129)

with the subscript θ denoting the azimuthal direction.
The initial velocity distribution is related to the initial

vorticity distribution about the vortex

t = 0 , r > 0 w = 0 . (2.130)

The boundary condition for the vorticity reads

r → ∞ w → 0 . (2.131)

As a spatial length scale an arbitrary L should be taken,
since in the present idealization of a pointwise vortex no
cross-sectional radius is given. The time scale becomes
L2/ν. The corresponding vorticity scale is Γ0/L2, since
[Γ0] = m2/s. Any solution of (2.128) should have the
dimensionless form

w = f (t, r) (2.132)

with w = w/(Γ0/L2), t = t/(L2/ν), r = r/L , which
yields the dimensional vorticity

w = Γ0

L2
f (t, r) . (2.133)

The only particular form of the dimensionless function
f that permits automatic absence of an arbitrary length
scale L in the final result is

f (t, r) = 1

t
F(η) , η = r

t1/2
. (2.134)

Then (2.133) and (2.134) yield

w = Γ0

νt
F(η) , η = r

(νt)1/2 . (2.135)

The function F can be found if (2.134) is substituted into
(2.128) and the resulting ordinary differential equation
solved. It has the form

F = 1

4π
exp

(
− r2

4νt

)
. (2.136)

The corresponding velocity field becomes

vθ = Γ0

2πr

[
1− exp

(
− r2

4νt

)]
. (2.137)
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The vorticity field is obviously self-similar, since

w

Γ0/(νt)
= F(η) , (2.138)

which permits expression of the vorticity magnitude at
a distance r2 and time t2 via its magnitude at any other
location r1 at time t1.

In reality, a vortex would have a finite core of ra-
dius r0, the flow inside of which can be visualized
as solid-state rotation with an angular rate w0. At the
core boundary the angular velocity is continuous, thus
w0r0 = Γ0/(2πr0). This yields 2πr2

0w0 = Γ0. The self-
similarity found holds in a real situation in the far
field, where r � r0. On the other hand, as r0 → 0 while
Γ0 = O(1), the angular rate in the core is w0 → ∞.

As usual, the fact that the vorticity field of an initially
pointwise vortex in a viscous fluid should be self-similar
can be (and has been) established without recourse to
the solution of the governing equation (2.128) itself,
merely by consideration of the problem as posed. The
equation should be solved, or the experimental measure-
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Fig. 2.17a,b Viscous flow in a wedge. (a) Sketch, (b) the
velocity profiles

ments should be undertaken, only when a particular form
of the vorticity distribution is needed. The experiments,
however, are simplified dramatically by the fact that due
to the self-similarity expected beforehand, the measure-
ments can be confined to a single location r. It would
be instructive to do an experiment with a small-diameter
rod mounted in a lathe.

Flow in a Wedge
Planar flow in a wedge is shown in Fig. 2.16a. In the
approximation we accept, the slit width at the wall in-
tersection is negligibly small, and a pointwise sink or
source is located at point O. In fact, this approxima-
tion corresponds to the far field where coordinates r are
much larger than the slit width. The no-slip boundary
conditions at the wedge walls also do not introduce any
length scale. The viscous fluid involved is characterized
by its kinematic viscosity ν, the sink/source strength per
unit depth is given by Q, and the wedge semi-angle is
α. The stream function of the flow ψ in the general case
should depend on r and on the polar angle ϕ. Since in the
present case ν, Q and ψ have the same dimensionality
m2/s, and no length scale is given due to the assump-
tion of a pointwise sink/source, the stream function can
be taken as [2.16, 20]

ψ = ν f

(
r

L
, ϕ,

Q

ν

)
. (2.139)

In the solution any arbitrary length scale L
used for nondimensionalization should disappear.
This can be achieved only in the case where
f (r/L, ϕ, Q/ν) = f1(ϕ, Q/ν), i. e.,

ψ = ν f1

(
ϕ,

Q

ν

)
. (2.140)

The velocity components are

vr = 1

r

∂ψ

∂ϕ
, vθ = −∂ψ

∂r
. (2.141)

Therefore

vr = ν

r
F

(
ϕ,

Q

ν

)
, vθ = 0 , (2.142)

where F = f ′
1, the prime denoting differentiation with

respect to ϕ. A solution of the Navier–Stokes equa-
tions yields F, when (2.142) are substituted therein.
From the solutions, a function F satisfying the no-
slip conditions at the wedge walls can be found. This
yields F as a solution for the flow in the wedge. It
can be expressed with the aid of the elliptic functions
sn and cn. The velocity profiles for α = 5◦ are shown
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Fig. 2.18 Boundary layer near a flat plate

in Fig. 2.16b in the self-similar form vr/(vr )max, where
the maximal velocity value (corresponding to ϕ = 0) is
(vr )max = (ν/r)F(0, Q/ν). It is emphasized that the fact
of self-similarity was established in (2.142) without any
recourse to the solution of the Navier–Stokes equations,
just by considering the governing physical parameters.

The velocity profiles in Fig. 2.16b are quite peculiar.
Those corresponding to flows in a diverging channel
(with Q > 0) can contain regions of reverse flow to-
ward the source (where vr < 0, as for example for
profile I). The borderline diffuser profile where reverse
flows disappear is denoted II. The velocity profile III is
vr/(vr )max = 1− (tan ϕ/ tan α)2, which is the Poiseuille
profile inserted in the wedge. It is located as a bor-
der line between the flows in diverging (Q > 0) and
converging (Q < 0) channels. Above profile III, only
confuser-like flows exist (for them vr is, in fact, the
velocity magnitude).

2.3.4 Particular Examples
of the Boundary Layer Flows

Flow and Heat Transfer
in Laminar Boundary Layers Near a Flat Wall

A uniform laminar flow which encounters a semi-infinite
plate parallel to it adjusts itself to the no-slip condition
at the plate surface and develops the boundary layer as
shown in Fig. 2.17. The dynamic and thermal problems
are described in the framework of the boundary layer
equations [2.18]

∂u

∂x
+ ∂v

∂y
= 0 ,

u
∂u

∂x
+v

∂u

∂y
= ν

∂2u

∂y2 ,

u
∂T

∂x
+v

∂T

∂y
= α

∂2T

∂y2 , (2.143)

with u and v being the longitudinal and transverse ve-
locity components, and α the thermal diffusivity. If we

assume a uniform temperature Tw, at the plate surface
and a uniform temperature of the flow at infinity T∞, the
complete set of boundary conditions reads

y = 0 u = v = 0 , T = Tw

y = ∞ y = U , T = T∞ . (2.144)

The dynamic part of problem (2.143) (Blasius flow)
reduces to a single equation for the stream function
ψ (u = ∂ψ/∂y, v = −∂ψ/∂x)

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (2.145)

The viscous length scale ν/U is typically so small (of
the order of 10−5 –10−4 m) that it cannot be considered
natural for a plate. No length scale is given, since the
plate is idealized as being semi-infinite. Therefore, an
arbitrary scale L is used to render the longitudinal co-
ordinate x dimensionless. As usual in a boundary layer,
the transverse coordinate y is rendered dimensionless
by L/ Re 1/2, Re = UL/ν being the Reynolds number.
Then the corresponding scale of the stream function
Ψ = (ULν)1/2 follows from its definition, while (2.145)
becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ∂3ψ

∂y3
, (2.146)

where the dimensionless parameters are denoted by bars.
A solution has to be of the form ψ = f (x, y), i. e.

ψ = (ULν)1/2 f

[
x

L
, y

(
U

Lν

)1/2
]

, (2.147)

where f is a dimensionless function.
In the absence of a given length scale, only functions

of a special, self-similar type, f (x, y) = x1/2 F(y/x1/2)
can be admitted. This automatically reduces (2.147) to
the form

ψ = (Uνx)1/2 F(η) , η = y

(
U

νx

)1/2

, (2.148)

where L is absent. Substitution of the self-similar solu-
tion (2.148) in the dynamic part of the problem (2.143)
and (2.144) yields the following boundary value problem
for determining F

F′′′ + 1

2
FF′′ = 0 ,

F(0) = F′(0) = 0 ,

F′(∞) = 1 , (2.149)

where the primes denote differentiation with respect
to η. The solution of (2.149) was found numerically
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Table 2.6 The function F(η) for the boundary layer along
a semi-infinite flat plate

η = y
√

U
νx F F′ = u

U F′′

0 0 0 0.33206

0.2 0.00664 0.06641 0.33199

0.4 0.02656 0.13277 0.33147

0.6 0.05974 0.19894 0.33008

0.8 0.10611 0.26471 0.32739

1.0 0.16557 0.32979 0.32301

1.2 0.23795 0.39378 0.31659

1.4 0.32298 0.45627 0.30787

1.6 0.42032 0.51676 0.29667

1.8 0.52952 0.57477 0.28293

2.0 0.65003 0.62977 0.26675

2.2 0.78120 0.68132 0.24835

2.4 0.92230 0.72899 0.22809

2.6 1.07252 0.77246 0.20646

2.8 1.23099 0.81152 0.18401

3.0 1.39682 0.84605 0.16136

3.2 1.56911 0.87609 0.13913

3.4 1.74696 0.90177 0.11788

3.6 1.92954 0.92333 0.09809

3.8 2.11605 0.94112 0.08013

4.0 2.30576 0.95552 0.06424

4.2 2.49806 0.96696 0.05052

4.4 2.69238 0.97587 0.03897

4.6 2.88826 0.98269 0.02948

4.8 3.08534 0.98779 0.02187

5.0 3.28329 0.99155 0.01591

5.2 3.48189 0.99425 0.01134

5.4 3.68094 0.99616 0.00793

5.6 3.88031 0.99748 0.00543

5.8 4.07990 0.99838 0.00365

6.0 4.27964 0.99898 0.00240

6.2 4.47948 0.99937 0.00155

6.4 4.67938 0.99961 0.00098

6.6 4.87931 0.99977 0.00061

6.8 5.07928 0.99987 0.00037

7.0 5.27926 0.99992 0.00022

7.2 5.47925 0.99996 0.00013

7.4 5.67924 0.99998 0.00007

7.6 5.87924 0.99999 0.00004

7.8 6.07923 1.00000 0.00002

8.0 6.27923 1.00000 0.00001

8.2 6.47923 1.00000 0.00001

8.4 6.67923 1.00000 0.00000

8.6 6.87923 1.00000 0.00000

8.8 7.07923 1.00000 0.00000
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Fig. 2.19 The Blasius velocity profile: solid line; the exper-
imental data – symbols

(Table 2.6). The corresponding self-similar velocity pro-
file u = UF′ is given in Fig. 2.18 versus experimental
data. It is clearly seen that in the self-similar coordinates
measurements in three different cross sections x = 0.03,
0.1 and 0.15 m collapse onto the theoretical Blasius pro-
file represented by the solid line. Since F′′(0) = 0.332,
the friction coefficient cf = µ∂u/∂y|y=0 /

(
1/2ρU2

)
, µ

being the fluid viscosity, is given by

cf = 0.664

Re1/2
x

, Rex = Ux

ν
. (2.150)

The thickness of the boundary layer is δ ≈ 5(νx/U)1/2.
The flow considered in the present section is in-

compressible. Generalization to the compressible case
could be achieved using the well-known Dorodnitsyn–
Howarth transformation [2.21].

In the incompressible case the solution of the cor-
responding thermal problem should be sought in the
form

θ(η) = T (η)− Tw

T∞ − Tw
. (2.151)

It yields

θ(η) =
∫ η

0 exp
[
−Pr

2

∫ ζ

0 F(ξ)dξ
]

dζ

∫ ∞
0 exp

[
−Pr

2

∫ ζ

0 F(ξ)dξ
]

dζ
, (2.152)

where Pr = ν/α is the Prandtl number.
The dimensionless heat transfer coefficient h is noth-

ing but the local Nusselt number Nux

Nux = hx

k
= θ ′(0)Re1/2

x , (2.153)
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where k is the thermal conductivity of the fluid. The an-
alytical expressions approximating the results following
from (2.152) read

θ ′(0) =

⎧⎪⎪⎨
⎪⎪⎩

0.564Pr1/2 , Pr < 0.05 ,

0.332Pr1/3 , 0.6 ≤ Pr ≤ 10 ,

0.339Pr1/3 , Pr > 10 .

(2.154)

It is emphasized that the fact that the velocity and
temperature fields in the laminar boundary layer near
a semi-infinite plate are self-similar could be (and has
been) established without solution of the governing
equations, merely by consideration of the problem as
posed.

Flow and Heat Transfer in Jets
First consider a laminar axisymmetric submerged
jet [2.18, 22, 23] issuing from a pointwise nozzle
(Fig. 2.19). The assumption that the nozzle is point-
wise excludes a length scale (the nozzle radius) from
the set of given parameters and should result in self-
similarity. It is a legitimate assumption dealing only
with the far-field zone of the jet, where it has already
spread significantly compared to the nozzle size. In the
near-field zone close to the nozzle, such simplification
is impossible and a fully non-self-similar velocity field
should be tackled experimentally or numerically. The
dynamic and thermal problems in question involve the
boundary-layer equations

∂uy

∂x
+ ∂vy

∂y
= 0 ,

u
∂u

∂x
+v

∂u

∂y
= ν

y

∂

∂y

(
y
∂u

∂y

)
,

u
∂T

∂x
+v

∂T

∂y
= α

y

∂

∂y

(
y
∂T

∂y

)
, (2.155)

with x and y being the axial and radial coordinates, and
u and v the longitudinal and radial velocity components,
respectively.

The flow is axisymmetric, the fluid at infinity is at
rest with a given temperature T∞, namely

y = 0 , v = ∂u

∂y
= ∂T

∂y
= 0 ,

y = ∞ , u = 0 , T = T∞ . (2.156)

The first two equations (2.155) with the boundary con-
ditions (2.156) show that the momentum flux is constant

along the jet

2π

∞∫
0

ρu2 y dy = Jx = const , (2.157)

where ρ is the fluid density, and Jx is a given momentum
flux.

If we assume that the nozzle exit of the jet had a uni-
form velocity profile u = u0 = const, the momentum
flux is Jx = πy2

0ρu2
0, where y0 is the nozzle radius. Since

in the present case y0 → 0, we conclude that u0 → ∞,
whence Jx = O(1).

The dynamic equations (2.155) yield a single equa-
tion for the stream function ψ (uy = ∂ψ/∂y, vy =
−∂ψ/∂x), which reads

1

y

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

(
− 1

y2

∂ψ

∂y
+ 1

y

∂2ψ

∂y2

)

= ν

(
1

y2

∂ψ

∂y
− 1

y

∂2ψ

∂y2 + ∂3ψ

∂y3

)
. (2.158)

No length scale is given, since the jet is idealized as is-
suing from a pointwise nozzle. Therefore, an arbitrary
length scale L is again used to render x dimensionless.
As the velocity scale we take some U . Then the ra-
dial coordinate y is rendered dimensionless by L/Re1/2

with Re = UL/ν. The integral condition (2.157) in the
dimensionless form becomes

∞∫
0

u2 y dy = 1 (2.159)

the chosen velocity scale being

U = Jx

2πρLν
(2.160)

�
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Fig. 2.20 Sketch of the streamlines and velocity profiles in
the axisymmetric submerged jet
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with the dimensionless parameters denoted by bars.
Equation (2.160) shows that, in fact, U is not arbi-
trary any more, and the only arbitrary scale involved
is L .

The corresponding scale of the stream function Ψ =
νL follows from its definition, while (2.158) becomes

1

y

∂ψ

∂y

∂2ψ

∂x∂y
+ 1

y2

∂ψ

∂x

∂ψ

∂y
− 1

y

∂ψ

∂x

∂2ψ

∂y2
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Fig. 2.21a–e Different types of jets. (a) Planar submerged jet; (b) free mixing layers; (c) submerged radial swirling jet;
(d) planar wall jet; (e) slightly swirling jet propagating along a cone

= 1

y2

∂ψ

∂y
− 1

y

∂2ψ

∂y2
+ ∂3ψ

∂y3
. (2.161)

The solution has to be of the form ψ = f (x, y), i. e., due
to (2.160)

ψ = νL f

[
x

L
,

y

Lν

(
Jx

2πρ

)1/2
]

. (2.162)
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Table 2.7 Self-similar laminar jets

Notation:
G = ∫

s
ρu ds: mass flow rate; Jx = ∫

s
ρu2 ds: momentum flux; M = ∫

s
ρruwds: moment-of-momentum flux;

E = 1
2

∫
s

ρu3 ds: kinetic energy flux; Q = ∫
s

ρcpu∆T ds: excess heat flux;

K = ∫
s

ρu2
(∫

s
ρu ds

)
ds: first integral invariant of the wall jets; N = ∫

s
ρruw

(∫
s

ρu ds

)
ds: second integral invariant of the wall jets;

KT = ∫
s

∆T 3/2 ds – third (thermal) integral invariant of the wall jets; K1
T = ∫

s
ρcpu∆T

(∫
s

ρu ds

)
ds: same for Pr = 1.

Also, ds = (2πr)k dy denotes an area element of the jet cross section, where the distance from the symmetry axis is r ≡ y in the jets
symmetric about the Ox axis, and r ≡ x in those symmetric about the Oy axis; in the case of jets about a cone r ≡ x sin ω, 2ω being the
angle at the cone apex. In the planar problems k = 0, in the axisymmetric ones k = 1.

Remarks:
In items Differential equations, Boundary conditions, etc.: I represents the dynamic problem; II the thermal one.
In items Boundary conditions, General structure of the self-similar solutions, etc.: IIa represents the thermal problem with symmetric
boundary conditions for temperature; IIb that with asymmetric ones.
For wall jets: IIa represents the thermal problem for the case Tw = T∞ with Tw being a constant wall temperature; IIb that with an insulating
wall; IIc that with an isothermal wall with Tw = const �= T∞.
Flow type: Planar submerged jet

Differential
equations

I u∂u/∂x +v∂u/∂y = ν∂2u/∂y2 ; ∂u/∂x +∂v/∂y = 0

II u∂T/∂x +v∂T/∂y = α∂2T/∂y2

Boundary
conditions

I v(x, 0) = ∂u/∂y|y=0 = 0 ; u(x,±∞) = 0

IIa ∂T/∂y|y=0 = 0 , T (x, ±∞) = T∞
IIb T (x, +∞) = T1 , T (x,−∞) = T2

General
structure of
the self-
similar
solutions

I u
um

= F′(η) , um = Axα , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T2
T1−T2

= θ(η)

Exponents
in the self-
similar
solutions

I α = − 1
3 , β = − 2

3

IIa γ = − 1
3

IIb (γ = 0)

Constants
in the self-
similar
solutions

I A = 1
2

3

√
3J2

x
4ρ2ν

, B = 1
2

3
√

Jx
6ρν2

IIa Γ = Q
cp

3
√

2
9ρ2νJx

[+∞∫
−∞

(F′)Pr +1 dη

]−1

IIb (Γ = T1 − T2)

Integral
invariants

I Jx =
+∞∫
−∞

ρu2 dy = const

IIa Q =
+∞∫
−∞

ρcpu(T − T∞)dy = const

IIb –

Self-
similar
equations

I F′′′ +2(FF′′ + F′2) = 0

IIa θ ′′ +2 Pr(Fθ ′ + F′θ) = 0

IIb θ ′′ +2 Pr Fθ ′ = 0

Self-
similar
boundary
conditions

I F(0) = 0 , F′(0) = 1 , F′(±∞) = 0

IIa θ ′(0) = 0 , θ(±∞) = 0

IIb θ(+∞) = 1 , θ(−∞) = 0
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Table 2.7 (continued)

Self-
similar
solutions

I F = tanh η , F′ = 1/cosh2η

IIa θ(η) = (F′)Pr = 1/cosh2 Prη

IIb θ(η) =
[

η∫
−∞

(cosh η)−2 Pr dη

][+∞∫
−∞

(cosh η)−2 Pr dη

]−1

Integral
character-
istics

I G = 3
√

36ρ2νJx x , E = Jx
30µ

3
√

6ρν2 J2
x

1
x

IIa –

IIb Q = 1
2 cp(T1 − T2)

(+∞∫
−∞

F′θ dη

)
3
√

36ρ2νJx x

Flow type: free mixing layers

Differential
equations

I u∂u/∂x +v∂u/∂y = ν∂2u/∂y2 ; ∂u/∂x +∂v/∂y = 0

II u∂T/∂x +v∂T/∂y = α∂2T/∂y2

Boundary
conditions

I u(x,+∞) = u1 ; ∂u/∂y|y=±∞ = 0 ; u(x,−∞) = u2

IIa –

IIb T (x,+∞) = T1 , T (x, −∞) = T2

General
structure of
the self-
similar
solutions

I u
um

= F′(η) , um = u1 = const , η = Byxβ

IIa –

IIb T−T2
Tm−T2

= θ(η) , Tm = T1 = const , T2 = const

Exponents
in the self-
similar
solutions

I α = 0 , β = − 1
2

IIa –

IIb (γ = 0)

Constants
in the self-
similar
solutions

I (A = u1) , B = 1
2

√
u1
ν

IIa –

IIb (Γ = T1 − T2)

Integral
invariants

I –

IIa –

IIb –

Self-
similar
equations

I F′′′ +2FF" = 0

IIa –

IIb θ ′′ +2 Pr Fθ ′ = 0

Self-
similar
boundary
conditions

I F′(+∞) = 1 , F′′(+∞) = 0 ; F′(−∞) = m = u2
u1

, F′′(−∞) = 0

IIa –

IIb θ(+∞) = 1 , θ(−∞) = 0

Self-
similar
solutions

I u
u1

= F′(η) = 1+ 1
2 (m −1)(1− erfη) ,

(
erfη = 2√

π

η∫
0

e−ξ2
dξ

)

IIa –

IIb θ = T−T2
T1−T2

= 1
2 [1+ erf(η

√
Pr)]

Integral
character-
istics

I –

IIa –

IIb –
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Table 2.7 (continued)

Flow type: axisymmetric submerged jet: swirling if w �= 0; no swirling if w = 0

Differential
equations

I u∂u/∂x +v∂u/∂y = ν 1
y ∂/∂y (y∂u/∂y) ; ρw2

y = ∂p/∂y ; u∂w/∂x +v∂w/∂y + vw
y = ν

[
1
y ∂/∂y (y∂w/∂y)− w

y2

]
;

∂/∂x(yu)+∂/∂y(yv) = 0

II u∂T/∂x +v∂T/∂y = α 1
y ∂/∂y (y∂T/∂y)

Boundary
conditions

I v(x, 0) = w(x, 0) = ∂u/∂y|y=0 = ∂w/∂y|y=0 = 0 , u(x,∞) = w(x, ∞) = 0 , p(x, ∞) = p∞
IIa ∂T/∂y|y=0 = 0 , T (x, ∞) = T∞
IIb –

General
structure of
the self-
similar
solutions

I u
um

= F′(η)
η

, w
wm

= Φ(η) ,
p−p∞

pm−p∞ = P(η) ; um = Axα , wm = Cxε , pm − p∞ = ρDxδ , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb –

Exponents
in the self-
similar
solutions

I α = −1 , β = −1 , ε = −2 , δ = −4

IIa γ = −1

IIb –

Constants
in the self-
similar
solutions

I A = 3Jx
8πρν

, B =
√

3Jx
8πρν2 , C = 3Mx

32πρν2

√
3Jx
8πρ

, D = 9
2048

M2
x Jx

π3ρ3ν4

IIa Γ = (2 Pr +1)Q
8πρνcp

IIb –

Integral
invariants

I Jx = 2π
∞∫
0

ρu2 y dy = const , Mx = 2π
∞∫
0

ρuwy2 dy = const

IIa Q = 2π
∞∫
0

ρcpu(T − T∞)y dy = const

IIb –

Self-
similar
equations

I
(

F′′ − F′
η

)′ +
(

FF′
η

)′ = 0 ; P′ = Φ2
η

; Φ′′ + 1+F
η

Φ′ + ηF′+F−1
η2 Φ = 0

IIa (ηθ ′)′ +Pr(Fθ)′ = 0

IIb –

Self-
similar
boundary
conditions

I F′
η

∣∣∣
η=0

= 1 , F
η

∣∣∣
η=0

= 0 , Φ(0) = 0 ; F′
η

∣∣∣
η=∞ = 0 , Φ(∞) = 0 ; P(∞) = 0

IIa θ ′(0) = 0 , θ(∞) = 0

IIb –

Self-
similar
solutions

I F(η) =
1
2 η2

1+ 1
8 η2 , F′

η
= 1(

1+ 1
8 η2

)2 , Φ = η(
1+ 1

8 η2
)2 , P(η) = 1(

1+ 1
8 η2

)3

IIa θ(η) =
(

F′
η

)Pr = 1(
1+ 1

8 η2
)2 Pr

IIb –

Integral
character-
istics

I G =
∞∫
0

2πρuy dy = 8πµx ; E = π
∞∫
0

ρu3 y dy = π
µ

(
3Jx
8π

)2
(∞∫

0

F′3
η2 dη

)
1
x

IIa –

IIb –

Flow type: submerged radial swirling jet

Differential
equations

I u∂u/∂x +v∂u/∂y = ν∂2u/∂y2 ; u∂w/∂x +v∂w/∂y + uw
x = ν∂2w/∂y2 ; ∂/∂x(xu)+∂/∂y(xv) = 0

II u∂T/∂x +v∂T/∂y = α∂2T/∂y2
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Table 2.7 (continued)

Boundary
conditions

I v(x, 0) = 0, ∂u/∂y|y=0 = ∂w/∂y|y=0 = 0 , u(x,±∞) = w(x, ±∞) = 0

IIa ∂T/∂y|y=0 = 0 , T (x, ±∞) = T∞
IIb T (x,+∞) = T1 , T (x, −∞) = T2

General
structure of
the self-
similar
solutions

I u
um

= F′(η) , w
wm

= Φ(η) ; um = Axα , wm = Cxε , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T2
T1−T2

= θ(η)

Exponents
in the self-
similar
solutions

I α = −1 , β = −1 , ε = −2

IIa γ = −1

IIb (γ = 0)

Constants
in the self-
similar
solutions

I A = 1
4

3

√
9J2

x
2π2ρ2ν

, B = 1
2

3
√

3Jx
4πρν2 , C = 3My

8πρ
3
√

4πρ
3νJx

IIa Γ = Q
2πρcp J3

3
√

4πρ
3νJx

,

(
J3 =

+∞∫
−∞

F′θ dη

)

IIb (Γ = T1 − T2)

Integral
invariants

I Jx = 2πx
+∞∫
−∞

ρu2 dy = const , My = 2πx2
+∞∫
−∞

ρuwdy = const

IIa Q = 2πx
+∞∫
−∞

ρcpu(T − T∞)dy = const

IIb –

Self-
similar
equations

I F′′′ +2(FF′)′ = 0 , Φ′′ +2(FΦ)′′ = 0

IIa θ ′′ +2 Pr(Fθ)′ = 0

IIb θ ′′ +2 Pr Fθ ′ = 0

Self-
similar
boundary
conditions

I F(0) = 0 , F′(0) = 1 , F′(±∞) = Φ(±∞) = 0 ; Φ′(0) = 0

IIa θ ′(0) = 0 , θ(±∞) = 0

IIb θ(+∞) = 1 , θ(−∞) = 0

Self-
similar
solutions

I F = tanh η , F′ = 1/cosh2η ; Φ = F′ = 1/cosh2η

IIa θ(η) = (F′)Pr = (cosh η)−2 Pr

IIb θ(η) =
[

η∫
−∞

(cosh η)−2 Pr dη

][+∞∫
−∞

(cosh η)−2 Pr dη

]−1

Integral
character-
istics

I G = 2πx
+∞∫
−∞

ρu dy = 2 3
√

6π2ρ2νJx x , E = πx
+∞∫
−∞

ρu3 dy = 3
20

Jx
πµ

3
√

4
3 πρν2 J2

x
1
x

IIa –

IIb Q = cp(T1 − T2) 3
√

6π2ρ2νJx x
+∞∫
−∞

F′θ dη

Flow type: planar wall jet

Differential
equations

I u∂u/∂x +v∂u/∂y = ν∂2u/∂y2 ; ∂u/∂x +∂v/∂y = 0

II u∂T/∂x +v∂T/∂y = α∂2T/∂y2

Boundary
conditions

I u(x, 0) = v(x, 0) = 0 ; u(x,∞) = 0

IIa T (x, 0) = T∞ , T (x,∞) = T∞
IIb ∂T/∂y|y=0 = 0 , T (x,∞) = T∞
IIc T (x, 0) = Tw , T (x,∞) = T∞
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Table 2.7 (continued)

General
structure
of
the self-
similar
solutions

I u
um

= F′(η) , um = Axα , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIc T−T∞
Tw−T∞ = θ(η) (Γ = Tw − T∞)

Exponents
in the self-
similar
solutions

I α = − 1
2 , β = − 3

4

IIa γ = − 1
2

IIb γ = − 1
4

IIc (γ = 0)

Constants
in the self-
similar
solutions

I A =
√

K
4ρ2νJ1

, B = 1
2

4
√

K
4ρ2ν3 J1

,

(
J1 =

∞∫
0

FF′ dη

)

IIa Γ (Pr) =
[∞∫

0
θ3/2 dη(KT B)−1

]4/3

IIb Γ = Q
cp

4

√
J1

4ρ2νK

(∞∫
0

F′θ dη

)−1

IIc (Γ = Tw − T∞)

Integral
invariants

I K =
∞∫
0

ρu2

(
y∫

0
ρu dy

)
dy =

∞∫
0

ρu

(∞∫
y

ρu2 dy

)
dy = const

IIa KT =
∞∫
0

(T − T∞)3/2 dy = const

IIb Q =
∞∫
0

ρcpu(T − T∞)dy = const

IIc –

Self-
similar
equations

I F′′′ + FF′′ +2F′2 = 0
IIa 1

Pr θ
′′ + Fθ ′ +2F′θ = 0

IIb θ ′′ +Pr(Fθ)′ = 0
IIc θ ′′ +Pr Fθ ′ = 0

Self-
similar
boundary
conditions

I F(0) = F′(0) = 0 ; F′(∞) = 0
IIa θ(0) = 0 , θ(∞) = 0
IIb θ ′(0) = 0 , θ(∞) = 0
IIc θ(0) = 1 , θ(∞) = 0

Self-
similar
solutions

I η = 1
2F∞ ln F+√

FF∞+F∞
(
√

F∞−√
F)2

+
√

3
F∞

(
arctan 2

√
F+√

F∞√
3F∞ − arctan 1√

3

)
, F′ = 2

3 (F2/3∞ F1/2 − F2) ,

F∞ = F(∞) = 1.7818
IIa θ(η)Pr=1 = F′(η)

IIb θ(η) = exp

[
− Pr

η∫
0

F(ξ)dξ

]

IIc θ(η) = 1−
[

η∫
0

exp

(
− Pr

ζ∫
0

F dξ

)
dζ

][∞∫
0

exp

(
− Pr

ζ∫
0

F dξ

)
dζ

]−1

Integral
character-
istics

I G =
∞∫
0

ρu dy = F∞ 4

√
4ρ2νKx

J1
; Jx = 4

√
K3

4ρ2νJ3
1 x

(∞∫
0

F′2 dη

)
; E = K

4ρJ1
4
√

K
4ρ2ν3 J1x3

IIa Q = ρcp
AΓ
B x−1/4

∞∫
0

F′θ dϕ

IIb –

IIc Q = 4

√
4ρ2νKx

J1
cp(Tw − T∞)

∞∫
0

F′θ dη
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Table 2.7 (continued)

Flow type: slightly swirling jet propagating along a cone

Differential
equations

I u∂u/∂x +v∂u/∂y = ν∂2u/∂y2 ; ρ w2
x cotan ω = ∂p/∂y ; u∂w/∂x +v∂w/∂y + uw

x = ν∂2w/∂y2 ;
∂/∂x(xu)+∂/∂y(xv) = 0

II u∂T/∂x +v∂T/∂y = α∂2T/∂y2

Boundary
conditions

I u(x, 0) = v(x, 0) = w(x, 0) = 0 ; u(x, ∞) = w(x, ∞) = 0 ; p(x,∞) = p∞
IIa T (x, 0) = T∞ , T (x,∞) = T∞
IIb ∂T/∂y|y=0 = 0 , T (x, ∞) = T∞
IIc T (x, 0) = Tw , T (x, ∞) = T∞

General
structure
of
the self-
similar
solutions

I u
um

= F′(η) , w
wm

= Φ(η) ,
p∞−p

p∞−pm
= P(η) ; um = Axα , wm = Cxε , p∞ − pm = Dxδ , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIc T−T∞
Tw−T∞ = θ(η) (Γ = Tw − T∞)

Exponents
in the self-
similar
solutions

I α = − 3
2 , β = − 5

4 , ε = − 5
2 , δ = − 19

4

IIa γ = − 3
2

IIb γ = − 3
4

IIc (γ = 0)

Constants
in the self-
similar
solutions

I A =
√

3K
4ρ2νJ1

, B = 4
√

27K
64ρ2ν3 J1

, C = N
ρ

√
3

4νK J1
, D = cotan ω

( N
K

)2 4
√

3
4ρ2ν

(
K
J1

)3
,

(
J1 =

∞∫
0

F F′2 dη

)

IIa Γ (Pr) =
[∞∫

0
θ3/2 dη(BKT)−1

]−2/3

IIb Γ = Q
2πρcp sin ω

4

√
3J1

4ρ2νK

(∞∫
0

F′θ dη

)−1

IIc Γ = Tw − T∞

Integral
invariants

I K =
∞∫
0

ρxu2

(
y∫

0
ρxu dy

)
dy = const , N =

∞∫
0

ρx2uw

(
y∫

0
ρxu dy

)
dy = const

IIa KT =
∞∫
0

(T − T∞)3/2x dy = const

IIb Q = 2π sin ω
∞∫
0

ρxucp(T − T∞)dy = const

IIc –

Self-
similar
equations

I F′′′ + FF′′ +2F′2 = 0 ; P′ = −Φ2 ; Φ′′ + FΦ′ +2F′Φ = 0

IIa 1
Pr θ

′′ + Fθ ′ +2F′θ = 0

IIb θ ′′ +Pr(Fθ)′ = 0

IIc θ ′′ +Pr Fθ ′ = 0

Self-
similar
boundary
conditions

I F(0) = F′(0) = Φ(0) = 0 ; F′(∞) = Φ(∞) = P(∞) = 0

IIa θ(0) = 0 , θ(∞) = 0

IIb θ ′(0) = 0 , θ(∞) = 0

IIc θ(0) = 1 , θ(∞) = 0
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Table 2.7 (continued)

Self-
similar
solutions

I η = 1
2F∞

[
ln F+√

FF∞+F∞
(
√

F−√
F∞)2

+2
√

3
(

arctan 2
√

F+√
F∞√

3F∞ − arctan 1√
3

)]
; F′ = Φ = 2

3 (F∞3/2 F1/2 − F2) ,

P = −
∞∫
η

F′2 dη ; F∞ = F(∞) = 1.7818

IIa θ(η)Pr=1 = F′(η)

IIb θ(η) = exp

[
− Pr

η∫
0

F(ξ)dξ

]

IIc θ(η) = 1−
[

η∫
0

exp

(
− Pr

ζ∫
0

F dξ

)
dζ

][∞∫
0

exp

(
− Pr

ζ∫
0

F dξ

)
dζ

]−1

Integral
character-
istics

I G = 2πρF∞ sin ω A
B x3/4 ; Jx = 2πρ sin ω A2

B x−3/4
∞∫
0

F′2 dη ; M = 2πρ AC
B sin 2ωx−3/4

∞∫
0

F′2 dη ;
E = πρ sin ω A3

B x−9/4
∞∫
0

F′3 dη

IIa Q = 2πρcp
AΓ
B x−3/4 sin ω

∞∫
0

F′θ dη

IIb –

IIc Q = 2πρcp sin ω A
B (Tw − T∞)x3/4

∞∫
0

F′θ dη

Since L is not given, only functions of a special, self-
similar type, f (x, y) = x f1(y/x) can be admitted. The
latter automatically reduces (2.162) to the following
form

ψ = νx f1

[
y

x

(
Jx

2πρν2

)1/2
]

, (2.163)

where L is absent. Obviously, any dimensionless factor
could be introduced in the self-similar variable following
from (2.163). For consistency with literature, we take it
as (3/4)1/2. Then the self-similar solution corresponding
to (2.163) has the form

ψ = νxF(η) , η = y

x

(
3Jx

8πρν2

)1/2

. (2.164)

Substitution of the self-similar solution (2.164) into
(2.158), the boundary and integral conditions (2.156)
and (2.157) yields the following boundary-value prob-
lem(

F′′ − F′

η
+ FF′

η

)′
= 0 ,

η = 0 , F = F′′η− F′

η2
= 0 ,

η = ∞ ,
F′

η
= 0 ,

∞∫
0

(
F′

η

)2

ηdη = 4

3
, (2.165)

which has a solution

F = η2/2

1+η2/8
, (2.166)

The velocity profile rendered dimensionless by the max-
imal (axial) velocity um(x) reads

u

um
= F′

η
= 1

(1+η2/8)2 , (2.167)

where um(x) = 3Jx/(8πρνx).
It is emphasized that the fact that the flow in the far-

field zone of the jet should be self-similar, can be (and
has been) established without solution of the governing
equations, just by consideration of the problem as posed.

The thermal field in the jet also possesses an in-
variant, an excess heat flux along the jet Q = const,
namely

2πρcp

∞∫
0

u(T − T∞)y dy = Q , (2.168)

where cp is the specific heat at constant pressure. The
corresponding self-similar solution for the temperature
field has the form

θ(η) = T − T∞
Tm − T∞

= 1

(1+η2/8)2 Pr , (2.169)

where the maximal (axial) excess temperature Tm − T∞
is given by

Tm − T∞ = (2 Pr +1)Q

8πρνcpx
. (2.170)
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Table 2.8 Self-similar turbulent jets

Flow type: planar submerged jet

Differential equations I u∂u/∂x +v∂u/∂y = ∂/∂y (νT∂u/∂y) ; ∂u/∂x +∂v/∂y = 0 , (νT = K Axα−β)

II u∂T/∂x +v∂T/∂y = ∂/∂y (αT∂T/∂y) ,
(
αT = Kq Axα−β

)
Boundary conditions I v(x, 0) = 0 , ∂u/∂y|y=0 = 0 ; u(x, ±∞) = 0

IIa ∂T/∂y|y=0 = 0 , T (x,±∞) = T∞
IIb T (x, +∞) = T1 , T (x,−∞) = T2

General structure of
the self-similar solu-
tions

I u
um

= F′(η) , um = Axα , η = Byxβ
(
B ≡ 1

a

)
IIa T−T∞

Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T2
T1−T2

= θ(η) (Γ = T1 − T2)

Exponents in the self-
similar solutions

I α = − 1
2 , β = −1

IIa γ = − 1
2

IIb (γ = 0)

Constants in the self-
similar solutions

I A =
√

3Jx
8ρ

√
K

, B = 1
2
√

K

IIa Γ = Q
cp

√
2

3ρJx
√

K

(+∞∫
−∞

F′θ dη

)−1

IIb Γ = T1 − T2

Integral invariants I Jx =
+∞∫
−∞

ρu2 dy = const

IIa Q =
+∞∫
−∞

ρcpu(T − T∞)dy = const

IIb –

Self-similar equations I F′′′ +2(FF′)′ = 0

IIa θ ′′ +2PrT(Fθ)′ = 0

IIb θ ′′ +2PrT Fθ ′ = 0

Self-similar coordinate
η1/2 corresponding to
u/um = 1/2

I η1/2 = 0.88

Self-similar boundary
conditions

I F(0) = 0 , F′(0) = 1 , F′(±∞) = 0

IIa θ(0) = 1 , θ(±∞) = 0

IIb θ(+∞) = 1 , θ(−∞) = 0

Self-similar solutions I F = tanh η , F′ = 1/ cosh 2η

IIa θ(η) = (F′)PrT = 1/ cosh 2PrTη

IIb θ(η) =
[

η∫
−∞

(cosh ξ)−2PrT dξ

][+∞∫
−∞

(cosh ξ)−2PrT dξ

]−1

Mass flow rate (G), ki-
netic energy flux (E),
etc., as well as turbu-
lent kinematic viscos-
ity (νT) and thermal
diffusivity (αT)

I G ∼ x1/2 , E ∼ x1/2 ; νT ∼ x1/2

IIa αT ∼ x1/2

IIb Q ∼ x1/2 , αT ∼ x1/2

Flow type: free mixing layers

Differential equations I u∂u/∂x +v∂u/∂y = ∂/∂y (νT∂u/∂y) ; ∂u/∂x +∂v/∂y = 0 ,
[
νT = K (u1 −u2)xα−β

]
II u∂T/∂x +v∂T/∂y = ∂/∂y (αT∂T/∂y) ,

[
αT = Kq(u1 −u2)xα−β

]
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Table 2.8 (continued)

Boundary conditions I u(x,+∞) = u1 , ∂u/∂y|y=±∞ = 0 ; u(x,−∞) = u2

IIa –

IIb T (x,+∞) = T1 , T (x, −∞) = T2

General structure of
the self-similar solu-
tions

I u
um

= F′(η) , um = u1 = const , η = Byxβ
(
B ≡ 1

a

)
IIa –

IIb T−T2
T1−T2

= θ(η)

Exponents in the self-
similar solutions

I α = 0 , β = −1

IIa –

IIb γ = 0

Constants in the self-
similar solutions

I A = u1 , B = 1
a = 1√

2K (1−m)
,

(
m = u2

u1

)
IIa –

IIb Γ = T1 − T2

Integral invariants I –

IIa –

IIb –

Self-similar equations I F′′′ +2FF′′ = 0

IIa –

IIb θ ′′ +2PrT Fθ ′ = 0

Self-similar coordinate
η1/2 corresponding to
u/um = 1/2

I η1/2 ≈ −0.33 (for m = 0)

Self-similar boundary
conditions

I F′(+∞) = 1 , F′′(±∞) = 0 ; F′(−∞) = m

IIa –

IIb θ(+∞) = 1 , θ(−∞) = 0

Self-similar solutions I F′(η) = u
u1

= 1+ 1
2 (m −1) [1− erf(η+η0)] . (η0 ≈ 0.33)

IIa –

IIb θ = 1
2

[
1+ erf(η+η0)

√
PrT

]
Mass flow rate (G), ki-
netic energy flux (E),
etc., as well as turbu-
lent kinematic viscos-
ity (νT) and thermal
diffusivity (αT)

I νT ∼ x

IIa –

IIb αT ∼ x

Flow type: axisymmetric submerged jet: swirling if w �= 0; no swirling if w = 0

Differential equations I u∂u/∂x +v∂u/∂y = νT
y ∂/∂y (y∂u/∂y) ; ρw2

y = ∂p/∂y ;
u∂w/∂x +v∂w/∂y + vw

y = νT

[
1
y ∂/∂y (y∂w/∂y)− w

y2

]
; ∂/∂x(yu)+∂/∂y(yv) = 0

II u∂T/∂x +v∂T/∂y = αT
1
y ∂/∂y (y∂T/∂y)

Boundary conditions I v(x, 0) = w(x, 0) = ∂u/∂y|y=0 = 0 , u(x,∞) = w(x, ∞) = 0 , p(x,∞) = p∞
IIa ∂T/∂y|y=0 = 0 ; T (x, ∞) = T∞
IIb –

General structure of
the self-similar solu-
tions

I u
um

= F′(η)
η

, w
wm

= Φ(η) ,
p−p∞

pm−p∞ = P(η) ;
um = Axα , wm = Cxε , pm − p∞ = ρDxδ , η = Byxβ

IIa T−T∞
Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb –
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Table 2.8 (continued)

Exponents in the self-
similar solutions

I α = −1 , β = −1 , ε = −2 , δ = −4

IIa γ = −1

IIb –

Constants in the self-
similar solutions

I A =
√

3Jx
8πρK , B = 1

a = 1√
K

, C = 3Mx
32πρK

√
8πρ
3Jx

, D = M2
x

32πρK2 Jx
(K = a2)

IIa Γ = (
PrT + 1

2

) Q
cp

1√
6πρK Jx

IIb –

Integral invariants I Jx = 2π
∞∫
0

ρu2 y dy = const , Mx = 2π
∞∫
0

ρuwy2 dy = const

IIa Q = 2π
∞∫
0

ρcpu(T − T∞)y dy = const

IIb –

Self-similar equations I
(

F′′ − F′
η

)
+

(
FF′
η

)′ = 0 ; P′ = Φ2
η

; Φ′′ + 1+F
η

Φ′ + ηF′+F−1
η2 Φ = 0

IIa (ηθ ′)′ +PrT(Fθ)′ = 0

IIb –

Self-similar coordinate
η1/2 corresponding to
u/um = 1/2

I η1/2 = 1.82

Self-similar boundary
conditions

I F′
η

∣∣∣
η=0

= 1 , F
η

∣∣∣
η=0

= 0 , Φ(0) = 0 ; F′
η

∣∣∣
η=∞ = 0 , Φ(∞) = P(∞) = 0

IIa θ ′(0) = 0 , θ(∞) = 0

IIb –

Self-similar solutions I F(η) =
1
2 η2

1+ 1
8 η2 ; F′(η) = η(

1+ 1
8 η2

)2 ; Φ = η(
1+ 1

8 η2
)2 , P(η) = 1(

1+ 1
8 η2

)3

IIa θ(η) =
(

F′
η

)PrT = (
1+ 1

8 η2
)−2PrT

IIb –

Mass flow rate (G), ki-
netic energy flux (E),
etc., as well as turbu-
lent kinematic viscos-
ity (νT) and thermal
diffusivity (αT)

I G ∼ x , E ∼ x−1 , νT = K A = const

IIa αT = Kq A = const ; PrT = K
Kq

IIb –

Flow type: submerged radial swirling jet

Differential equations I u∂u/∂x +v∂u/∂y = ∂/∂y (νT∂u/∂y) ; u∂w/∂x +v∂w/∂y + uw
x = ∂/∂y (νT∂w/∂y) ;

∂/∂x(xu)+∂/∂y(xv) = 0

II u∂T/∂x +v∂T/∂y = ∂/∂y (αT∂T/∂y)

Boundary conditions I v(x, 0) = 0 , ∂u/∂y|y=0 = ∂w/∂y|y=0 = 0 , u(x,±∞) = w(x, ±∞) = 0

IIa ∂T/∂y|y=0 = 0 , T (x,±∞) = T∞
IIb T (x, +∞) = T1 , T (x,−∞) = T2

General structure of
the self-similar solu-
tions

I u
um

= F′(η) , w
wm

= Φ(η) , um = Axα , wm = Cxε , η = Byxβ ,
(
B ≡ 1

a

)
IIa T−T∞

Tm−T∞ = θ(η) , Tm − T∞ = Γ xγ

IIb T−T2
T1−T2

= θ(η)

Exponents in the self-
similar solutions

I α = −1 , β = −1 , ε = −2

IIa γ = −1

IIb γ = 0
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Table 2.8 (continued)

Constants in the self-
similar solutions

I A =
√

3Jx
8πρ

√
2K

, B = 1√
2K

, C = My

√
3

8πρJx
√

2K

IIa Γ = Q 4√2
cp

1√
3πρJx

√
K

(+∞∫
−∞

F′θ dη

)−1

IIb (Γ = T1 − T2)

Integral invariants I Jx = 2πx
+∞∫
−∞

ρu2 dy = const , My = 2πx2
+∞∫
−∞

ρuwdy = const

IIa Q = 2πx
+∞∫
−∞

ρcpu(T − T∞)dy = const

IIb –
Self-similar equations I F′′′ +2(FF′)′ = 0 , Φ′′ +2(FΦ)′ = 0

IIa θ ′′ +2PrT(Fθ)′ = 0

IIb θ ′′ +2PrT Fθ ′ = 0
Self-similar coordinate
η1/2 corresponding to
u/um = 1/2

I η1/2 = 0.88

Self-similar boundary
conditions

I F(0) = 0 , F′(0) = Φ(0) = 1 , F′′(±∞) = Φ(±∞) = 0
IIa θ ′(0) = 0 , θ(±∞) = 0
IIb θ(+∞) = 1 , θ(−∞) = 0

Self-similar solutions I F = tanh η , F′ = 1/ cosh 2η ; Φ = F′ = 1/ cosh 2η

IIa θ(η) = (F′)PrT = (cosh η)−2PrT

IIb θ(η) =
[

η∫
−∞

(cosh ξ)−2PrT dξ

][+∞∫
−∞

(cosh ξ)−2PrT dξ

]−1

Mass flow rate (G), ki-
netic energy flux (E),
etc., as well as turbu-
lent kinematic viscos-
ity (νT) and thermal
diffusivity (αT)

I G ∼ x , E ∼ x−1 , νT = K A = const
(

K = a2
2

)
IIa αT = Kq A = const

IIb αT = Kq A = const
(

PrT = K
Kq

)

Comments:
In items Differential equations, Boundary conditions, etc.: I represents the dynamic problem; II the thermal one.
In items Boundary conditions, General structure of the self-similar solutions, etc.: IIa represents the thermal problem with symmetric
boundary conditions for temperature; IIb that with asymmetric ones.

Comparison of (2.167) and (2.169) shows that

T − T∞
Tm − T∞

=
(

u

um

)Pr

. (2.171)

The effective dynamic radius of the jet is

δ = 8.49x(
3Jx/8πρν2

)1/2
(2.172)

while the effective thermal radius δT depends on the
Prandtl number, i. e.,

δT = 28.14x(
3Jx/8πρν2

)1/2
for Pr = 0.5 ,

δT = δ for Pr = 1 ,

δT = 4.16x(
3Jx/8πρν2

)1/2
for Pr = 2 . (2.173)

There are many other types of laminar jet flows with
self-similar behavior in the far-field zone. Several such
cases are shown schematically in Fig. 2.20. Their self-
similarity is established in a similar manner to the case
of the axisymmetric submerged jet considered above.
The results are compiled in Table 2.7 with those for
the axisymmetric submerged jet considered above be-
ing included as a particular case without swirling, i. e.,
where the angular velocity component about the jet
axis w = 0. (When swirling is present, w �= 0, a ra-
dial pressure (p) distribution forms in the jet.) It is
emphasized that boundary-layer theory does not ac-
count for the effect of vertical walls shown in Figs.
2.19, 2.20a on laminar jets emerging from them. The
corresponding minor corrections were discussed in the
literature.
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Nondimensional Representation 2.3 Self-Similarity 77

All the self-similar solutions discussed in the present
section hold in the far-field zones. Numerical calcula-
tions and measurements show that the corresponding
non-self-similar flow structures existing in the near-field
zones close to real nozzles always tend to the self-similar
ones as x increases and becomes much larger than the
nozzle size y0.

The flows considered in the present section are
incompressible. Generalizations to compressible cases
can be realized with aid of the Dorodnitsyn–Howarth
transformation [2.21, 23].

Turbulent jets also tend to a self-similar behavior
sufficiently far from the nozzle (at x>̃30y0, where y0 is
the nozzle size). The kinematic eddy viscosity νT and the
turbulent thermal diffusivity αT in the free boundary lay-
ers (in distinction from the near-wall ones) are described
rather accurately within the framework of Prandtl’s sec-
ond semi-empirical theory of turbulence. Both νT and
αT are given by power laws as per

νT = K AxΩ , αT = Kq AxΩ , (2.174)

where K and Kq are dimensionless empirical constants,
x is the axial coordinate in the jet, A is a dimensional
constant (Table 2.8). A and the exponent Ω depend on
the specific type of jet. The turbulent Prandtl number
PrT = K/Kq has a value close to 0.75 for fluids whose
molecular Prandtl numbers span the whole range from
liquid metals to oils (Pr ≈ 10−2 –103).

The corresponding self-similar solutions for free
(not near-wall) turbulent jets and mixing layers resemble
those for laminar jets. These solutions are presented in
Table 2.8, the notation following that of Table 2.7. The
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Fig. 2.22 Laminar boundary layer near vertical semi-
infinite plate. The plate is kept isothermal at a temperature
Tw > T∞

only unknown empirical constant K is related to a (via
B), which is thus the only empirical constant to be found
by comparing the result of Table 2.8 with experimental.
For example, for planar submerged jets a ≈ 0.1–0.12,
for mixing layers a ≈ 0.09–0.12 (for m = u2/u1 = 0),
and for axisymmetric submerged jets a ≈ 0.045–0.055.

In practice, self-similar solutions can be used even at
distance, x < 30y0. However, when a finite nozzle is re-
placed by a pointwise one (which, in fact, is done in such
cases) a jet polar distance should be introduced [2.24].
This means that in all the self-similar solutions x should
be replaced by x − x0, where an appropriate value of x0
corresponds to the polar distance.

Boundary Layers in Natural Convection
Consider briefly laminar natural convection in the
boundary layer of a hot vertical wall (Fig. 2.21). If
the temperature difference between wall and fluid far
from it is not too large, say Tw − T∞ = O(10 ◦C), the
flow and heat transfer can be described by the follow-
ing fully coupled dynamic and thermal boundary layer
equations [2.16, 25]

∂u

∂x
+ ∂v

∂y
= 0 ,

u
∂u

∂x
+v

∂u

∂y
= βg(Tw − T∞)θ +ν

∂2u

∂y2 ,

u
∂θ

∂x
+v

∂θ

∂y
= α

∂2θ

∂y2
, (2.175)

where β is the thermal expansion coefficient with di-
mensionality 1/K, and g is the gravity acceleration;
the normalized excess temperature θ = (T −T∞)/(Tw −
T∞). The solutions of (2.175) are subject to the following
boundary conditions

y = 0 , u = v = 0 , θ = 1 ,

y = ∞ , u = 0 , θ = 0 . (2.176)

In the case of a semi-infinite plate a length scale for x
is not given, and can be taken arbitrarily as some L , since
the scale (ν2/g)1/3 is too small to be taken as a natural
scale of the problem (≈ 10−4 m). A velocity scale is
not given either, but can be expressed via L as U =
[Lβg(Tw − T∞)]1/2. The length scale in the y-direction,
as usual in boundary layers, is

δ = L

(LU/ν)1/2 =
[

Lν2

βg(Tw − T∞)

]1/4

∼ L1/4 .

(2.177)

The fact that an arbitrary L should disappear, similarly
to the case considered in the section on Flow and Heat
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Transfer in Laminar Boundary Layers Near a Flat Wall
in Sect. 2.3.4, leads to the self-similar solution of the
following form

ψ = 4νCx3/4 F(η) , η = C
y

x1/4 ,

C =
[

βg(Tw − T∞)

4ν2

]1/4

, θ = θ(η) , (2.178)

where ψ is the stream function (u = ∂ψ/∂y, v =
−∂ψ/∂x).

As before, the self-similarity can be (and has been)
established without recourse to the solutions of the gov-
erning equations, just from the given data. However,
if a detailed flow and thermal structure is needed, the
functions F(η) and θ(η) should be found, either using
the self-similar equations following from (2.175)

F′′′ +3FF′′ −2F′2 + θ = 0 ,

θ ′′ +3 Pr Fθ ′ = 0 ,

F(0) = F′(0) = 0 , θ(0) = 1 ,

F′(∞) = θ(∞) = 0 (2.179)
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Fig. 2.23a,b Vertical velocity and temperature variation across the boundary layer for flow over an isothermal, vertical
wall: (a) Vertical velocity, (b) temperature

Table 2.9 The function H(Pr)

Pr H(Pr)

Pr → 0 0.600 Pr1/2

0.01 0.0570

0.72 0.357

1.0 0.401

2.0 0.507

5.0 0.675

7.0 0.754

10 0.826

102 1.55

103 2.80

104 5.01

Pr → ∞ 0.503 Pr1/4

or experimentally. (The fact that the flow is self-
similar allows one to make measurements in a single
cross section of the boundary layer.) Equation (2.179)
were solved numerically; the results are shown in
Fig. 2.22 where the vertical velocity distribution across
the boundary layer [ũ(η) = u/(4νC2x1/2) = F′(η)] and
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Nondimensional Representation 2.3 Self-Similarity 79

the temperature θ(η) are plotted for a range of the
Prandtl number. The local heat transfer coefficient h(x)
is calculated accordingly. Its normalized form, the Nus-
selt number Nu = kx/k where k is the fluid thermal
conductivity, is given by

Nu = H(Pr)Gr1/4
x . (2.180)

The Grashof number is Grx = βgx3(Tw − T∞)/ν2, and
the function H(Pr) is given in Table 2.9.

Planar and axisymmetric plumes rising vertically
above a heated horizontal cylinder or a sphere with
a constant heat release also manifest self-similarity of
the velocity and temperature distributions in the far-field
zone. In a sense, they are kindred to the submerged jets.
The corresponding self-similar solutions can be found
in [2.25, 26].

2.3.5 Gas Dynamics: Strong Explosion

Gas dynamics also provides us with examples of impor-
tant self-similar solutions. One such example is a strong
explosion of a charge in a gas [2.16, 19, 27–29]. The
gas is assumed to be compressible and inviscid and its
motion after the explosion spherically symmetric. The
corresponding set of gas dynamics equations reads

∂v

∂t
+v

∂v

∂r
+ 1

ρ

∂p

∂r
= 0 , (2.181)

∂ρ

∂t
+ ∂ρv

∂r
+2

ρv

r
= 0 , (2.182)

∂

∂t

(
p

ργ

)
+v

∂

∂r

(
p

ργ

)
= 0 . (2.183)

Equation (2.181) represents the momentum balance,
(2.182) is the continuity equation, and (2.183) the en-
ergy equation, r being the radial (spherical) coordinate,
t the time, v the radial velocity of gas, ρ the density,
p the pressure and γ the ratio of the specific heat at
constant pressure to the specific heat at constant vol-
ume. At t = 0 the explosive instantaneously releases an
energy E0 of dimensionality [E0] = J and a spherical
shock wave propagates outwards, subdividing the gas
into an infinite region ahead of the shock wave with un-
perturbed constant values of the pressure and density p1
and ρ1, and a region behind the shock wave where the
flow is described by (2.181–2.183). The standard jump
conditions should be satisfied at the shock front.

To make the gas flow self-similar, we have to as-
sume that the explosion is pointwise. In other words,
the charge is considered to be negligibly small com-
pared to the relevant distances r. This, however, does

not mean that no length scale is involved, since one can
be constructed as � = (E/p1)1/3. However, in mega-
explosions, (e.g., nuclear ones) pressurization by the
shock wave is typically so strong that the pressure ahead
of the shock wave p1 can be neglected. The length scale
� is then lost and the problem becomes self-similar. An
arbitrary length scale L can then be used, while the cor-
responding time scale becomes (ρ1L5/E)1/2. When the
radial coordinate r and time are rendered dimensionless
by these scales, r = r/L, t = t/(ρ1L5/E)1/2, the current
position of the shock wave r2, the pressure, gas veloc-
ity and density distributions behind it can be presented
in the following form

r2 = L f1(t, γ ) , (2.184)

p = E

L3
f2(r, t, γ ) , (2.185)

v =
(

E

L3ρ1

)1/2

f3(r, t, γ ) , (2.186)

ρ = ρ1 f4(r, t, γ ) . (2.187)

Since the final results should not contain L , the dimen-
sionless functions f1 − f4 in (2.184–2.187) require the
form

f1(t) = F1(γ )t2/5
, (2.188)

f2(r, t, γ ) = 1

t6/5 F̃2

(
r

t2/5 , γ

)
, (2.189)

f3(r, t, γ ) = 1

t3/5 F̃3

(
r

t2/5 , γ

)
, (2.190)

f4(r, t, γ ) = F̃4

(
r

t2/5
, γ

)
. (2.191)

From (2.184) and (2.188) we see that

r

r2
= r

F1(γ )t2/5
, (2.192)

which shows that the ratio r/r2 defines, in fact, the
self-similar variable of the distributions (2.189–2.191).
Namely, we take

η = r

t2/5 F1(γ )
= rρ1/5

1

t2/5 E1/5

1

F1(γ )
(2.193)

and present (2.189–2.191) as

p = E2/5ρ
3/5
1

t6/5
F∗

2 (η, γ ) , (2.194)

v = E1/5

ρ
1/5
1 t3/5

F∗
3 (η, γ ) , (2.195)

ρ = ρ1 F∗
4 (η, γ ) . (2.196)
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Fig. 2.24 Experimental results, shown by crosses, lie on
a line inclined at 45◦ to the coordinate axes which confirms
the scaling of (2.203)

It can be shown [2.19] that the pressure, gas velocity and
density at the shock wave front are given by

p2 = 8ρ1

25(γ +1)

(
E

ρ1

)2/5 1

t6/5 , (2.197)

v2 = 4

5

1

(γ +1)

(
E

ρ1

)1/5 1

t3/5 , (2.198)

ρ2 = γ +1

γ −1
ρ1 . (2.199)

Equations (2.197-2.199) enable us to present (2.194–
2.196) in the following self-similar form

p

p2
= F2(η, γ ) , (2.200)

v

v2
= F3(η, γ ) , (2.201)

ρ

ρ2
= F4(η, γ ) (2.202)

and according to (2.184) and (2.188) the position of
shock wave is given by

r2 = F1(γ )

(
E

ρ1

)1/5

t2/5 . (2.203)

The scaling r2 ∼ t2/5 or (5/2) log r2 ∼ log t is, indeed,
supported by the experimental data (Fig. 2.23). The
functions F2–F4 from (2.200-2.202) were found analyt-
ically [2.19, 27, 29]. The results are shown in Fig. 2.24
and in Table 2.10 for the case of γ = 1.4 (air). The
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Fig. 2.25 Self-similar distribution of pressure, gas velocity
and density behind the shock wave front

corresponding temperature distribution, rendered di-
mensionless by that at the front of the shock wave T2,
can be found as T/T2 = (p/ρ)/(p2/ρ2) (where the gas
is assumed to be ideal).

2.3.6 Free-Surface Flows

As an example of self-similar behavior arising in free-
surface flows, consider patterns of capillary waves
propagating over the free surface of a thin liquid film

Table 2.10 Self-similar distributions of pressure, gas veloc-
ity and density behind the shock wave front

r
r2

p
p2

v
v2

ρ
ρ2

1 1 1 1

0.9913 0.9109 0.9814 0.8379

0.9773 0.7993 0.9529 0.6457

0.9622 0.7078 0.9237 0.4978

0.9342 0.5923 0.8744 0.3241

0.9080 0.5241 0.8335 0.2279

0.8747 0.4674 0.7872 0.1509

0.8359 0.4272 0.7397 0.0967

0.7950 0.4021 0.6952 0.0621

0.7493 0.3856 0.6496 0.0379

0.6788 0.3732 0.5844 0.0174

0.5794 0.3672 0.4971 0.0052

0.4560 0.3656 0.3909 0.0009

0.3600 0.3655 0.3086 0.0002

0.2960 0.3655 0.2538 0.0000

0.2000 0.3655 0.1714 0.0000

0.1040 0.3655 0.0892 0.0000

0.0000 0.3655 0.0000 0.0000
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Fig. 2.26 Top view of a pattern of capillary waves taken
5 ms after impact of a copper stick onto an ethanol film
of 1.4 mm thickness. The whole picture covers an area of
about 25 mm × 35 mm (courtesy of Cambridge University
Press)

from the point where it was impacted normally by a tiny
droplet or a stick (Fig. 2.25) [2.30]. For scales of the
order of several mm the gravity effect on the waves
is negligibly small, and for time scales of the order
of several ms viscosity effects can also be neglected.
The dynamics of the wave propagation is then gov-
erned by the following set of quasi-one-dimensional
equations [2.30]

∂rh

∂t
+ ∂rhV

∂r
= 0 , (2.204)

ρh

(
∂V

∂t
+ V

∂V

∂r

)
= σ

∂

∂r

(
h

∂2h

∂r2

)
. (2.205)

Equation (2.204) is the continuity equation and (2.205)
represents the momentum balance, which describes the
competition of the inertial forces and surface tension.
The waves are assumed to be axisymmetric and propa-
gating outwards along the radial coordinate r. The fluid
velocity is denoted by V , the film thickness by h, the
density by ρ, the surface tension coefficient by σ , and
time by t. If we consider the waves as small perturba-
tions propagating over a liquid layer initially at rest, and
of unperturbed thickness h0, then, linearizing (2.204)
and (2.205) for small perturbations of the film thickness
χ(r, t), such that

h = h0[1+χ(r, t)] , (2.206)

we obtain the following equation for χ

∂2χ

∂t2 + a2

r

∂

∂r

(
r
∂3χ

∂r3

)
= 0 . (2.207)

The parameter a combines all the given physical param-
eters as per

a =
(

σh0

ρ

)1/2

(2.208)

and fully determines the wave propagation: [a] = m2/s.
The initial impactor is assumed to be pointwise,

which means that we are considering the wave pat-
tern at distances r much larger than its diameter. Since
no length scale is given, an arbitrary one, L can be
used. The dimensionless wave pattern should be of the
form

χ = f

(
r

L
,

t

L2/a

)
. (2.209)

However, in the final result an arbitrary length scale L
should automatically disappear, which means that the
function f in (2.209) should depend not on its two
variables separately but on their specific combination,
namely,

η = r/L[
t/(L2/a)

]1/2
= r

(at)1/2
. (2.210)

The corresponding self-similar wave pattern χ = F(η)
should satisfy (2.207), which yields

F′′′′ + 1

η
F′′′ + η2

4
F′′ + 3

4
ηF′ = 0 . (2.211)

The solution should correspond to the following initial
perturbation

t = 0 , χ = 4πS
δ(η)

2πη
, (2.212)

where S (dimensionless) corresponds to the impact in-
tensity, and δ(η) is the delta function.

Using the solution of (2.211), we find that for large η

the axisymmetric waves are described by the following
expression

χ = 2S

Γ
(

1
4

) 1

η3/2

×

[
cos

(
1

4
η2 + 1

8
π

)
+ sin

(
1

4
η2 + 1

8
π

)]
,

(2.213)
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where the gamma function of the argument 1/4 equals
to 3.6256. The corresponding fluid velocity is given by

V =
(a

t

)1/2 S

Γ
(

1
4

) 1

η1/2

×

[
cos

(
1

4
η2 + 1

8
π

)
+ sin

(
1

4
η2 + 1

8
π

)]
.

(2.214)

Equation (2.213) with η = r/(at)1/2 agrees pretty well
with experimental data. Moreover, it shows that wave
patterns similar to those of Fig. 2.25 shot at different
time moments can be collapsed onto a single self-similar
pattern given by (2.213), which indeed happens [2.30].

It is emphasized that self-similarity of the wave pat-
tern in the far-field zone has been established without
solution of the governing equation. The detailed wave
structure has been found afterwards, theoretically and
experimentally.
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