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Non-Newtoni9. Non-Newtonian Flows

Rheological constitutive equations of non-
Newtonian liquids are discussed in detail in
Chap. 1.8. In the present chapter they are used
in the discussion of measurement techniques in-
tended to establish an appropriate constitutive
equation of a given liquid and attribute values
for its material parameters. As is widely done in
rheology, shear viscosity (not necessarily constant)
is always denoted by η; only for Newtonian liq-
uids, where η = constant, is it denoted by µ as
elsewhere in this Handbook.
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9.1 Viscoelastic Polymeric Fluids

An introduction into the viscoelastic phenomenon of
polymeric materials in their fluid state is presented. First,
the three principal measurement methods are described:
stress relaxation, creep, and dynamic mechanical mea-
surements. This is followed by the description of
the Maxwell model, the Voigt–Kelvin model and
the Burgers model. Finally, the Boltzmann superpo-
sition principle is introduced and applied to various
flows.

For the measurement of viscoelastic properties of
polymeric fluids in principle three methods are avail-
able: stress relaxation, creep, and dynamic mechanical
measurements.

Stress Relaxation. In a stress relaxation experiment
a constant shear deformation γ0 is applied; the result-
ing stress is time dependent and decreases as a function
of time. The shear modulus or relaxation modulus is de-
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Fig. 9.1 Schematic representation of stress relaxation for
viscoelastic and for a rubber-like materials

fined as the proportionality between the time dependent
stress, σ(t) and the imposed deformation:

G(t) = σ(t)

γ0
. (9.1)

In Fig. 9.1 the stress relaxation is schematically shown
for a viscoelastic material (non-crosslinked) and for
a rubber-like (crosslinked) material. For the viscoelas-
tic fluid the stress decreases to zero (fading memory),
whereas for the rubber-like material the stress relaxes to
a value γ0Ge, where Ge is the rubber shear modulus.

Creep. In a creep experiment a constant shear stress σ0 is
applied; the resulting deformation, i. e., the creep, is time
dependent and increases as a function of time. The shear
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Fig. 9.2 Schematic representation of creep for viscoelastic
and for a rubber-like materials

compliance is defined as the proportionality between the
time dependent shear deformation γ (t) and the imposed
stress σ0:

J(t) = γ (t)

σ0
. (9.2)

In Fig. 9.2 creep is schematically shown for a viscoelas-
tic and a rubber-like material. For a viscoelastic fluid
the long-time creep increases linearly with time, with
a slope equal to σ0/η, whereas for the rubber-like ma-
terial the creep increases to a constant value σ0 Je, where
Je is the rubber shear compliance, equal to 1/Ge.

Dynamic Mechanical Measurements. In dynamic me-
chanical measurements a sinusoidal shear deformation
with radian frequency ω is applied (Fig. 9.3). For lin-
ear viscoelastic materials the stress response is in the
steady state also sinusoidal, but is out of phase with the
strain:

γ (t) = γ0 sin(ωt) . (9.3)

σ(ω, t) = σ0 sin(ωt + δ)

= γ0[G′ sin(ωt)+ G′′ cos(ωt)] , (9.4)

where: δ is the loss angle and

G′ ≡ σ0

γ0
cos δ and G′′ ≡ σ0

γ0
sin δ . (9.5)

G′ is called the storage modulus, representing the elastic
properties, whereas G′′ is called the loss modulus, repre-
senting the viscous properties. For ideal rubbers G′ = Ge
and δ = 0, whereas for Newtonian liquids G′′ = ηω and
δ = π/2.

The dynamic moduli can also be defined in complex
notation:

γ ∗ = γ0 exp(iωt) σ∗ = σ0 exp [i (ωt + δ)]

and G∗ ≡ σ∗

γ ∗ = σ0

γ0
exp (iδ) = ∣∣G∗∣∣ exp (iδ)

(9.6)

where:

G∗ = G′ + iG′′ and i = √−1 . (9.7)

The complex viscosity is defined as:

η∗ ≡ σ∗

dγ ∗/dt
= σ∗

−iωγ ∗

= − iG∗

ω
= G′′

ω
− i

G′

ω
= η′ − iη′′ (9.8)

with:

η′ = G′′

ω
and η′′ = G′

ω
. (9.9)
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Fig. 9.3 Dynamic experiment: sinusoidal stress and defor-
mation δ (rad) out of phase

The absolute values of the complex modulus and vis-
cosity are:

∣
∣G∗∣∣=

√

G′2 + G′′2 and
∣
∣η∗∣∣=

√

η′2 +η′′2 .

(9.10)

In Fig. 9.4 the complex material properties are demon-
strated in the complex plane for ω = 1/2 rad.

Mechanical Models. In order to describe the viscoelastic
behavior of polymeric fluids use is made of mechanical
models consisting of an elastic Hookean spring with
spring constant G and a viscous Newtonian dashpot
with viscosity η. The relationships between stress and
deformation are, for a spring and dashpot,

σ = Gγ and σ = η
dγ

dt
, (9.11)

respectively.

�	

��

����

�� ��

� 
� 

Fig. 9.4 The dynamic moduli and viscosities in the com-
plex plane
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Fig. 9.5 Maxwell (left) and Voigt–Kelvin models (right)

In the Maxwell model, the spring and dashpot are
linked in series while in the Voigt–Kelvin model they are
linked parallel (Fig. 9.5). The Maxwell model is appro-
priate to describe stress relaxation, and the Voigt–Kelvin
model to describe creep.

For the Maxwell model the relationships between
deformations and between stresses are:

γ = γ1 +γ2 and σ = σ1 = σ2 (9.12)

and for the Voigt–Kelvin model they are

γ = γ1 = γ2 and σ = σ1 +σ2 . (9.13)

Stress Relaxation of a Maxwell Model. If at time t = 0
a Maxwell model has a constant strain of γ0 suddenly
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Fig. 9.6 Schematic representation of the stress relaxation of
a Maxwell model
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imposed, the spring is momentarily stretched to γ0. The
stress needed for this deformation is

σ0 = Gγ0 . (9.14)

Due to this stress the plunger of the dashpot starts to
move (Fig. 9.6). As a result the stress starts to decrease
gradually.

The relationships between the stress and deforma-
tion are

σ1 = Gγ1 and σ2 = η
dγ2

dt
, (9.15)

σ1 = σ2 = σ , (9.16)

and

γ1 +γ2 = γ0 . (9.17)

By differentiation of (9.17) with respect to time:

dγ1

dt
+ dγ2

dt
= dγ0

dt
= 0 (9.18)

and by subsequent combination with (9.15) we obtain

1

G

dσ

dt
+ σ

η
= 0 . (9.19)

Integration of (9.19) with the boundary value σ(t = 0) =
σ0

σ(t)∫

σ0

dσ

σ
= −G

η

t∫

0

dt (9.20)
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Fig. 9.7 (a) Semi-logarithmic plot of the reduced relaxation modulus Gred(t) = G(t)/G = σ(t)/σ0 for two Maxwell
elements, with relaxation times of 1 s and 10 000 s, respectively (b) Semi-logarithmic plot of the relaxation of the reduced
stress σ/σ0 for a Maxwell–Wiechert model, with relaxation times of 1 s and 10 000 s and spring constants G1 and
G2 = 0.5G1; the results of (a)are also shown

yields

σ(t) = σ0 exp(−t/τ) , (9.21)

where

σ0 = Gγ0 and τ = η

G
, (9.22)

where τ is the relaxation time of the Maxwell model,
i. e., the time needed for relaxation of the stress from
σ0 to σ0/e (i. e., approximately 0.37σ0, Fig. 9.7a). The
shear modulus is defined as

G(t) ≡ σ(t)

γ0
= G exp(−t/τ) . (9.23)

Upon plotting σred = σ(t)/σ0 = exp(−t/τ) versus
log t a curve is obtained with a strong decrease from
1 to 0 around t = τ , according to the results in Table 9.1.

Hence, the stress σ(t) decreases stepwise within
a few decades from approximately σ0 to zero, which
manifests viscoelastic liquid-like behavior. This is
demonstrated in Fig. 9.7a, where the reduced relaxation
modulus Gred(t) = G(t)/G = σ(t)/σ0 is plotted versus
log time, for two Maxwell models with relaxation times
of τ = 1 s and τ = 10 000 s, respectively.

In general, the decrease of the stress is not as sharp as
shown in Table 9.1 and in Fig. 9.7a. One could imagine
that this is the result of the presence of more relaxation
times. We can describe this phenomenon by a so-called
Maxwell–Wiechert (MW) model, i. e., N Maxwell el-
ements linked in parallel, each with its own spring
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Table 9.1 Fast decrease of exp(−t/τ) in two decades of
time around t/τ = 1

t/τ 0.01 0.1 1 10

log(t/τ) –2 –1 0 1

exp(−t/τ) 0.990 0.904 0.365 0.000

constant Gi and relaxation time τi , for which the shear
modulus can be found to be

G(t) =
N
∑

i=1

Gi exp(−t/τi ) . (9.24)

The number of Maxwell elements needed in the MW
model depends on the accuracy desired to describe the
viscoelastic behavior.

If there are two distinct relaxation times far away
from each other (e.g., 1 s and 10 000 s), then in a plot
of σ(t) versus log t the stress decreases in two steps
(Fig. 9.7b): first a step from σ0 = γ0(G1 + G2) to σ =
γ0G2 at around t = 1 s and subsequently a step from
σ = γ0G2 to σ = 0 at around t = 10 000 s.

For high-molecular-weight polymers the modulus
also decreases in two steps from the glassy state,
at approximately 3 × 109 N/m2, via the pseudo-rubber
plateau, at approximately 105 N/m2, to the fluid state.
However the decrease is much less sharp than the de-
creases shown in Fig. 9.7b. The viscoelastic behavior of
these polymers can be described by a (large) number of
relatively short relaxation times around the glass rubber
transition and another (large) number of relatively long
relaxation times around the decrease from the pseudo-
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Fig. 9.8 Creep for a Voigt–Kelvin model with a retardation
time of 1 s

rubber plateau to the fluid state. The pseudo-rubber
plateau is the result of the presence of entanglements
in high-molecular-weight polymers.

Creep of a Voigt–Kelvin Model. When a stress σ0 is
suddenly applied to a Voigt–Kelvin model, we have:

dσ0

dt
= dσ1

dt
+ dσ2

dt
= 0

= G
dγ1

dt
+η

d2γ2

dt2
= G

dγ

dt
+η

d2γ

dt2
. (9.25)

The boundary values are:

γ (t = 0) = 0 and γ (t = ∞) = σ0/G . (9.26)

Hence, the solution of the differential equation reads

γ (t) = σ0

G
[1− exp(−t/τ)] = σ0 J[1− exp(−t/τ)] ,

(9.27)

where the characteristic time, now called the retardation
time, is again τ = η/G, and J = 1/G is the compliance
of the spring.

In Fig. 9.8 the reduced creep, i. e., γred = γ (t)/γ∞ =
γ (t)G/σ0, is shown for a viscoelastic system with a re-
tardation time of 1 s. The retardation time is equal to
the time needed to reach a value of 1−1/e ≈ 0.63, as
illustrated in Fig. 9.8. Upon comparing this figure with
Fig. 9.2 it becomes clear, that it illustrates the creep of
a crosslinked polymer, a rubber-like material. Hence, the
Voigt–Kelvin model describes a viscoelastic solid and
is not able to describe the creep behavior of viscoelastic
fluids.

Creep of a Burgers Model. The creep behavior of vis-
coelastic fluids can be described in a better way with
the Burgers model, i. e., a Maxwell model linked in se-
ries with a Voigt–Kelvin model (Fig. 9.9). The following
equations are available:

γ = γ1 +γ2 +γ3 and σ = σ1 +σ2 ,

(9.28)

γ1 = σ/G , γ2 = σ

G1
[1− exp(−t/τ1)] and

dγ3

dt
= σ

η
where τ1 = η1/G1 . (9.29)

The solution of these equations yields, for a Burgers
model subjected to a constant stress σ0, the following
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expression for creep

γ (t) = σ0

{
1

G
+ 1

G1
[1− exp(−t/τ1)]+ t

η

}

= σ0

{

J + J1[1− exp(−t/τ1)]+ t

η

}

= σ0 J(t) ,

(9.30)

where the time-dependent compliance is given by

J(t) = J + J1[1− exp(−t/τ1)]+ t

η
(9.31)

and where J = 1/G and J1 = 1/G1, i. e., the compli-
ances of the two springs, and the retardation time is
τ1 = η1/G1.

It is clear that creep of a Burgers model is the sum
of the creep of a Maxwell model and of a Voigt–Kelvin
model. As demonstrated in Fig. 9.10, the values of J and
J1 can be obtained by extrapolation of the linear part that
is obtained after long times, well after the retardation
time, where the slope is equal to 1/η.

For polymer melts, J and J1 are of the order of
3 × 10−10 m2/N and 10−5 m2/N, both nearly indepen-
dent of temperature and molecular weight, whereas the
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Fig. 9.9 Burgers model, a combination of a Maxwell
model and a Voigt–Kelvin model in series
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Fig. 9.10 Creep of a Burgers model

viscosity η is strongly dependent on both the temperature
and molecular weight.

Boltzmann Superposition Principle. If at time t = 0
a viscoelastic system is suddenly subjected to a de-
formation γ0 and at time t = t1 suddenly to an extra
deformation γ1 then for t ≥ t1 the stress will be given by

σ(t ≥ t1) = γ0G (t)+γ1G
(

t − t1
)

, (9.32)

where the bar above t − t1 means that G is a func-
tion of t − t1. This principle is called the Boltzmann
superposition principle, which is only appropriate to de-
scribe linear behavior. In general the stress after stepwise
deformations ∆γi at times ti is given by

σ(t) =
∑

i

∆γi G
(

t − ti
)

. (9.33)

If the deformation changes continuously then the sum
changes into an integral

σ(t) =
t∫

−∞
G
(

t − t′
)∂γ (t′)

∂t′
dt′ (9.34)

where t′ is the running time or time in the prehistory,
and t is the actual time.

Examples of the Application of the Boltzmann Su-
perposition Principle.
Steady Shear Flow. Steady shear flow means that the
shear flow was started at t′ = −∞ and is still going on
at time t′ = t. The constant shear rate is then given by
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γ̇0, hence, ∂γ/∂t′ = γ̇0. Equation (9.34) yields:

σ(t) = γ̇0

t∫

−∞
G
(

t − t′
)

dt′ (9.35)

Upon substitution of s = t − t′ we obtain

σ(t) = γ̇0

∞∫

0

G(s)ds = σ∞ , (9.36)

which appears to be independent of t.
If the viscoelastic behavior is given by a sum of

Maxwell models, i. e., by an MW model, then we obtain

σ(t) = γ̇0

∞∫

0

∑

i

Gi exp (−s/τi) ds

= γ̇0

∑

i

Gi

∞∫

0

exp (−s/τi) ds = γ̇0

∑

i

Giτi .

(9.37)

Hence, the viscosity is equal to

η = σ∞
γ̇0

=
∞∫

0

G(s)ds =
∑

i

Giτi =
∑

i

ηi . (9.38)

Starting Steady Shear Flow at Time t = 0. Upon start-
ing steady shear flow at time t = 0 the stress at time t
can be calculated as follows

σ(t) = γ̇0

t∫

0

G
(

t − t′
)

dt′ = γ̇0

t∫

0

G(s)ds (9.39)

so that the time-dependent viscosity η+(t) is equal to

η+(t) = σ(t)

γ̇0
=

t∫

0

G(s)ds . (9.40)

Upon substitution (9.24) we obtain

η+(t) =
N
∑

i=1

Giτi [1− exp(−t/τi )] . (9.41)

For t → ∞ we have

η = lim
t→∞ η+(t) =

N
∑

i=1

Giτi . (9.42)

From (9.40) and (9.41) it becomes clear that the stress in-
creases gradually to γ̇0η, as demonstrated schematically
in Fig. 9.11a. It is also clear that the stress is propor-
tional to the shear rate γ̇0. Hence, if the shear stress is
divided by the shear rate then the various curves are
identical, while at t → ∞ the viscosity has a constant
value. This is only in agreement with practice if the
shear rate is small. For higher shear rates the stresses
are not proportional anymore with the shear rate and for
polymeric fluids σ(t)/γ̇0 becomes smaller or can even
show a maximum value, the so-called stress overshoot
(Fig. 9.11b). As a result the corresponding steady-state
value after long times has a smaller value so that the
viscosity decreases with increasing shear rate.

Sinusoidal Deformation. Upon substitution (9.3) into
(9.34) we obtain

σ(t) = γ0ω

t∫

−∞
G
(

t − t′
)

cos
(

ωt′
)

dt′ (9.43)

which, upon substitution of s = t − t′, is transformed
into

σ(t) = γ0ω

t∫

−∞
G(s) cos [ω (t − s)] ds (9.44)

or

σ(t) = γ0ω sin (ωt)

∞∫

0

G(s) sin (ωs) ds

+γ0ω cos (ωt)

∞∫

0

G(s) cos (ωs)ds . (9.45)

Comparing this result with that of (9.4), we can con-
clude:

G′(ω) = ω

∞∫

0

G(s) sin (ωs) ds , (9.46)

G′′(ω) = ω

∞∫

0

G(s) cos (ωs) ds . (9.47)

Upon substituting a sum of Maxwell models, i. e., (9.24),
we obtain

G′ (ω) =
∑

i

Gi
ω2τ2

i

1+ω2τ2
i

, (9.48)

G′′ (ω) =
∑

i

Gi
ωτi

1+ω2τ2
i

. (9.49)
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Fig. 9.11 (a) Increase of stress after starting steady shear flow at zero time γ̇ = γ̇0 =constant. (b) Non-Newtonian shear
flow schematically shown

From (9.48) and (9.49) it follows, for very low angular
frequencies, that

lim
ω→0

G′

ω2 =
∑

i

Giτ
2
i = Ψ1 , (9.50)

lim
ω→0

G′′

ω
=
∑

i

Giτi = η . (9.51)

Ψ1 (i. e., the first normal stress coefficient) and η are
material functions that are defined in steady shear rheol-
ogy (Sect. 9.1.1). From (9.48) and (9.49) it follows that,
upon plotting log G′ and log G′ versus log ω at low fre-
quencies, straight lines are obtained with slopes of 2 and
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Fig. 9.12 Double logarithmic plot of the reduced dynamic
moduli of a Maxwell model with one relaxation time of 1 s,
versus the angular frequency

1, respectively. From these regions Ψ1 and η can be de-
termined. Another important conclusion is that there is
a correspondence between steady shear flow behavior
and oscillatory flow behavior.

For a Maxwell model with a relaxation time of 1 s the
reduced dynamic moduli, i. e., G′

red = G′/G and G′′
red =

G′′/G, are plotted versus angular frequency in Fig. 9.12
on double logarithmic scales. A maximum in G′′ arises
where the G′ and G′′ curves cross each other. At low
frequencies straight lines are obtained with slopes of
2 and 1, respectively. At high frequencies G′ becomes
constant, equal to G, whereas G′′ decreases with a slope
of −1. Both curves cross at ωτ = 1.

In Fig. 9.13 analogous results are shown for
a Maxwell–Wiechert model with one relaxation time
τ1 = 10 000 s and a corresponding spring constant G
and one relaxation time τ2 = 1 s with a corresponding
spring constant of 100G, hence G′

red = G′/ (101G) and
G′′

red = G′/ (101G). In this case two plateaus in the stor-
age modulus and two maxima in the loss modulus are
present.

This result is qualitatively in agreement with the
dynamic moduli of high-molecular-weight polymers,
where in general two transitions are present: the high-
frequency transition is the glass–rubber transition (from
approximately 3 × 109 to 105 N/m2) while the low-
frequency transition is the rubber-flow transition. Both
transitions are attended with maxima in the loss modu-
lus. Of course the transitions are much less sharp.

Creep of a Burgers Model. The Boltzmann superposi-
tion principle holds not only for stress relaxation but also
for creep experiments. It reads, for discrete changes in
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Fig. 9.13 Double logarithmic plot of the reduced dynamic
moduli of a Maxwell–Wiechert model with two relaxation
times of 10 000 s and 1 s, versus the angular frequency. The
corresponding spring constants are G and 100 G

the stress,

γ (t) =
∑

i

∆σi J
(

t − ti
)

(9.52)

and for a continuously changing stress

γ (t) =
t∫

−∞
J
(

t − t′
)∂σ(t′)

∂t′
dt′ . (9.53)

If a Burgers model is subjected to a constant stress at
time t = 0, which is removed at time t1, then the Boltz-
mann superposition can be used in the following way:
removing a stress at time t1 is equivalent to continuing
the stress σ0 and adding a stress −σ0 at time t1. Hence,
for the deformation, the creep recovery, results:

γ (t > t1) = σ0 J(t)−σ0 J(t − t1) (9.54)

or

γ (t > t1) =
σ0

(

J1{exp[−(t − t1)/τ1]− exp(−t/τ1)}+ t1
η

)

.

(9.55)

For t 	 τ1 this reduces to:

γ (t > t1) = σ0

(

J1 {exp [−(t − t1)/τ1]}+ t1
η

)

(9.56)
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Fig. 9.14 Creep and recovery for a Burgers model

and for t − t1 	 τ1 the final or remaining deformation is

γ (∞) = σ0t1
η

, (9.57)

thus providing an alternative method to determine the
viscosity η (see Fig. 9.14).

Conclusions. This introduction covers the subjects
stress relaxation, creep, and dynamic mechanical meas-
urements of polymer melts and solutions. In order to
describe the viscoelastic behavior of those materials
the well-known mechanical models were introduced:
(a) the Maxwell model, which is able to describe
the stress relaxation of polymer melts qualitatively,
(b) the Voigt–Kelvin model, which is able to describe
the creep behavior of rubber-like polymers qualita-
tively, and (c) the Burgers model, which is able to
describe qualitatively the creep of polymer melts and
rubber-like polymers. The Boltzmann superposition
principle was introduced to describe the application of
experiments with time-dependent deformation or with
time-dependent stress. Examples of this principle were
given for various experiments.

9.1.1 Measurements in Shear Flow

In this Section measurements in shear flow will be
discussed. It will start with a short introduction to the me-
chanics of the measurement of the viscoelastic properties
of polymeric fluids. This will be followed by a descrip-
tion of the methods to determine the time-dependent
compliance with the aid of creep measurements. Most
of the discussion concerns the determination of the
frequency-dependent dynamic moduli with the aid of
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dynamic mechanical measurements. Both compliance
and dynamic moduli are illustrated with presentations
from literature.

We will first discuss creep, whereas most of the
discussion will deal with dynamic mechanical mea-
surements. In shear flow measurements the sample is
in general confined to the instrument, e.g., between two
cylinders or between a cone and a plate. Accordingly, the
translation into viscoelastic properties of the force/linear
displacement ratio or of moment-of-force/angular dis-
placement ratio will depend on the shape of the sample
via a so-called shape factor. If a force F or a moment
of force TM (or torque T ) is applied to a system the
resulting strain/stress ratio is equal to

γ

σ
= bF · x

F
or

γ

σ
= bT · φ

TM
, (9.58)

where b is a geometric shape factor (bF in m, bT in m3),
x is the linear displacement (in m), and φ is the angular
displacement (in radians).

Examples of shape factors for various geometries, as
shown in Fig. 9.15, are given in Table 9.2 [9.1,2], where
lines e and f are of course not appropriate for polymeric
liquids, but for solid polymers.

Creep Tests
In tests to determine the compliance a specimen is sub-
jected to a sudden, constant stress σ0 and the resulting
deformation, γ (t), is measured as a function of time. The
time-dependent compliance J(t) then follows from

J(t) = γ (t)

σ0
. (9.59)

�� �� ��

�� �� ��

Fig. 9.15a–f Various geometric shapes for the measurement of
viscoelasticity (see text) (After [9.1])

If after some time t0, the stress is removed, the creep
will be partly recovered, as was shown in Sect. 9.1:

γ (t ≥ t0) = σ0 [J(t)− J(t − t0)] . (9.60)

In Fig. 9.16 two arrangements for creep measurements
are schematically shown: a sandwich construction and
a cone-and-plate construction. In the sandwich construc-
tion the force is applied to the sample by a weight that
is connected via a pulley to the surface A of the up-
per plate. This results in a shear stress F/A. The upper
plate moves over a distance x(t) and this causes a shear
of the sample equal to γ (t) = x(t)/d. Accordingly, the
compliance is equal to

J(t) = γ (t)

σ
= Ax(t)

Fd
. (9.61)

In the cone-and-plate construction the force F is trans-
ferred into a moment of force TM = F r, where r is the
radius of the cylinder the string is wrapped round. Due
to the moment the cone will rotate over an angle φ(t),
resulting in a time-dependent shear of the sample. The
constant shear stress in the sample is equal to

σ = 3TM

2π R3 (9.62)

and the time-dependent shear in the sample is

γ (t) = φ(t)

∆Θ
. (9.63)

Accordingly, the compliance can be calculated as

J(t) = γ (t)

σ
= 2π R3φ(t)

3TM∆Θ
. (9.64)

Dynamic Mechanical Tests
If a viscoelastic material is deformed sinusoidally
(Sect. 9.1) according to

γ = γ0 sin (ωt) (9.65)

the shear stress is given by

σ(t) = σ0 sin (ωt + δ)

= σ0 [sin (ωt) cos δ+ cos (ωt) sin δ]

= γ0[G′ sin (ωt)+ G′′ cos (ωt)]
= G′γ + G′′

ω

dγ

dt
, (9.66)

where

G′ ≡ σ0

γ0
cos δ and G′′ ≡ σ0

γ0
sin δ . (9.67)

Accordingly, the storage and loss moduli, G′ and G′′,
can be calculated easily by determining the amplitudes
of strain γ0 and stress σ0 and the phase angle δ.
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Table 9.2 Various geometric shape factors

Geometry Geometric shape factor Units

a) sandwich construction A/d m

b) rotation between concentric cylinders 4πLr2
i r2

0/(r2
0 −r2

i ) m3

c) cone and plate 2π R3/(3∆Θ) m3

d) parallel plates π R4/d m3

e) torsion of a bar with rectangular cross section cd3 f (c/d)/(16L) c/d > 1 m3

f) torsion of a bar with circular cross section π R4/(2L) m3

where

A = area of the sample in contact with the plates (m2),

d = thickness of the sample or torsion bar (m); in Sect. 9.3 this notation is changed by h to distinguish from particle diameter,

c = width of the torsion bar (m),

f (c/d) = function of c/d, with numerical values varying between 2.25 and 5.33,

L =height of cylinder or bar (m),

R = radius of bar or plate (m),

ri = radius of inner cylinder (m),

r0 = radius of outer cylinder (m),

∆Θ = angle between cone and plate (rad), assumed to be small.

Classification of Techniques. There are various meth-
ods to determine the dynamic moduli, as shown in
Table 9.3.

Dynamic Techniques. In general, when a shearing force
F is applied, for example, to the upper side of the slid-
ing plate of mass m in the sandwich construction in
Fig. 9.15a, the equation motion of the plate is given by

F − Aσsh = m
d2x

dt2 , (9.68)

where A is the area that is in contact with the fluid in the
gap.

�
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Fig. 9.16 Two set-ups for creep measurements; left: sandwich construction; right cone-and-plate construction

If the force is an oscillating shearing force with
amplitude F0, the equation of motion becomes:

F0 sin(ωt)− Aσsh = m
d2x

dt2
. (9.69)

With b = A/d and γ = x/d, and using (9.66) we obtain
for oscillatory flow

F0 sin(ωt) = m
d2x

dt2 +b
G′′

ω

dx

dt
+ (bG′ + c

)

x .

(9.70)

In (9.70) we additionally introduced an elastic constant
for the instrument c. A similar equation can be derived
for a rotational device, where x and m have to be replaced
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Table 9.3 Classification of experimental dynamic tech-
niques

Experimental technique Frequency (Hz)

Free damped vibrations 10−2 –10

Forced vibrations: resonance 10−2 –104

Forced vibrations: nonresonance 10−5 –102

Wave propagation 1–3 × 109

by θ, i. e., the angle of torsion, and I , i. e., the moment of
inertia of the rotor, respectively. In some cases an extra
viscous term has to be added to (9.70).

For the solution of (9.70) we distinguish three cases:

1. F0 = 0: free vibrations,
2. F0 
= 0 and mω2 � bG′ +c: forced vibrations (non-

resonance),
3. F0 
= 0 and mω2 ≈ bG′ +c: forced vibrations (reso-

nance),

where (2) and (3) are written for a sliding device.
For a rotational device mω2 should be replaced by Iω2.

Free Vibrations. The solution of (9.70) for F0 = 0 for
a rotational instrument is:

θ = θ0 exp
[−bG′′t/(2Iωe)

]

cos (ωet) (9.71)

provided

bG′ + c >
b2G′′2

4Iω2
e

,

with ω2
e = 4I

(

bG′ + c
)−bη′2

4I2 , (9.72)

and where θ0 is the initial value of θ.

���	


�

��*�	





� 
�

"

Fig. 9.17 Free damped vibrations

Equation 9.71 is the equation for free vibrations
with decreasing amplitude (Fig. 9.17). The ratio of two
successive maxima is

θn

θn+1
= exp

[

πbG′′/
(

Iω2
e

)]

, (9.73)

whereas the so-called logarithmic decrement is given by

Λ = ln (θn/θn+1) = πbG′′/
(

Iω2
e

)

(9.74)

which is independent of n. Hence, a plot of log
θn versus n (several successive θn are shown in
Fig. 9.17) should yield a straight line with slope
−0.4343Λ(log e = 0.4343). The dynamic moduli now
follow from

G′ = Iω2
e

b

(

1+ Λ2

4π2

)

− c

b
, (9.75)

G′′ = Iω2
e

b
· Λ

π
. (9.76)

If the damping of the test piece is small, then the
damping of the instrument itself (air damping, friction
in the bearings, the suspension etc.) has to be taken
into account. In that case (9.75) has to be replaced
by

G′′ = Iω2
e

b

Λ

π
− Eωe , (9.77)

where E is the friction coefficient.
For the determination of the dynamic moduli two

kinds of torsion pendulums are available (Fig. 9.18):
the normal torsion pendulum, used for hard viscoelastic

�
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Fig. 9.18a,b Two types of torsion pendulums: (a) the
normal torsion pendulum and (b) the inverted torsion pen-
dulum. S: sample; C: clamps; W: torsion wire; M: extra
adjustable masses; R: supporting rods. (After [9.3])
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solids and the inverted one, appropriate for elastic liq-
uids. The frequency range, about 0.1–100 rad/s, can be
controlled by varying the moment of inertia I . This is
possible by varying the masses M and their distance to
the axis.

Forced Vibrations. In free vibrations experiment a de-
fined system has a preference for only one frequency ωe.
On the other hand, if the system is driven by a sinusoidal
force, then after a starting period the amplitude of the
deformation remains constant. The vibration is a forced
harmonic vibration. In this case the stationary solution
of (9.70) is [9.2]

x(t) = F0 f (ω) sin (ωt −φ) , (9.78)

where φ is a phase angle, not to be confused with the
loss angle δ, and

f (ω) =
[(

bG′ + c−mω2
)2 + (bG′′)2

]−1/2

.

(9.79)

The result is a harmonic oscillation with a constant am-
plitude F0 f (ω). At low frequencies the term mω2 can be
neglected. Moreover, if c � bG′, the solution reduces at
low frequencies to

x(t) = x0 sin (ωt − δ) = F0

b |G∗| sin (ωt − δ) ,

(9.80)

where |G∗| = (G′2 + G′′2)1/2
.

Resonance Vibrations. With increasing frequency, f (ω)
increases to a maximum value ω0 when

mω2
0 = bG′ + c , (9.81)

where the amplitude of the oscillation is

xres
0 = F0

bG′′ . (9.82)

The system is then said to be in resonance. If c is known
and the values of m, ω0 and xres

0 are measured, both dy-
namic moduli can be determined from (9.81) and (9.82)
without measurement of the phase angle. Nevertheless,
the value of the loss tangent can also be determined
from the resonance curve, shown in Fig. 9.19. The width
∆ω = ω2 −ω1 is determined from tan δ in the following

way:

for f (ω)/ f (ω0) = 0.5 , ∆ω/ω0 = √
3 tan δ ,

(9.83)

for f (ω)/ f (ω0) = 1

2

√
2 , ∆ω′/ω0 = tan δ .

(9.84)

If the frequency remains far below the resonance fre-
quency, the term mω2 (or, in a rotational instrument,
Iω2) can be neglected compared with bG′, and the result
is:

f (ω) = 1

b |G∗| and tan φ = G′′

G′ = tan δ . (9.85)

It has to be mentioned, however, that for large values of
the loss modulus the maximum of f (ω) is hardly per-
ceptible. Moreover, if G′ and G′′ are strongly frequency
dependent, a maximum will not appear at all.

Non-Resonance Vibrations. If the frequency remains
far below the resonance frequency, the result for the
dynamic moduli is

G′ = F0 cos φ

bx0
+ mω2

b
− c

b
, (9.86)

G′′ = F0 sin φ

bx0
. (9.87)

In order to determine the values of the dynamic moduli
as a function of the frequency, apart from the instrument
constants b, c and m (or I), determination of F0/x0 and
the phase angle φ as a function of frequency is required.
Note that φ is the measured phase angle, which is now
not equal to the loss angle δ.
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Fig. 9.19 Resonance curve of a forced vibration experiment
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For hard materials dynamic measurements are in
general taken on rods, bars or tubes in sinusoidal torsion
or flexure. Liquids and soft viscoelastic solids are usually
confined between two concentric cylinders, two cones,
two plates or between a cone and a plate. In Fig. 9.20 two
principles of measuring arrangements are shown on the
basis of coaxial cylinders. In most types of equipment
one of the two boundary surfaces is oscillated over an
angle ε0

1. The oscillation of the other boundary, over an
angle ε0

2, as well as the phase angle φ between the two
oscillations, is measured.

For the left-hand side instrument the torque T is
equal to

T = b
∣
∣G∗∣∣ (ε1 − ε2) . (9.88)

If the torsion bar is very stiff, εO
2 is very small. In that

case the dynamic moduli follow from

G′ = T0

bεo
1

cos φ , (9.89)

G′′ = T0

bεo
1

sin φ , (9.90)

where εo
1, ε

o
2 and T0 are the amplitudes of the respective

oscillations. Accordingly the phase angle φ is equal to
the loss angle δ.

In the right-hand side instrument a driving shaft is
brought into oscillation ε1. Via a torsion wire, with tor-
sion constant c, this oscillation is transferred to the inner
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Fig. 9.20a,b Two types of nonresonant forced vibration
experiments. B: torsion bar; W: torsion wire; ε1 and ε2:
angles of rotation. (After [9.4])

cylinder, which then performs an oscillation ε2. The
dynamic moduli follow from

G′ = c

b

(
εo

1

εo
2

cos φ−1

)

+ Iω2 − c

b
, (9.91)

G′′ = c

b

εo
1

εo
2

sin φ . (9.92)

Wave Propagation. In the wave propagation tech-
nique the frequency range is enormous: from 1 Hz to
3 × 109 Hz and the technique is appropriate in the range
from low-viscosity liquids to solid metals.

Two types of waves can be distinguished in the wave
propagation technique, viz. shear waves and longitudinal
waves.

Shear Waves. A flat plate with a large area is in con-
tact with an isotropic viscoelastic medium of density
ρ. The plate is vibrating, with an angular frequency ω,
in the x-direction in its own plane, with an amplitude
x0 (Fig. 9.21). It follows for the shear wave propagat-
ing into the medium occupying the semi-space z > 0
that:

x(z, t) = x0 exp [i (ωt −2πz/λ)− z/z0] (9.93)

where i = √−1, and λ is the wavelength of the attenu-
ated propagating wave, whose amplitude decreases with
a factor e over a distance z0 (Fig. 9.21). The attenu-
ation α is equal to 1/z0. The dynamic moduli follow

�

�
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Fig. 9.21 Propagation of a shear wave of wavelength λ and
attenuation 1/z0 in the positive, semi-infinite direction z,
drawn for time t = 2πn/ω (curve A) and t = (2n +1/2)π/ω

(curve B)
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from

G′(ω) = ρω2(4π2/λ2 −1/z2
0)

(4π2/λ2 +1/z2
0)2

, (9.94)

G′′(ω) = ρω24π/(λz0)

(4π2/λ2 +1/z2
0)2

, (9.95)

tan δ = 4πλz0

4π2z2
0 −λ2

. (9.96)

From these equations it follows that the dynamic mod-
uli are determined by measuring the attenuation α

and the wavelength λ (Fig. 9.21). If the damping is
small, i. e., if λ/z0 is small, the shear wave is prop-
agated over a long distance. If, on the other hand,
λ/z0 is large, the wave will be attenuated so fast,
that even the determination of the wavelength be-
comes difficult. According to Ferry [9.1] the upper
limit would be λ/z0 = 3. For this kind of exper-
iments the frequency can be varied from 4 Hz to
5000 Hz.

In particular for very high frequencies (3000–
3 × 109 Hz) use is made of reflection of propagating
waves in a quartz crystal against an interface between
the quartz and a thin film of a viscoelastic liquid [9.1].

Longitudinal Waves. If the flat plate similar to that of
Fig. 9.21 is vibrating along the direction of its normal,
i. e., in the z-direction, the medium will be compressed
and extended in an oscillatory way. In this case G′ and
G′′ have to be replaced by M′ and M′′, where

M′ = K ′ + 4

3
G′ , (9.97)

M′′ = K ′′ + 4

3
G′′ , (9.98)

M∗ = K∗ + 4

3
G∗ , (9.99)

where K ′ and K ′′ are the components of the complex
dynamic bulk modulus K∗, whereas M′ and M′′ are the
components of the complex dynamic longitudinal bulk
modulus M∗.

Examples of Measurements on Polymer Melts
We will complete this discussion on methods for shear
measurements with some results presented in the litera-
ture.

Compliance. Compliance measurements by Plazek and
O’Rourke (tabulated results on page 605 in [9.1]) on

polystyrene with a narrow molecular-weight distribu-
tion and a molecular weight of 600 000 are shown in
Fig. 9.22. With the aid of the so-called time–temperature
superposition principle [the William, Landal and Ferry
(WLF) equation, see Chap. 11 in [9.1], by which
measurements at a number of different temperatures
are reduced to one reference temperature, in this case
100 ◦C, thereby increasing the frequency or time win-
dow]. Accordingly, the time window was increased to
approximately 18 decades. The compliance J(t), as
well as J(t)− t/η0 (where η0 is the zero-shear viscos-
ity) are plotted versus time. Note that at long times
the slope of the compliance curve, J(t), is equal to
1. In these regions the viscosity can be calculated to
be approximately 2.75 × 1014 Ns/m2 (i. e., just above
the glass-transition temperature). The value of J(t)
at very short times is equal to the glass compliance
Jg = 10−9 m2/N. The value of the equilibrium shear
compliance Je follows from the curve for J(t)− t/η0
at long times, Je = 1.6 × 10−5 m2/N. Both values are in
agreement with those mentioned in Sect. 9.1.

Dynamic Moduli. The dynamic moduli, G′ and G′′,
of polystyrene Hostyrene N4000V were measured at
temperatures of 140–206 ◦C in a Couette-type dynamic
rheometer [9.5]. With the aid of the time–temperature
superposition principle they were reduced to a tem-
perature of 170 ◦C. In this way the frequency window
was increased to approximately seven decades. Results
are shown in Fig. 9.23, as log G′ and log G′′ versus
log ω [9.6]. From a comparison of these results with
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Fig. 9.22 Compliance (m2/N) of polystyrene with a narrow
molecular-weight distribution with M = 600 000 versus
time on double logarithmic scales, according to Plazek and
O’Rourke [9.1]
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Fig. 9.12, it becomes clear that only a small part of the
dynamic moduli was measured: the low-frequency flow
behavior of the polymer and the transition to the rubber-
like entanglement plateau. A much larger frequency
window is needed to describe the viscoelastic behavior
up to the glassy region with an instrument that is able
to measure much higher moduli, up to 3 × 109 N/m2.
The dashed straight lines at low frequencies have slopes
of 1 (for G′′) and 2 (for G′), as was mentioned in
Sect. 9.1.

In Sect. 9.1, (9.51), it was shown that the zero-shear
viscosity can be determined from the loss modulus by
dividing G′′ by ω in the limit ω → 0. From Fig. 9.23 it
follows for the zero-shear viscosity η0 = 105 Ns/m2 (the
notation η0 is introduced here instead of the η of (9.51)
in Sect. 9.1). In general the loss modulus divided by
the angular frequency is equal to the so-called dynamic
viscosity η′ (Sect. 9.1):

η′ ≡ G′′

ω
so that η0 = lim

ω→0

G′′

ω
= lim

ω→0
η′ .

(9.100)

Because G′ decreases much faster than G′′ with decreas-
ing frequency, we can also conclude that

η0 = lim
ω→0

|G∗|
ω

= lim
ω→0

∣
∣η∗∣∣ . (9.101)
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Fig. 9.23 Double logarithmic plot of the dynamic shear
moduli G ′ and G ′′ versus angular frequency ω for
polystyrene Hostyren N4000V, measured at temperatures
varying from 140 ◦C to 206 ◦C and reduced to the refer-
ence temperature of 170 ◦C (see text), according to [9.6].
The measurements were taken in a Couette-type dynamic
rheometer [9.5]

It has to be mentioned that the viscosity in (9.100) and
(9.101) is only equal to the zero-shear viscosity η0, if the
amplitude of the sinusoidal deformation is small enough
(i. e., only for linear behavior).

In Fig. 9.24 the dynamic viscosity, η′, and the abso-
lute value of the complex viscosity, |η∗|, as calculated
from Fig. 9.23, are plotted versus angular frequency on
double logarithmic scales, as a dashed and full line, re-
spectively. At low frequencies both viscosities are equal
and independent of frequency: they are equal to the zero-
shear viscosity of 105 Ns/m2. At higher frequencies they
decrease, with the dynamic viscosity decreasing faster
than the complex viscosity. In Fig. 9.24 results of mea-
surements of the viscosity in a cone-and-plate rheometer
and in a capillary rheometer (Sect. 9.1) are also shown,
both plotted as functions of the shear rate γ̇0. The curve
η = η(γ̇0) is decreasing as γ̇0 is increasing, which is
referred to as shear thinning. It appears that in a cone-
and-plate rheometer measurements were possible for
shear rates of 0.001–0.1 s−1, whereas in the capillary
rheometer measurements were possible for 3–3000 s−1.
Most striking is the phenomenon that the transient vis-
cosities (the symbols) follow the line of the complex
viscosity versus angular frequency. Accordingly, it is
experimentally shown that, over a large range of shear
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Fig. 9.24 Non-Newtonian shear viscosity η(γ̇0) at 170 ◦C
as a function of shear rate, γ̇0, for the polystyrene men-
tioned in Fig. 9.23, measured in a (circles) cone-and-plate
rheometer and in a (squares) capillary rheometer, where the
filled squares show the results at such high shear rates that
melt fracture occurs [9.6] and the dynamic and complex
viscosities, η′(ω) (dashed line) and |η∗(ω)| (full line), re-
spectively, as functions of angular frequency, as calculated
from Fig. 9.23 [9.6]

Part
C

9
.1



Non-Newtonian Flows 9.1 Viscoelastic Polymeric Fluids 635

rates and angular frequencies,

η(γ̇0) = ∣∣η∗(ω)
∣
∣ with γ̇0 = ω . (9.102)

This is called the empirical Cox–Merz relation.
From the transient measurements it follows first that

in general it is impossible to measure the zero-shear vis-
cosity with the aid of a capillary rheometer, because the
shear rates are not low enough in this instrument. For
that purpose a cone-and-plate rheometer is much more
convenient, or in general a rotating rheometer. However,
the best method to determine the zero-shear viscosity is
measurement of the loss modulus G′′, or better the dy-
namic viscosity η′ at low frequencies. The reason for the
preference for dynamic mechanical measurements is the
fact that the moduli can be measured down to very low
frequencies. A second point that follows from Fig. 9.24,
is the high-shear-rate behavior, where it follows that
log η is a linear function of log γ̇0; this is called power-
law behavior, which will be discussed in more detail in
the next section.

Conclusion. In this Section it has been shown that there
are several techniques to measure the compliance J(t)
of polymer melts and solutions. Many more techniques
are available to determine the dynamic moduli G′ and
G′′, however, varying in angular frequency from 0.01 to
3 × 109 Hz. Literature data for the compliance of a poly-
mer melt are presented. Results of the dynamic moduli
of polymer melts are also shown and the dynamic vis-
cosities calculated from these measurements. It has been
shown that there is a close relationship between the ab-
solute value of the complex viscosity, |η∗|, as a function
of the angular frequency, ω, and the steady shear vis-
cosity, η, as a function of shear rate, γ̇0, known as the
Cox–Merz relation.

9.1.2 Rheogoniometers and Rheometers

This Section starts with an introduction, where equa-
tions of motion are introduced in various coordinate
systems, local coordinates and shearing planes are
defined, and the shear rate is calculated. Subse-
quently three drag flow rheogoniometers are discussed,
followed by pressure-driven rheometers. Shear-rate-
dependent viscosity, and first and second normal
stress differences and coefficients can be deter-
mined as functions of shear rate. It will be shown
that measurement of the normal stress differences
is possible due to the curvature of the stream-
lines.

Fig. 9.25 Four commonly used rheo(gonio)meters; from left to
right: coaxial cylinders in Couette flow, coaxial parallel plates,
coaxial cone and plate and cylindrical capillary

Definition and Classification of Rheometers. A rheo-
meter is an instrument that measures both stress and
deformation history on a material for which the rhe-
ological constitutive equation is not known. A special
case of a rheometer is a viscometer, which can measure
only the steady shear viscosity function, η(γ̇ ). Accord-
ing to “The British Standard Glossary of Rheological
Terms” rheogoniometers are rheometers designed for
the measurement of normal components as well as shear
components of the stress tensor. Accordingly, a rheogo-
niometer can be used to determine material functions.

The rheological behavior of incompressible,
isotropic elastic liquids can be described by σ21,
N1 = σ11 −σ22 and N2 = σ22 −σ33, where σij denotes
the components of the stress tensor, and N1 and N2 are
the first and second normal stress difference, respec-
tively. The other deviatoric components of the stress
tensor are often equal to zero, due to the symmetry of
the shear flow on the one hand and material isotropy on
the other hand. Stationary simple shear flow is extremely
important for the description of engineering processes,
because this kind of flow is easily realized in labora-
tory and frequently occurs in (polymer) engineering.
However, the measurement of elongation flow is also of
great importance, because in polymer engineering these
flows also play an important role Sect. 9.1.3. In practice
flows are often complicated mixtures of simple shear
and elongation flows.

For the measurement of shear flow many methods
have been developed.

Shearing experiments have to take place in principle
by moving two infinitely extended parallel plates, with
the liquid of consideration in between, with a constant
velocity difference with respect to each other. In practice
this is of course problematic. Moreover, in this way it is
only possible to determine σ21 and σ22. For that reason
we have to resort to instruments with another geometry:
the streamlines do not need to be rectilinear, but they may
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be curved and in many cases are circular. It will become
clear that, as a result of the curvature of the streamlines,
normal stress differences can be determined from mea-
surements of the normal stress σ22, as a function of the
position in the flowing material. An example of an ap-
proximation of infinitely extended, parallel plates is the
Couette geometry, consisting of two coaxial cylinders,
where the liquid under consideration is confined in the
narrow gap between the two cylinders. The cylinders
rotate with respect to each other with different angular
velocities, and in general one is fixed. If the diameters
of the cylinders are large with respect to the gap width
and small with respect to their lengths, then in the gap
a shear flow is obtained, which to a good approximation
is comparable with the shear flow between two infinitely
extended parallel plates.

In principle we distinguish two kinds of rheome-
ters: drag flow rheometers (e.g., Couette, plate–plate,
and cone–plate) and pressure-driven flow rheometers
(e.g., capillary and slit rheometers). They are shown
schematically in Fig. 9.25, with the exception of the slit
rheometer, which will be shown later. In the three drag
flow rheometers one of the two parts rotates or oscillates:
the fluid in the direct vicinity of the rotating part rotates
with the same angular velocity Ω, whereas the velocity
of the fluid in the direct neighborhood of the fixed part
will be zero (the no-slip conditions for non-Newtonian
fluids are assumed to hold in these instruments; possi-
ble slip effects are discussed in Chap. 19). The fluid in
between will rotate with an angular velocity decreasing
from Ω to zero, which is the origin of shear and of rate
of shear. In pressure-driven rheometers the flow results
from a pressure above the capillary or slit and in this
case it is assumed that the velocity decreases from its
maximum value at the center of the capillary or slit to
zero at the walls.

To be able to determine the viscoelastic properties
of the liquids, we have to be familiar with local stresses
and with local shear rates in the flowing liquids. For
the determination of the local stresses we make use of
equations of motion and for the calculation of the shear
rate we first have to define shearing planes.

Equations of Motion. In order to describe the stresses in
rheogoniometers we need equations that are able to ex-
press the local stresses induced by flow. For that purpose
we make use of the momentum equation:

ρv̇ = ∇ ·σ +ρb , (9.103)

where ρ is the fluid density, v is the velocity of the fluid,
∇ is the nabla operator, σ is the stress tensor, amd b is

the body force (i. e., the force per unit of mass), e.g.,
the gravitational acceleration. The dot over v denotes
material time differentiation.

For constant viscosity (i. e., Newtonian liquids)
this equation reduces to the well-known Navier–Stokes
equation.

We will neglect inertial forces, i. e., ρv̇ = 0, so that
the equation is simplified to

∇ ·σ +ρb = 0 . (9.104)

In Cartesian coordinates the three projections read

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
= −ρb1 , (9.105)

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ32

∂x3
= −ρb2 , (9.106)

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
= −ρb3 , (9.107)

in cylindrical coordinates (r, φ, z)

∂σrr

∂r
+ 1

r

∂σrφ

∂φ
+ ∂σrz

∂z
+ σrr −σφφ

r
= −ρbr ,

(9.108)

∂σrφ

∂r
+ 1

r

∂σφφ

∂ϕ
+ ∂σφz

∂z
+ 2σrφ

r
= −ρbφ ,

(9.109)

∂σrz

∂r
+ 1

r

∂σzφ

∂φ
+ ∂σzz

∂z
+ σrz

r
= −ρbz ,

(9.110)

and in spherical coordinates (r, φ, θ):

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ 1

rsinθ

∂σrφ

∂φ

+ 2σrr −σθθ −σφφ +σθrcotθ

r
= −ρbr , (9.111)

∂σrφ

∂r
+ 1

r

∂σθφ

∂θ
+ 1

rsinθ

∂σφφ

∂φ

+ 2σrφ +σφr + (σθφ +σφθ

)

cotθ

r
= −ρbφ ,

(9.112)

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 1

rsinθ

∂σθφ

∂φ

+ (σθθ −σφφ)cotθ +2σrθ +σθr

r
= −ρbθ .

(9.113)

In slit rheometers use is made of the Cartesian coor-
dinate system; for coaxial cylinders, parallel-plate, and
capillary rheometers the cylindrical coordinate system
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is necessary, whereas for cone-and-plate rheometers the
use of the spherical coordinate system is convenient.

In the description of the rheometric methods we will
make use of the assumption that N1, N2, and σ21 only
depend on the local value of the shear rate, independent
of the curvature of the streamlines, provided the shear
rate is constant in the gap. However, the local values of
σ11, σ22, and σ33, do depend on the curvature. We will
come back to this point later in the description of the
Couette system.

Local Coordinate System. In the common rheogonio-
meters the equations of motion can be greatly simplified,
because in general: (a) ∂/∂φ = 0, and (b) σ13 = σ31 =
σ23 = σ32 = 0. Here we will consider: (1) Couette flow
between two coaxial cylinders, (2) flow between coaxial,
parallel plates, (3) flow between coaxial cone and plate,
and (4) flow in a cylindrical or rectangular capillary. It
is not clear a priori what the three directions are, e.g., in
some cases the 1-direction is the φ-direction, but it may
also be the r-direction or the z-direction, depending on
the geometry of the instrument of consideration. Hence,
we have to define the local coordinate system in the
following way (Fig. 9.26)

• The 1-direction is the direction of flow, i. e., the di-
rection of the tangent of the local streamline (steady
state is discussed);• The 2-direction is the direction perpendicular to the
local shearing plane (Sect. 9.1.2) and in general (but
not always) positive in the direction of increasing
flow rate;• The 3-direction completes a right-handed coordinate
system.

Rate of Shear. As we move on from rectilinear to con-
sider curvilinear shear flow, we have to define shearing
planes as planes that move stiffly during shear flow,
i.e., planes where all particles maintain their mutual dis-
tance and accordingly have the same velocity. Different
planes have different velocities and this is the origin

�

�

"
�

Fig. 9.26 Definition of a local coordinate system in Couette
flow

of shear and rate of shear. In rectilinear shear flow be-
tween two infinitely extended parallel plates the shear
planes are fluid planes parallel to the plates: different
planes move with different velocities. In Couette flow the
planes of shear are coaxial cylinders: different cylinders
rotate with different angular velocities. In parallel-plate
(or disks) rheometers they are circular disks perpen-
dicular to the axis: different disks rotate with different
angular velocities. In cone-and-plate rheometers they are
coaxial cones: different cones rotate with different an-
gular velocities. In capillary rheometers they are coaxial
cylinders: different cylinders move axially with different
velocities (also called telescopic flow).

The difference in (angular) velocity between the var-
ious planes of shear is a measure of the rate of shear. In
rectilinear shear flow the rate of shear is easy to calcu-
late as the velocity gradient, as will be shown. In rotating
rheometers, however, the rate of shear is not as easy to
calculate as in rectilinear flow, because there is a snake
in the grass. If in a Couette instrument both the cylinders
and the fluid rotate with the same angular velocity there
will be no shear. Notwithstanding the lack of shear there
is a difference in velocity between the rotating cylinders
(v = Ωr), thus there is a velocity gradient. Hence, we
have to be careful when calculating the rate of shear.

In rectilinear shear flow the velocity and the velocity
gradient are equal to (Fig. 9.27):

v1 = vw

d
x2 and

dv1

dx2
= vw

d
. (9.114)

The shear rate is equal to

γ̇ ≡ dγ

dt
= d tan α

dt
= d

dt

(
dx1

dx2

)

= d

dx2

(
dx1

dt

)

= dv1

dx2
, (9.115)

where α is the angle shown in Fig. 9.27 and d/dt denotes
material time differentiation.

Accordingly, in rectilinear shear flow the velocity
gradient is equal to the shear rate. If the shear rate is

�

3

�

Fig. 9.27 Rectilinear shear flow
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independent of time, the flow is called stationary, and
γ̇ = γ̇0 = constant.

In Couette geometry the velocity gradient is equal to

dv

dr
= d (Ωr)

dr
= Ω +r

dΩ

dr
. (9.116)

If the inner and outer cylinder rotate together with the
fluid as a rigid system, then Ω = constant and thus
dΩ/dr = 0. In this case the velocity gradient is equal
to Ω, whereas the shear rate is equal to zero. Hence,
in the determination of the shear rate, we have to take
into consideration the fact that the velocities of neigh-
boring shearing planes contain a rigid-body rotation
component, Ω∆r, which we have to subtract from the
difference in velocities (see also Fig. 9.28), in order to
calculate the shear rate

v(r) = Ωr and

v(r +∆r) = (Ω +∆Ω) (r +∆r) = Ωr +Ω∆r

+r∆Ω +higher-order terms (9.117)

so that

γ̇ = lim
∆r→0

v(r +∆r)−Ω∆r −v(r)

∆r

= lim
∆r→0

r
∆Ω

∆r
= r

dΩ

dr
. (9.118)

Similar considerations lead to expressions of shear rates
in other geometries.

Drag Flow Rheometers
In this section we will discuss instruments with coaxial
cylinders, coaxial plates, and coaxial cone and plate.

Coaxial Cylinders in Couette Flow: Rate of Shear. It
was found before that the shear rate in a Couette instru-
ment (Fig. 9.29) is equal to γ̇ = r dΩ/dr. Because the
gap is narrow, i. e., (r0 −ri)/r � 1, use can be made of
the following approximation:

dΩ/dr ≈ ∆Ω/∆r = Ω0/(r0 −ri) ,

���)
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Fig. 9.28 Couette flow in a liquid shell

where ∆r = r0 − ri and ∆Ω = Ω(r0)−Ω(ri) = Ω0 so
that we find for the shear rate

γ̇0 ≈ r
Ω0

∆r
≈ r0 +ri

2
· Ω0

∆r
= rav

∆r
·Ω0 (9.119)

with rav = (r0 +ri) /2.
Hereafter it is assumed that Ω0 is constant and thus

γ̇ does not depend on time.
It has to be mentioned that a still better approxima-

tion is

γ̇ (r) = Ω0

r2 · r2
0r2

i

rav∆r
. (9.120)

It appears from these equations that the shear rate is
practically constant in the gap.

Equations of Motion. For this instrument it follows
from Fig. 9.29 that the 1-direction corresponds with
the φ-direction, the 2-direction with the r-direction,
and the 3-direction with the z-direction. We will make
use of cylindrical coordinates. Many terms will vanish,
because, as mentioned above: (a) in the stationary axi-
symmetric state there will be no φ dependence, so that
∂/∂φ = 0, and (b) σ13 = σ31 = σ23 = σ32 = 0, which in
the present system means σφz = σzφ = σrz = σzr = 0.
Accordingly, from the equations of motion (9.108–
9.110) with bz being the acceleration due to gravity g,
only the following terms remain:

∂σ22

∂r
− σ11 −σ22

r
= 0 or

∂σ22

∂r
− N1

r
= 0 ,

(9.121)

∂σ21

∂r
+ 2σ21

r
= 0 , (9.122)

∂σ33

∂z
= −ρg . (9.123)
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Fig. 9.29 Couette flow expressed in cylindrical coordi-
nates, where e1 = eφ, e2 = er and e3 = ez
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Measurement of the First Normal Stress Difference.
From (9.122) it follows that

r
∂σ22

∂r
= σ11 −σ22 = N1 . (9.124)

In the narrow gap of the Couette instrument

∂σ22

∂r
≈ ∆σ22

∆r
= σ22(r0)−σ22(ri)

r0 −ri
(9.125)

As a result we find

N1 ≈ ∆σ22

∆r
rav , (9.126)

so that N1 is practically constant and can be deter-
mined easily by measuring σ22 both on the outer and
inner cylinder. Experimentally it has been found that:
(a) σ22(r0) and σ22(ri) are negative (Fig. 9.30), and
(b) ∆σ22 is positive. The important conclusion is that
the first normal stress difference N1 is positive.

For the first normal stress coefficient (Sect. 9.1) we
obtain:

Ψ1 ≡ σ11 −σ22

γ̇ 2
0

= N1

γ̇ 2
0

= ∆σ22

Ω2
0

· ∆r

rav
, (9.127)

where (9.119) has been used.

Local Stresses in Couette Flow. In the description of the
measuring methods we have made use of the assump-
tion that N1, N2, and σ21 are only dependent on the
local value of the shear rate. This means that during the
flow their values are independent of the curvature of the
shearing planes and the streamlines, provided that the
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Fig. 9.30 Local stresses dependent on the position in the
gap between two coaxial cylinders. Note that σ22(r0) and
σ22(ri) are both pointing into the fluid, which means
that both are negative normal stresses, and that σ22(ri) is
more negative than σ22(r0), hence it follows that σ22(r0)−
σ22(ri) > 0

shear rate is constant in the gap. However, the values of
σ11, σ22, and σ33 do depend on the curvature and even at
constant shear rate they depend on their location in the
flowing liquid. Such a situation is shown in Fig. 9.30 for
Couette flow.

The normal stresses σ11 and σ22 are not constant in
the gap between the inner and outer cylinders, but it ap-
pears that at every point their difference σ11 −σ22 = N1
is constant, independent of the location in the gap. In
fact, in some cases we make use of the change of
the stress components with the streamlines in order
to determine N1 and/or N2 (Fig. 9.30). For example in
a cone-and-plate instrument σ22 on the plate is a function
of the distance to the cone axis and thus a function of the
curvature of the streamlines, whereas in the present case
the shear stress and the first normal stress differences
are independent of this curvature.

Measurement of the Viscosity. Integration of (9.122)
yields

r2σ21 = β = constant . (9.128)

The moment of the shear force acting on a fluid cylinder
in the gap (ri ≤ r ≤ r0), with respect to the cylinder axis
reads

TM(r) = Fr = σ212πrLr = 2πβL . (9.129)

The important conclusion is that TM is independent of
position in the liquid and thus TM is also equal to the
moment on the inner cylinder, which can be measured.
The general result is

TM

2πL
= β = r2σ21 = r2ηγ̇ (9.130)

so that

η(γ̇ ) ≡ σ21

γ̇
= TM

4πΩ0L

r2
0 −r2

i

r2
0r2

i
, (9.131)

where use has been made of (9.120).
Hence, by control of the angular velocity of the outer

cylinder and by measuring the momentum on the inner
cylinder the viscosity can be determined as a function
of the shear rate.

The Parallel-Plate Instrument in Torsional Flow
In this instrument the gap, of thickness z0, between
two circular, parallel plates is filled with the liquid un-
der investigation (Fig. 9.31). The lower plate is fixed
and the upper plate rotates with an angular velocity Ω0
around the vertical axis CC’ through both mid points.
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Fig. 9.31 Parallel plates with cylindrical coordinate system
φ, z, r, with e1 = eφ, e2 = ez and e3 = er

We consider the rotation as anticlockwise if observed
from above.

The velocity is directed along the tangents on the
circular streamlines, hence the φ-direction is the 1-
direction; the 2-direction is the direction in which the
velocity of the shearing planes increases, i. e., the z-
direction (z = 0 on the bottom plate and z = z0 on the
upper plate). The 3-direction, i. e., the r-direction, com-
pletes a right-handed coordinate system (r = 0 at the axis
and r = R at the outer edge of the boundary). The effect
of the outer boundary is neglected, which is possible if
z0 � R.

Rate of Shear. The shear rate is found to be

γ̇ = lim
∆z→0

rΩ(z +∆z)−rΩ(z)

∆z
= r

dΩ

dz
. (9.132)

The shear rate is not constant in the gap: it increases from
γ̇ = 0 on the axis to γ̇ (R) = Ω0/z0 at the outer boundary.
This is a big disadvantage of the parallel-plate instru-
ment: it can be used properly only in the range where
the viscoelastic properties are not shear rate dependent.
In general the instrument is used only for oscillatory
measurements with small amplitudes. It will be shown
however, how to overcome these disadvantages.

Equations of Motion. The equations of motion in cylin-
drical coordinates are

∂σ33

∂r
= N1 + N2

r
, (9.133)

∂σ12

∂z
= 0 , (9.134)

∂σ22

∂z
= −ρbz = ρg . (9.135)

It can be proven, with the aid of (9.134), that the shear
rate only depends on r and not on z. The result is

γ̇ (r) = r
dΩ

dz
= r

Ω0

z0
(9.136)

so that the shear rate appears to increase linearly with
distance from the axis.

Determination of the Viscosity η and Ψ1 −Ψ2 as Func-
tions of the Rate of Shear. If the viscosity is shear rate
dependent, it seems impossible to determine the real vis-
cosity. The same holds for the difference of the first and
second normal stress coefficients Ψ1 −Ψ2, where

Ψ1 = (σ11 −σ22)/γ̇ 2 , Ψ2 = (σ22 −σ33)/γ̇ 2 .

However it can be proven that the viscosity and the
difference of the first and second normal stress coeffi-
cients can be determined as functions of shear rate in
a proper way, by measuring the moment TM exerted
by the flowing liquid on the upper plate, and the nor-
mal force Fn exerted by the flowing liquid on the upper
plate, both as functions of the angular velocity Ω0. This
yields a method to determine σ21 and N1 − N2, both as
functions of the shear rate γ̇R = γ̇ at r = R:

σ21(γ̇R) = TM

2π R3

(

3+ d log TM

d log Ω0

)

(9.137)

and

N1(γ̇R)− N2(γ̇R) = Fn

π R2

(

2+ d log Fn

d log Ω0

)

.

(9.138)

Hence, upon plotting TM and Fn as functions of Ω0
on double logarithmic scales, the γ̇R dependent slopes
d log TM/d log Ω0 and d log FM/d log Ω0 can be deter-
mined and thus σ21 and N1 − N2 can be determined
as functions of γ̇R, and accordingly also the viscos-
ity η = σ21/γ̇ and the difference between the first
and second normal stress coefficients Ψ1 −Ψ2 = (N1 −
N2)/γ̇ 2.

The Cone-and-Plate Instrument
In a cone-and-plate instrument the liquid under investi-
gation is present in the gap between a cone with a large
top angle (at least 170◦) and a circular plate. The top
of the cone, whose axis is perpendicular to the plate, is
in principle positioned in the central point of the plate.
In order to prevent friction between cone and plate dur-
ing rotation of the cone, the top of the cone is truncated
with the virtual, fictitious top corresponding to the plate
center. The angle between the cone and plate, ∆Θ, is
small (less than 5◦). The cone rotates at an angular
velocity of Ω0, and counterclockwise when seen from
above (Fig. 9.32). The shearing planes, the planes that
rotate stiffly with a rate increasing from the plate to the
cone itself, are coaxial cones with top angles between
π and π −2∆Θ rad. The 1-direction is the indifferent
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φ-direction, in the 2-direction the rotational velocity of
the shearing planes increases, i. e., the θ-direction, and
the 3-direction is the r-direction.

Rate of Shear. The shear rate can be calculated, in a quite
complicated way. The result is

γ̇0 = sin θ
dΩ

dθ
≈ Ω0

∆Θ
. (9.139)

This means that the shear rate is almost constant in the
sample under investigation (sin θ varies approximately
from 1 to 0.996). This makes the cone-and-plate in-
strument highly suitable for the determination of the
viscosity and the normal stress coefficients as functions
of shear rate.

Equations of Motion. The equations of motion in spher-
ical coordinates can also be simplified in this case. The
result, following (9.111–9.113), is:

∂σ33

∂r
− N1 +2N2

r
= −ρg cos θ , (9.140)

1

r

∂σ22

∂θ
− N1

r
cot θ = ρg sin θ , (9.141)

1

r

∂σ21

∂θ
+ 2σ21

r
cot θ = 0 . (9.142)

Viscosity Measurement. Integration of (9.142) yields
σ21(θ) = constant = σ21(1/2 π) = C, i. e., the shear
stress on the plate. As a result, the moment TM on the
plate is

TM =
R∫

0

rσ21

(π

2

)

2πrdr = 2π

3
CR3 so that

σ21 = 3TM

2π R3 . (9.143)

For the viscosity we now find with the aid of (9.139)

η ≡ σ21

γ̇0
= 3TM

2πγ̇0 R3
≈ 3TM∆Θ

2π R3Ω0
. (9.144)

Hence by measuring TM as a function of Ω0, the viscos-
ity can be determined as a function of shear rate.

One remark has to be made, however. Equa-
tion (9.142) follows from (9.112) with the assumption
that σφθ (i. e., σ12) = σθφ (i. e., σ21), which in general
holds for polymeric systems, but not for systems such
as low-molecular-weight liquid crystals. Hence, one has
to be careful in the determination of the viscosity of
low-molecular-weight liquid crystals in the cone-and-
plate instrument. For liquid-crystal polymers, however,
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Fig. 9.32 Cone-and-plate instrument with spherical coordinates
φ, θ, r, with e1 = eφ, e2 = eθ and e3 = er

the polymeric nature overrules the liquid-crystalline be-
havior, so that the cone-and-plate instrument can also be
used to determine their viscosity.

Measurement of Normal Stress Differences: N1 + 2N2.
Because cos θ is approximately equal to 0, (9.140) may
be approximated by

r
∂σ33

∂r
= N1 +2N2 . (9.145)

The equation is only correct on the plate (θ = π/2). Be-
cause σ22 −σ33 is a function of γ̇ and γ̇ is not a function
of r, in (9.145) ∂σ33/∂r may be replaced by ∂σ22/∂r.
Integration then eventually yields

σ22(r) = σ22(R)+ (N1 +2N2) ln (r/R) . (9.146)

(N.B. the fact that σ11 −σ22 is a function of γ̇ and thus
not a function of on r, has also been used).

From this equation it follows that, upon plotting
σ22(r) versus ln(r/R), a straight line will be obtained
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Fig. 9.33 Left: cone-and-plate instrument supplied with
tubes for the measurement of the normal stress σ22(r) as
a function of the distance to the axis. Note that the normal
stress σ22 is negative and equal to −ρgh. Right: height of
the liquid in the tubes plotted versus ln(r/R)
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with a slope equal to N1 +2N2. This normal stress σ22(r)
can be measured as a function of r with pressure gauges
positioned at various places on the plate (Fig. 9.33). The
method with tubes mounted on the plate is only ap-
propriate for liquids with a low viscosity, which can
ascend the tubes within a reasonable time. For more-
viscous liquids real pressure gauges are needed. In the
figure shown the normal stresses σ22 are negative, be-
cause a stress is positive if the surroundings pull on
the material. In this case the liquid columns push on
the liquid in the gap, so that the normal stresses are
negative. The slope is negative, in agreement with the
observation that N1 is positive for polymer fluids in
general, whereas N2 is in general negative and abso-
lutely only a small fraction of N1. In Fig. 9.34 results
are shown for a 2% solution of polyisobutylene. This
demonstrates that N1 +2N2 increases with increasing
shear rate. Division by γ̇0

2 yields the sum Ψ1 +2Ψ2,
which appears to be constant, independent of the shear
rate.

It has to be mentioned that the device shown in
Fig. 9.32, which is inverted with respect to Fig. 9.31,
would result in a term +g cos θ instead of −ρg cos θ

in (9.140). However, because cos θ is approximately
equal to 0, we can make use of (9.140), which leads
to (9.145).

The First Normal Stress Difference. The total force
exerted by the flowing fluid on the plate is equal to

Fn = −
R∫

0

σ22(r)2πr dr . (9.147)

Integration eventually yields

N1 = 2Fn

π R2
. (9.148)

In the derivation of (9.148) it is assumed that the free
surface of the sample is spherical. In that case there are
no surface stress components present, so that the term
σ33(R) that arises in the integration of (9.147), is equal
to 0.

Hence, by measuring the total normal force exerted
by the flowing liquid on the plate as a function of shear
rate the first normal stress difference N1 and thus the first
normal stress coefficient Ψ1 = N1/γ̇

2 can be determined
as a function of the shear rate.

The method presented before yields the value of
N1 +2N2, so that it is now also possible to determine
the second normal stress difference N2 and thus the
second normal stress coefficient Ψ2 = N2/γ̇

2.
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Fig. 9.34 Normal stresses σ22(r) on the plate in a cone
and plate instrument (R = 4.4 cm), versus distance to the
axis, during shear flow of a 2% solution of polyisobuty-
lene (B200) in oppanol B1 (a Newtonian liquid with
η = 23.6 mPas at 25 ◦C), measured at various shear rates,
as indicated in s−1 accoreding to [9.7]

Hole Effect in the Measurement
of Normal Stresses

It is worthwhile mentioning here the so-called hole ef-
fect. For the measurement of normal stresses use is
made of pressure gauges. In general they are mounted
in the walls of the instrument. The disadvantage of this
is that holes are needed for these, and in the neigh-
borhood of a hole the streamlines will be curved in
the direction of the hole. This causes an extra force
due to the tension in the streamlines caused by the
elasticity of the fluid. The hole pressure is the differ-
ence between the pressure that would exist at the wall
if the flow were undisturbed and the measured pres-
sure at the bottom of the hole (Fig. 9.35). Theoretically
it can be shown that for a circular opening this error
is:

∆P = P − Phole = C1 N1 +C2 N2 where

C1 ≈ 0.25 and C2 � C1 . (9.149)

�
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Fig. 9.35 The hole effect in viscoelastic fluids
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Pressure-Driven Rheometers
In a pressure-driven rheometer the fluid is pressed from
a reservoir into a capillary tube of circular cross section
or into a gap of rectangular cross section (Fig. 9.36)
and Fig. 9.42, respectively. The pressure drop and flow
rate through this tube or gap are used to determine the
viscosity. In contrast to drag flows there is an entrance
region where the fluid is accelerated and an exit region
where a viscoelastic fluid is liable to die swell. For such
rheometers the important assumptions in the derivation
of the relation between shear stress and shear rate are
fully developed steady and laminar flow with no slip at
the walls (i. e., vw = 0).

The Capillary Rheometer. In a capillary rheometer the
liquid under investigation flows through a straight tube
with a circular cross section with radius R. The shear
planes are coaxial cylinders with radius r. The velocity
is constant in a cylindrical shear plane and decreases
from the axis to the wall (for this reason this kind of
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Fig. 9.36 Pressure-driven rheometer
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Fig. 9.37 Cylin-
drical coordinate
system z, r, φ
in a capillary
rheometer with
e1 = ez, e2 = er

and e3 = eφ

flow is sometimes called telescopic flow). The stream-
lines are parallel with the axis and the flow is rectilinear
(Fig. 9.37). The z-direction is the 1-direction, the r-
direction is the 2-direction (in this case the direction
where the rate of the shear planes decreases), and the
φ-direction is the 3-direction.

Rate of Shear. The flow is rectilinear, so that the shear
rate is given by

γ̇ = γ̇ (r) = lim
∆r→0

v(r +∆r)−v(r)

∆r
= dv

dr
≤ 0 .

(9.150)

Equations of Motion. The equations of motion in cylin-
drical coordinates obtained from (9.108–9.110) are

∂σ22

∂r
+ ∂σ21

∂z
+ N2

r
= 0 , (9.151)

∂σ21

∂r
+ ∂σ11

∂z
+ σ21

r
= −ρbz , (9.152)

(the third equation of motion yields the identity 0 = 0).
Because σ21 is a function of γ̇ and γ̇ is not a function

of z, it follows that ∂σ21/∂z = 0. However, this is only
true far enough from the entrance of the capillary. If
we neglect the entrance effect, both equations can be
simplified to

∂σ22

∂r
+ N2

r
= 0 , (9.153)

∂σ11

∂z
+ 1

r

d (rσ21)

dr
= −ρbz . (9.154)

Integration of (9.154), and bearing in mind that
∂σ11/∂z = constant, yields

σ21(r) = −1

2
r

(

ρbz + ∂σ11

∂z

)

. (9.155)

Two cases can be distinguished:

a) ∂σ11/∂z is determined by gravitational forces and is
comparable to ρg: the vertical viscometer for dilute
solutions, e.g., the Ubbelohde viscometer, which is
a subject of discussion in the Chapter on viscosity
measurements in Newtonian liquids Sect. 3.4.4.

b) |∂σ11/∂z| 	 ρg: the rheometer for polymer melts,
where ∂σ11/∂z is significant and determined by an
imposed pressure ∆P, which is the subject of the
present discussion.

The Capillary Rheometer for Polymer Melts. In this case
a high pressure ∆P is applied, so that the gravitational
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forces can be neglected. This means that σ11(0) = −∆P
and σ11(L) = 0, so that:

∂σ11

∂z
= σ11(z = L)−σ11(z = 0)

L
= ∆P

L
. (9.156)

Because ∆P/L 	 ρbz, it follows from (9.155)

σ ≡ σ(r) = −r∆P

2L
< 0 . (9.157)

Again the shear stress is a linear function of r (indepen-
dent of the viscosity), and maximal at the wall

σw ≡ σ21(R) = − R∆P

2L
(9.158)

and zero on the axis, so that

σ

σw
= σ21(r)

σ21(R)
= r

R
. (9.159)

Velocity Profile. For Newtonian liquids we have

η = σ21

γ̇
= − r∆P

2L (dv/dr)
. (9.160)

Integrating yields the velocity profile

v(r) = ∆P

4ηL

(

R2 −r2
)

. (9.161)

Hence, for Newtonian liquids this velocity profile is
parabolic and the flow is called Poiseuille flow. In
Fig. 9.38 the velocity and the shear stress profiles are
shown for Poiseuille flow. Note that the shear stress is
negative: the wall pulls on the flowing liquid and liquid
cylinders pull on the neighboring cylinders closer to the
axis.

For a power-law fluid, the Ostwald–de Waele power-
law constitutive equation holds:

σ = K γ̇ n and η = K γ̇ n−1 , (9.162)

��")
� �)
�

Fig. 9.38 Velocity and stress profiles for Poiseuille flow
(i. e., for a liquid of constant viscosity) in straight tubes
with circular cross-section: the velocity profile is parabolic
and the shear stress profile is linear

where n is the so-called power-law index and K is the
consistency index. Then

η(γ̇ ) = σ21

γ̇
= − r∆P

2L (dv/dr)
= K

(
dv

dr

)n−1

.

(9.163)

Integrating the latter, we obtain the velocity profile

v(r) =
(

∆P

2KL

)1/n n

n +1

(

R1+1/n −r1+1/n
)

.

(9.164)

The average velocity is

〈v〉 ≡

R∫

0
2πrv(r)dr

R∫

0
2πr dr

=
(

∆P

2KL

)1/n n

3n +1
R1+1/n

(9.165)

and the normalized velocity profile is

vrel(r) ≡ v(r)

〈v〉 = 3n +1

n +1

[

1−
( r

R

)1+1/n
]

. (9.166)

Note that for n = 1 the Poiseuille profile for Newtonian
liquids is recovered.

In Fig. 9.39 the relative velocity profiles are shown
for a Newtonian liquid (n = 1), for a power-law liquid
with n = 1/3, and for plug flow (n = 0.001). The maxi-
mum velocities on the axis are 2, 3/2, and 1, respectively.

Shear Rate at the Wall, the Rabinowitch Equation. Be-
cause the shear rate is a function of r, it seems impossible
to determine the viscosity as a function of shear rate for
non-Newtonian fluids. This problem can be overcome,
however, in the following way. The volume flow rate Q
(in m3/s) of a liquid flowing through the tube in unit

��")
� �	�)
�
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Fig. 9.39 Velocity profile in a straight tube with circular
cross section, for power-law fluids with n = 1 (Newtonian
liquid, Poiseuille flow), n = 1/3 and for n = 0.001 (plug
flow)
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time is

Q =
R∫

0

v(r) ·2πr dr . (9.167)

If there is no slip at the wall, integration by parts yields

Q = −
R∫

0

πr2γ̇ (r)dr . (9.168)

It is quite easy to derive that for Newtonian liquids the
relationship between the shear rate at the wall and Q is

Γ ≡ γ̇w = − 4Q

π R3
. (9.169)

If for non-Newtonian fluids we define the apparent shear
rate at the wall as

Γa ≡ − 4Q

π R3
(9.170)

then the relationship between the shear rate at the wall
and the volume flow rate can be derived as

γ̇w = 1

4
Γa

(

3+ d log |Γa|
d log |σw|

)

= − Q

π R3

(

3+ d log Q

d log ∆P

)

. (9.171)

Equation (9.171) is called the Rabinowitch equation al-
ready derived in 1929 (see Tadmor and Gogos in Furthter
Reading) for flow of a liquid through a straight tube with
a circular cross section. This shows that the shear rate
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Fig. 9.40 Plot for the determination of γ̇w for a Newtonian
fluid (slope 1; denoted PL, Poiseuille); pseudoplastic shear
thinning fluid (slope increasing and > 1), and dilatant shear
thickening fluid (slope decreasing and < 1)

at the wall follows from the volume flow rate and from
the slope of the volume flow rate Q versus the imposed
pressure ∆P. Upon plotting log Q versus log ∆P, the
slope can be found for every value of ∆P and/or Q.
For Newtonian liquids the line obtained is a straight line
with a slope of 1. On the other hand, for shear thinning
pseudoplastic fluids with n < 1 a line is obtained with an
increasing slope larger than 1. For dilatant shear thick-
ening fluids with n > 1 a straight line with slope less
than 1 is obtained (Fig. 9.40). In general, as it is easy
to see from (9.171), since a simple derivation for the
power-law liquids yields

γ̇w = − Q

π R3

(

3+ 1

n

)

. (9.172)

For a slit rheometer of rectangular cross section, with
length L and sides W and H , where L 	 W 	 H
(Fig. 9.41) the shear rate at the wall is found to be:

γ̇w = 1

3
Γa

(

2+ d log |Γa|
d log |σw|

)

= − 2Q

WH2

(

2+ d log Q

d log ∆P

)

where

Γa ≡ − 6Q

WH2
. (9.173)

Measurement of the sum 2N1 + N2 and of N1. The meas-
urements of the volume flow (or of the volumetric flow
rate) may be completed with measurements of the total
force F at the exit of the capillary, exerted by the fluid
on the tube in the direction parallel to the axis. This
force is equal to the difference in momentum of the
fluid thread just before and after the exit. For molten
polymers this difference is almost equal to zero. This
yields an expression for 2N1 + N2 at the wall of the
capillary.

The mentioned force F is given by the integral of
the normal stress σ11(r) over the surface:

F = −
R∫

0

2πrσ11(r)dr . (9.174)

This integral can be evaluated, yielding an expression
for 2N1,w + N2,w:

2N1,w + N2,w = − F +π R2σ22(R, L)

π R2

×

(

2+ d log
∣
∣F +π R2σ22(R, L)

∣
∣

d log |σw|

)

,

(9.175)
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Table 9.4 Survey of possible outcomes of measurement techniques. a means that these measurements are not easy and
in general not possible in commercially available instruments

Instrument Shear rate Viscosity Normal stress differences/coefficients

Couette γ̇ ≈ const. η(γ̇ ) N1(γ̇ ) Ψ1(γ̇ ) a

Parallel plates γ̇ = γ̇ (r) η(γ̇R) N1(γ̇R)− N2(γ̇R) Ψ1(γ̇R)−Ψ2(γ̇R)

Cone and plate γ̇ = const. η(γ̇ ) N1(γ̇ ) Ψ1(γ̇ )

N1(γ̇ )+ N2(γ̇ ) Ψ1(γ̇ )+Ψ2(γ̇ ) a

Capillary rheometer γ̇ = γ̇ (r) η(γ̇w) 2N1(γ̇w)+ N2(γ̇w) 2Ψ1(γ̇w)+Ψ2(γ̇w) a

Slit rheometer γ̇ = γ̇ (h) η(γ̇w) N1(γ̇w) Ψ1(γ̇w)

where σ22(R, L) is the normal pressure at the wall just
before the exit, which can be measured. The force F can
be calculated as the difference in momentum flux of the
flowing fluid just before and after the exit:

F = ρ

R∫

0

2πrv2
r (r)dr −π R2

s ρv2
s , (9.176)

where vs and Rs are the velocity and radius of the
fluid thread after the exit, respectively (Rs > R due
to die swell, which causes the change in the momen-
tum flux). From (9.175) it follows that, upon plotting
log
∣
∣F +π R2σ22(R)

∣
∣ versus log |σw|, the sum 2N1,w +

N2,w can be determined and thus 2Ψ1,w +Ψ2,w as a func-
tion of γ̇w.

�
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Fig. 9.41 Slit flow geometry, with L 	 W 	 H
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Fig. 9.42 Schematic representation of the extrapolation
procedure to determine the exit wall pressure in a slit
rheometer

If it is assumed that F � π R2σ22(R) (9.175) can be
reduced to:

2N1,w + N2,w = Pe

(

2+ d log Pe

d log |σw|
)

= Pe

(

2+ d log Pe

d log ∆P

)

, (9.177)

where Pe = P(R, L) = −σ22(R, L) is the exit pressure
exerted by the flowing fluid on the wall of the capillary.

For slit rheometers the corresponding equation
reads:

N1,w = Pe

(

1+ d log Pe

d log |σw|
)

= Pe

(

1+ d log Pe

d log ∆P

)

. (9.178)

Of course it is difficult to really measure the wall pres-
sure at the exit. For this reason wall pressures at different
distances z are measured and the results are extrapolated
to the exit z = L (Fig. 9.42). It will be clear that measur-
ing the wall pressure P(z, R) is easier in slit rheometers
than in capillary rheometers.

Conclusions Concerning
the Discussed Rheogoniometers

In Table 9.1 a survey is shown of the possible results
of the discussed measuring techniques. The italics in
the Table mean that these properties can be measured in
principle, but more-sophisticated instruments are needed
than are available from manufacturers.

9.1.3 Elongational Flows

Most industrial processing of polymeric materials in-
volves a combination of shear and extensional flow. The
larger strains experienced in extensional flow fields can
result in highly non-Newtonian dependencies on both
strain and strain rate. As these dependencies are usually
inadequately described by shear characterization alone,
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extensive research has been conducted in the past sev-
eral decades in an attempt to understand the extensional
flow behavior of polymers. This research has involved
a parallel effort in developing the theory of extensional
flow behavior in order to determine the critical param-
eters and desired flow kinematics, and the experimental
design of extensional rheometers that will successfully
impose these kinematics.

In this Section, we discuss the current state of un-
derstanding of extensional rheology for highly viscous
polymeric materials, such as polymer melts, and for low
to moderately viscous materials. The state of the art
in extensional rheometer design is discussed, and ex-
amples of commercially available instrumentation are
presented.

List of Symbols
η: shear viscosity
η+

E : extensional viscosity
ηE: steady-state extensional viscosity
ηapp: apparent extensional viscosity
ε: Hencky strain
ε̇: uniaxial strain rate
ε̇eff : effective strain rate, computed from diameter mea-

surement
ε̇0: idealized strain rate
Rm: midpoint filament radius
Dm: midpoint filament diameter
D0: initial midpoint filament diameter
L: filament length
F: tensile force
λ: longest relaxation time (Zimm)
σ : surface tension
g: gravitational constant
t: time
Tr: Trouton ratio = ηE/η

De: Deborah number = λε̇

Ca: Capillary number = ηε̇0 D0/2σ

Bo: Bond number = ρgD2
0/4σ

Ec: Elastocapillary number = De/Ca

Industrial processing of polymer solutions and melts
is usually a combination of shearing and extensional
kinematics. Consequently, rheological characterization
of materials in both a shear and an extensional flow
field is necessary to accurately mathematically model
these materials, detect subtle dissimilarities in compo-
sition, and to predict the processing conditions that will
optimize the properties of the final product.

In most industrial processes, manufacturers desire
to maximize line or web speed without compromising

material properties. The shear rheological response of
a complex fluid such as a polymer solution or melt
that is going to be fiber-spun, blow-molded, calendared,
foamed, deposited from a gun, or injected into a die
or mold, will not correctly predict the processing be-
havior of these materials in these flow fields, which are
dominated by a significant component of extensional
strain. The nonlinear behavior of polymeric materials
makes inference of their extensional properties from
shear properties challenging, if not impossible. It is nec-
essary to perform extensional rheology tests in addition
to shear rheology to achieve a reliable characterization
of the material.

Despite the recognized need for extensional
measurements of polymeric fluids and melts, the devel-
opment of instrumentation has proceeded slowly due to
several challenges. The principal challenge is to generate
a homogeneous extensional flow. To impose a deforma-
tion on a fluid, it is typically necessary to place the
material in contact with a solid surface. Flow over a sur-
face, however, will result in a shear stress, which will
corrupt the extensional flow field and the resultant inter-
pretation of the data. Thus, the flow cannot be confined,
and must involve deformation in air or a sufficiently
low-viscosity outer fluid.

The second challenge is that the strain history must
also be known for all the fluid elements in the flow field.
Strain rates must be high enough to stretch the chains
(see Deborah number) and the strain high enough to
stretch the chains beyond their normal radius of gy-
ration. The high levels of strain required to achieve
significant polymer chain extension and the increase in
stress that ensues necessitates motion control systems
with a large dynamic velocity range, a large achievable
travel distance, and sensitive position control.

The large range of viscosities exhibited by poly-
meric materials has segregated individual extensional
rheometer designs into distinct designs that are suited
to a particular viscosity range, as shown in Ta-
ble 9.5. High-viscosity materials (with zero-shear
viscosity η0 > 1000 Pa s) are best characterized by
constant-length devices, or by constant-volume devices
employing an outer fluid neutral buoyancy. Mater-
ials in the medium viscosity range of 1–1000 Pas
are best characterized by filament stretching exten-
sional rheometers. Materials in the low-viscosity range,
which include dilute polymer solutions 0.01–1 Pas, are
best characterized by capillary break-up rheometers,
contraction flows, or opposed jet devices. More de-
tails on these devices will be provided in the next
sections.

Part
C

9
.1



648 Part C Specific Experimental Environments and Techniques

Table 9.5 Summary of extensional rheometer designs and application ranges

Instrument type Geometry Flow Shear viscosity
range [Pa s]

Limitations Example ref.

Filament
stretching,
constant volume,
medium viscosity

Uniaxial exten-
sion, constant
strain rate

1–1000 Sample gripping,
limited to
medium with
high viscosity,
elastic instability

[9.16–18]

Filament
stretching,
constant volume,
high viscosity

Uniaxial exten-
sion, constant
strain rate

> 1000 Limited to low
strain rates,
temperature
control

[9.10, 13, 14]

Filament
stretching,
constant length,
high viscosity

Uniaxial exten-
sion, constant
strain rate

> 1000 Limited to low
strain rates,
temperature
control

[9.15, 19, 20]

Fiber spinning Uniaxial
extension

> 1 Low strain, non-
uniform strain
rates, pre-shear
history

[9.21–24]

Capillary breakup
rheometry

Uniaxial
extension

0.01 – 1 Inertial and
surface tension
dominate at low
end of viscosity,
variable strain
rates

[9.25–27]

Four-roll mill Uniaxial
extension

1–1000 Variable strain
rates and strain
histories

[9.28, 29]

As early as 1906, Fred Trouton verified the re-
lationship between the uniaxial extensional viscosity

and shear viscosity in Newtonian fluids by perform-
ing low-extension-rate experiments on pitch [9.8]. He
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Table 9.5 (cont.)

Instrument type Geometry Flow Shear viscosity
range [Pa s]

Limitations Example ref.

Entrance flows Uniaxial
extension

> 1 Variable strain
rate, mixed with
shear

[9.30, 31]

Sheet stretching Biaxial planar
extension

> 1000 Sample gripping,
flow uniformity

[9.15]

Opposed jet Uniaxial
extension

0.01–1 Variable strain
rates and strain
histories, some
shear

[9.32]

Planar elongation Planar extension,
constant strain
rate

> 1000 Sample prepa-
ration, Planar
Elongation,
limited to low
extension

[9.33]

Tubeless siphon Uniaxial
extension

1–1000 Pre-shear
history, variable
strain rate, low
achievable strain
rates

[9.34]

also derived theoretically the relationship between the
extensional viscosity and shear viscosity of a Newtonian
fluid; ηE = 3η0, where ηE is the steady-state extensional
viscosity. This result is a kinematic consequence of the
differences in deformation between a shear flow and an
extensional flow and is analogous to the relationship be-
tween the Young’s modulus and the shear modulus in
an incompressible isotropic elastic solid. The ratio be-
tween the extensional viscosity and shear viscosity is
commonly referred to as the Trouton ratio, Tr = ηE/η0.
Most early work was concerned with characterizing
more-qualitative flow behaviors such as spinnability (or
Spinnbarkeit in German) and stickiness. This early work

is comprehensively reviewed in the only monograph
on the topic by Petrie [9.9]. As a result of technolog-
ical difficulties and theoretical misunderstandings, little
definitive work in extensional rheology was performed
until the 1970s, when force transducer and motion con-
trol technology was adequately refined. The initial work
in the 1970s and 1980s for extensional viscosity charac-
terization focused on instrument designs for polymeric
melts [9.10–15]. The high viscosities of these materials
facilitated the imposition of extensional deformations
and resulted in relatively high extensional forces that
were readily measured with off-the-shelf force trans-
ducers. Gripping methods employed in tensile testing of
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solids can often be employed on polymeric melts without
compromising the flow field [9.10,11]. The high viscos-
ity of these materials allows the use of a surrounding
stabilizing medium, such as an oil that is immiscible
with the polymer, to both heat the material as well as
provide neutral buoyancy, without imparting a measur-
able shearing stress at the oil-polymer interface [9.14].
Most testing of polymeric melts occurs at relatively low
strain rates ε̇0 ≤ 1 s−1 and moderate strain levels.

Development of instrumentation for moderate- to
low viscosity materials has proceeded more slowly. The
low viscosity range presents challenges in designing
instrumentation that reliably impose the required kine-
matics and to measure the force levels that can range
from milligrams and span several orders of magnitude.
Very low viscosity materials, such as those used in spray-
ing applications, present even greater challenges, where
surface tension and gravitational effects are of the same
order of magnitude as viscoelastic effects [9.35]. These
fluids can also be influenced by inertial effects, which
can result in filament break-up before deformation is
complete.

The pronounced impact of polymeric additives to
Newtonian fluids on jet break-up, drag reduction, and
droplet formation has increased the need to characterize
these materials in an extensional flow field. An example
of an as-yet unresolved need in the industry is a reliable
method of measuring the extensional behavior of inkjet
ink. The diagram shown in Fig. 9.43 shows a schematic
makeup of a printing head of an inkjet printer. Ink flow-
ing through the head and ejected onto the surface of the
printed substrate will experience three different types
of extensional processes. The quest to maximize print
speed while minimizing droplet trailing is facilitated by
characterization of the rheological properties of the ink
in the flow field dominated in this process, namely uniax-
ial extension. The low-shear viscosity of these materials,
close to that of water, makes this class of materials ex-
tremely challenging to characterize in an extensional
flow [9.36].

Through the years, a variety of instrument and test
methods have been developed that achieve a certain
approximation to extensional flow. In addition to uniax-
ial extensional flows, processes such as blow molding,
squeezing flows, and drop impact involve planar and
biaxial extensional flows. While these flow fields are im-
portant, this chapter is limited to uniaxial flows where the
technology to characterize uniaxial extensional flow is
more mature and commercially available solutions exist.

Extensional rheometer types are summarized in
Table 9.5. Appropriate citations are also included for

each instrument type. The accuracy of the data ob-
tained from the types of instruments shown in Table 9.5
depends on the ability of the operator to know both
the extensional strain rate and the amount of exten-
sional strain imposed on the sample precisely. In some
of the instrumentation, for example filament stretch-
ing rheometers, the strain rate and strain is uniform in
the sample and constant throughout the test, allowing
the calculation of a true transient extensional viscos-
ity. In other instrumentation, for example, the fiber
spinning and opposed jet geometries, a representative
fluid element experiences a range of strain rates as it
is elongated in the flow. To interpret the data from
the latter types of instruments, operators will report
an average strain rate and strain, thus yielding an ap-
parent extensional viscosity. These latter instruments
find utility in indexing materials and ranking formula-
tions according to their response to an extensional flow
field [9.37].

In this section, we discuss the kinematics of exten-
sional flows from both a theoretical and an experimental
viewpoint. The current state of understanding of ex-
tensional rheology is presented for highly viscous
polymeric materials (i. e., polymer melts) and for low
to moderately viscous materials. Currently available
commercial instrumentation for extensional rheome-
try experiments are summarized at the end of the
chapter.
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Fig. 9.43 Schematic diagram of an inkjet head, showing:
(1) a contraction flow as the diameter of the channel nar-
rows; (2) uniaxial extension followed by droplet breakup as
the ink stream accelerates out of the head; and (3) biaxial
extension as the ink drop impacts on the solid substrate
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Kinematics of Elongational Flows
Homogeneous Versus Nonhomogeneous. A pure ex-
tensional flow is an irrotational motion in which there
is no vorticity or shearing of material elements [9.38].
Such a deformation provides an extremely efficient way
of orienting and elongating the underlying molecular
structure of a complex fluid such as a polymer solution,
fiber suspension or micellar fluid. If an extensional flow
can be realized, it is thus a sensitive probe of material
microstructure.

The simplest class of extensional flows is a spatially
homogeneous flow, in which the velocity field is given
by

vx = −1

2
(1+b)ε̇x , vy = −1

2
(1−b)ε̇y ,

vz = bε̇z , (9.179)

where ε̇ is the deformation rate, and b is a flow-type
parameter; the Cartesian coordinate z is rendered along
the stretching direction, and x and y are normal to it.
Simple differentiation of these expressions shows that
there are no off-diagonal or shearing contributions to
the velocity gradient tensor ∂v j/∂xi for i 
= j. Uniaxial
elongation corresponds to b = 0, ε̇ > 0, biaxial extension
(or uniaxial compression) corresponds to b = 0, ε̇ > 0,
and planar elongation corresponds to b = 1.

If the flow is temporally homogeneous or steady then
ε̇ 
= ε̇(t) but unsteady formulations (such as the start up
of steady elongational flow ε̇(t) = ε̇0 H(t) where H(t) is
the Heaviside step function) can also be represented in
this formalism.

In particular, it must be recognized, that because
there is a natural time scale (the relaxation time) in non-
Newtonian fluids, the dynamical response to an imposed
extensional deformation is not instantaneous but a func-
tion of time and the deformation rate. The extensional
viscosity functions can then be defined as

η̄+
1 (ε̇0, t) = (τzz − τxx)/ε̇0 ,

η̄+
2 (ε̇0, t) = (τxx − τyy

)

/ε̇0 , (9.180)

where t is time.
In an uniaxial deformation (b = 0, τxx = τyy), there is

only a single material function, the uniaxial extensional
viscosity, which is often denoted by η+

E ≡ η̄+
1 . Most of

the discussion in this chapter focuses on uniaxial flows.
The total material strain accumulated by a mater-

ial element can be obtained from direct integration of
(9.179). For a uniaxial elongation (b = 0) at constant
extension rate (ε̇(t) = ε̇0), the position of a mater-
ial element (identified by a label [i]) at time t is

Z[i](t) = Z[i]
0 exp(ε̇0t) and the strain between two neigh-

boring elements is given by the natural or Hencky
strain [9.38]

εH = ε̇0t = ln (∆Z(t)/∆Z0) , (9.181)

where ε̇0 is the idealized strain rate.
For a linear viscoelastic material described by a spec-

trum of discrete relaxation times λk and modal viscosity
contributions ηk, the extensional response of a material
can be solved analytically to give

η̄+
LVE(t) =

N
∑

k=1

3ηk
[

1− exp(−t/λk)
]

. (9.182)

At long times t 	 λk the material thus approaches a
steady-state elongational viscosity ηE →∑

3ηk = 3η0.
This linear viscoelastic envelope is an important ma-

terial limit that can be used to validate the performance
of a specific instrument as we show below. This material
function also quantifies two important adjectives that are
commonly used in describing the elongational response
of materials.

Strain hardening refers to the progressive deviation
of the material response function above the linear vis-
coelastic envelope as the Hencky strain increases such
that η+

E (ε̇0, t)/η̄+
E,LVE(t) > 1.

Extensional thickening refers to an increase in the
steady-state extensional viscosity (measured at long
times) above the value of the steady shear viscosity such
that ηE(ε̇0) > η(γ̇ ). Because most complex fluids also
exhibit shear thinning, care must be taken to compare
data at equivalent deformation rates. Consideration of
the second invariant of the deformation rate tensor sug-
gests that a suitable comparison is under conditions for
which γ̇ = √

3ε̇0.
It is important to recognize that the majority of in-

dustrial flows do not lead to spatially homogeneous
deformation fields. The material response is then a func-
tion of both time and spatial position. This dependency
makes it difficult to use such a flow to measure a true ma-
terial function [9.39]. A representative situation is shown
in Fig. 9.44, which compares a filament stretching de-
formation with a fiber-spinning operation. In a filament
stretching operation the displacement of a material el-
ement of fixed identity (labeled ‘A’ here) is controlled
to be exponential in time. The resulting Eulerian veloc-
ity field at any location (denoted ‘1’ or ‘2’) also changes
(approximately exponentially) in time. The material el-
ement thus experiences motion with constant stretch
history ε̇(t) = ε̇0 and we can define the transient ex-
tensional viscosity in terms of the measured evolution
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in the (time-varying) tensile force and the midplane ra-
dius of the filament. By comparison, in a fiber-spinning
operation, such as the Rheotens test discussed below, the
flow is steady in an Eulerian sense (so that the velocity
is constant at any axial location) and the tensile force is
constant at any specified take-up rate. However mater-
ial elements now experience a time-varying deformation
history including an upstream shear, followed by a die
swell at the nozzle exit and finally a spatially varying
uniaxial elongation flow. As a result, it is only possible
to define an apparent material function such as a spin-
ning viscosity or a critical stress to break. For further
details see [9.40].

Dimensionless Parameters. It is common to report
fluid-dynamical measurements and material functions in
terms of dimensionless parameters. For extensional rhe-
ology experiments the natural formulation is to express
the transient Trouton ratio Tr(εH, De) = η̄+(ε̇0, t)/η0
(i. e., a dimensionless extensional viscosity scaled with
the zero-shear-rate viscosity) as a function of the
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Fig. 9.44a,b Schematic of two different classes of uniaxial elongational flow; (a) filament stretching of a sample can be
controlled to provide a constant deformation rate; (b) fiber spinning or the Rheotens experiment is steady in an Eulerian
sense but unsteady from the point of view of a material deformation history. Z is the longitudinal axial coordinate along
the filament or spin line. η̄+ (ε̇0, t) is the extensional viscosity, vz the longitudinal velocity, and F the tensile force

dimensionless time or Hencky strain εH = ε̇0t, and
a dimensionless ratio of the material and flow time
scales Deborah number De = λε̇0, where λ is an ap-
propriate measure of the relaxation spectrum λkof
the non-Newtonian material being tested (typically ei-
ther the longest time constant or an appropriately
weighted mean value of the relaxation time). Note that
the dimensionless deformation rate may also be re-
ferred to as a Weissenberg number for elongational
flow, since the characteristic deformation rate and
flow timescale are inherently related in an extensional
flow; tflow ∼ 1/ε̇0.

Many extensional flows and elongational rheometers
involve free-surface deformations and additional mater-
ial functions characterizing the relative importance of
interfacial tension forces arise. Because of the relative
ease of measuring shear flow properties, these are in-
variably referenced to viscometric properties of a fluid,
such as the steady-state shear viscosity, rather than the
elongational viscosity. Relevant parameters include the
capillary number; a ratio of the viscous stress to capillary
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pressure, Ca = η0ε̇0 R/σ (where σ is the surface tension
and R is a characteristic length scale such as a thread
or jet radius) and the elastocapillary number (or surface
elastic parameter), Ec = De/Ca = λσ/η0 R. The latter
parameter plays an important role in jet break-up [9.41]
and adhesive instabilities [9.42]. In deformations in
which gravity plays a role it is common to report the
Bond number Bo = ρgR2/σ as a ratio of the two dom-
inant forces (gravity and surface tension) under static
(no-flow) conditions with g being the gravitational con-
stant. Of course any combinations and ratios of these
common dimensionless parameters are also valid and
have been used in the past.

Highly Viscous Materials (η0 > 1000 Pa s). For very vis-
cous materials such as tar or pitch (first studied by
Trouton in 1906), the roles of gravity and capillarity can
be safely neglected (i. e., Ca 	 1 > Bo) and the material
does not sag or neck during testing. A number of differ-
ent Instron-like mechanical testing machines can then
be constructed for testing such materials. These devices
can be classified as constant-sample-length or constant-
sample-volume instruments and they have been compre-
hensively reviewed by Meissner [9.43] and Gupta and
Sridhar [9.44]; we provide additional details later.

A representative example of the measurement of
the transient extensional viscosity function η̄+(ε̇0, t)
for a highly branched low-density polyethylene (LDPE)
melt using the sentmanat extension rheometer (SER)
universal test fixture (a constant-length device) is
shown in Fig. 9.46 (taken from [9.45]). Equivalent
measurements can also be performed with a constant-
sample-volume device such as the filament stretching
rheometer [9.46]. The linear viscoelastic response is also
shown by the dark line (LVE) and provides a bounding
envelope for the data at low Deborah numbers, De � 1.
As the imposed extension rate (and the corresponding
Deborah number, De = λε̇0) is increased, the material
shows a progressively increased strain-hardening re-
sponse and the viscosity climbs above the value expected
from linear viscoelastic characterization. This strain
hardening stabilizes the material against necking failure
and accounts for the importance of using branched poly-
meric materials in film-blowing and spinline operations.
The transient extensional stress growth of materials such
as linear low-density polyethylene (LLDPE) that do not
exhibit such pronounced strain hardening can also be
measured using the SER fixture and closely follow the
LVE envelope for all times and strains [9.45].

A large fraction of early research in the extensional
viscosity area was focused on determining the steady ex-

tensional viscosity; however it is now recognized that in
many commercial processes and flows this is not a rel-
evant parameter as it requires prolonged extension and
very large strains to be achieved; such conditions are not
commonly attained in industrial operations. Determin-
ing the transient material response function and fitting
the results to an appropriate constitutive model (such
as those covered by Petrie [9.9]; Bird et al. [9.38] and
in more-recent work such as that of McLeish and Lar-
son [9.47]) is a preferred approach. However, if the
long-time limit of the data at each deformation rate
shown in Fig. 9.45 is taken as the steady-state value,
then a curve of ηE (ε̇0) can be constructed, as shown
in Fig. 9.46. At very low deformation rates the exten-
sional viscosity approaches a constant Trouton ratio
corresponding to Tr = ηE(ε̇0)/η0 → 3. An extensional
thickening is then observed at intermediate rates as a re-
sult of molecular stretching before rate thinning leads
to a power-law-like decrease in the extensional vis-
cosity rate ηE ∼ ε̇−0.5

0 at very high deformation rates.
The molecular origin of this extensional thinning is
still under debate but it may involve either: (i) the
anisotropic drag experienced by the polymer molecules
as they disentangle and approach full extension, or
(ii) the external pressure resulting from the surrounding
chains [9.48].
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Fig. 9.45 Tensile stress growth curves at a melt temper-
ature of 150 ◦C for a branched low-density polyethylene
(Lupolen 1840H) over a range of Hencky strain rates ε̇0 of
0.003–30 s−1 generated with the SER on two different host
platforms, an MCR501, and an ARES, and a plot of the lin-
ear viscoelastic envelope (LVE) taken from cone and plate
measurements in start-up of steady shear flow at a shear
rate of 0.005 s−1
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A final area of recent interest in which the form
of the extensional viscosity function for polymer melts
and other viscous materials (such as hot melt adhesives)
is important is the stability of polymeric threads against
rupture and failure. In low-viscosity materials (discussed
further below) the degree of strain hardening and its in-
terplay with surface tension controls the formation of
beads-on-a-string. In a polymer melt, surface tension
is negligible (Ec � 1) and filament failure is governed
purely by the viscoelastic response of the material in ex-
tension. In the limit of high De 	 1, the filament stability
can be characterized by the Considère criterion [9.49].
The principal result is typically written in terms of the
tensile force in the filament; however it can also be re-
expressed in terms of the transient Trouton ratio and
the requirement for homogeneous extension becomes
d ln Tr+/dεH ≥ 1 ([9.50]); i. e., the Trouton ratio must
increase at least exponentially fast with strain for homo-
geneous filament elongation. Examination of the data at
the highest rates in Fig. 9.46 shows that, soon after the
samples cease to strain harden exponentially with strain,
the sample fails. The role of viscous stresses at moderate
strain rates makes the analysis more complicated than
that for a purely elastic material, but rupture events are
still to be expected [9.51].

Low to Moderately Viscous Materials (0.01–1000 Pa s).
Homogeneous versus Nonhomogeneous Instru-
ments. In the past two decades, the development of
extensional rheometers for low to moderately viscous
materials has moved along two design paths. On the
first path, the deformation kinematics are imposed on
the material via the instrument, and the response of the
material is monitored. On the second path, the material is
deformed into an unstable configuration, but any further
response is driven by the material alone. In both types of
instrumentation, however, the operator must know the
strain rate history of the material as well as the accu-
mulated extensional strain on the fluid element being
observed.

The round robin study in the framework of the
project M1 compiled by James et al. [9.39] demonstrated
a key fact in extensional rheometry: for non-Newtonian
fluids, the extensional viscosity cannot be character-
ized by a single value. In this round robin, researchers
reported the extensional viscosity of a dilute solution
of polyisobutylene in polybutene [9.52] as a function
of strain rate, but without consideration of the accu-
mulated strain in the samples. Without the inclusion
of this strain, the compiled results showed no correla-
tion between ηE and ε̇, and disappointing comparison
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Fig. 9.46 Comparison of the steady-state extensional vis-
cosity behavior as a function of Hencky strain rate at
a melt temperature of 150 ◦C for two LDPE samples taken
from the literature; Lupolen 1840H generated with the
SER (triangles) and IUPAC A (circles from Munstedt and
Laun [9.14])

between extensional rheometers. This study pushed re-
searchers to recognize the need to accurately know and
report the transient extensional viscosity as a function
of both strain rate and strain. This need resulted in
the design of the first generation of filament stretching
rheometers.

Matta and Tytus [9.53] first proposed the use of
a falling-plate rheometer, whereby a small volume of
test fluid pinned between two circular plates is stretched
as the bottom plate falls under the influence of gravity.
The lack of active machine control on the movement
of the bottom plate resulted in a time-varying exten-
sional strain rate, which complicated the analysis of
the data. Sridhar and coworkers resolved this issue by
driving the two plates apart with a motion control sys-
tem at user-specified velocity profiles, which allowed
them to impose a deformation at a constant axial strain
rate [9.17, 54]. By coupling a force transducer on one
plate and stationing a laser micrometer at the midpoint of
the deforming filament to monitor the filament diameter,
these researchers were able to extract the transient ex-
tensional viscosity as a function of strain and strain rate
for moderate to highly viscous fluids. The success of this
design has led to further instrument development from
a variety of groups [9.16, 17, 55–58]. The basic design
for this class of instruments, termed filament stretching
extensional rheometers, is shown in Fig. 9.47. These in-
struments fall under the classification of homogeneous
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instrumentation, given that the strain rate is spatially
uniform in the fluid sample, for the most part.

Newtonian fluids were used to validate these
first-generation extensional rheometers, given that the
extensional viscosity is well known (η̄ = 3η0) and is
independent of both ε̇0 and εH. The early results by
Sridhar [9.17] and Spiegelberg et al. [9.16] showed that
for the first several units of Hencky strain, the Trouton
ratio for the Newtonian test fluids exceeded the known
value of Tr = 3; after being stretched to approximate
ε = 2, the Trouton ratio approached the theoretical value
of Tr = 3. Theoretical analysis in Fig. 9.59 showed that
the initial flow field is dominated by shear flows re-
sulting from the pinning condition of the fluid at the
endplates [9.16]. Numerical simulation studies by Yao
et al. [9.59] showed that the initial shear flow could be
minimized by increasing the initial length of the fluid
sample L relative to the initial filament diameter D. It
was determined that the effects of the initial endplate
shear could be minimized by utilizing an initial ratio
L/D ≈ 1. A further consequence of the fluid pinning
conditions at the endplates is that a reduced amount
of fluid is participating in the extensional deformation.
This phenomenon, coupled with the strain-hardening
behavior of most non-Newtonian fluids, usually pro-
duced a temporally-varying strain rate as determined
from the midpoint diameter. Kolte et al. [9.60] sug-
gested three types of experimental strategies to address
the nonuniform flow exhibited with these devices:

Type 1. The endplates are separated at an expo-
nentially increasing rate L(t) = L0 eε̇0t . The extensional
viscosity is based on this imposed strain rate ε̇ and is
calculated as

ηE(t, ε̇0) = F(t)/ε̇0 A0 e−ε̇0t (9.183)

where A0 is the initial fluid area and F is the tensile
force. The Hencky strain is calculated as per (9.181).

Type 2. The deformation profile is the same as in the
type 1 experiment, but the data are processed differently.
In the type 2 experiment, the midpoint radius Rm is
measured, in addition to the force on the endplates. The
varying midpoint strain rate, or effective strain rate, ε̇eff
is calculated as a function of time as

ε̇eff(t) = − 2

Rm

dRm

dt
. (9.184)

The extensional viscosity is calculated as

ηE(ε̇eff, ε) = F(t)

ε̇effπ R2
m(t)

. (9.185)

Because the strain rate varies with time due to the
nonuniform flow generated by the endplates, the Hencky

strain is calculated from the time integral over the strain
rate based on the midpoint radius:

εeff(t) =
t∫

0

ε̇eff(t)dt = −2 ln

(
Rm

R0

)

. (9.186)

Type 3. In the type 3 experiment, the endplate ve-
locity is controlled, so that the midpoint filament radius
decreases as it would in an ideal flow, namely with
a constant effective strain rate strain rate (ε̇eff = ε̇0),
or

Rm(t) = R0 e− 1
2 ε̇eff t . (9.187)

The extensional viscosity and Hencky strain are calcu-
lated as in the type 1 experiment.

Researchers initially employed trial-and-error ap-
proaches to manipulate the velocity profiles to ensure
a constant strain rate [9.16, 17]. Anna and cowork-
ers developed a feedback system based on real-time
measurements of the midpoint radius that adjusted the
endplate velocity on the fly to ensure a constant strain
rate [9.61], while others have developed endplate ve-
locity profiles for type 3 experiments based on master
curves developed from type 2 experiments [9.62].

These refinements, along with higher-resolution
force transducers and laser micrometers, and motion
control systems capable of resolving several orders of
magnitude in velocity while maintaining position con-
trol on the micrometer scale, have greatly advanced
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Fig. 9.47 Schematic diagram of a filament stretching extensional
rheometer for moderately viscous materials. A: laser emitter; B:
laser detector; C: force transducer; D: motor; E: endplates; F: fluid
filament
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the accuracy and repeatability of extensional viscosity
measurements in fluids, as shown in the next section.
The improved instrumentation has allowed researchers
to conduct more-refined extensional flow experiments,
such as probing individual polymer chain conformation
with concurrent birefringence measurements [9.63, 64],
examining step strain responses of materials [9.62, 65],
and characterizing elastic instabilities in extensionally
deforming fluids [9.66].

Filament stretching rheometers are typically limited
to fluids exhibiting shear viscosities of approximately
1 Pa s or greater. At lower viscosities, surface tension
and gravity begin to dominate the flow behavior of the
fluid. It is this recognition that led Rozhkov and cowork-
ers to the development of capillary break-up rheometers,
which are in the class of nonhomogeneous extensional
rheometers, given that the strain rate is not spatially ho-
mogeneous in the sample [9.26, 67]. Rather than trying
to minimize the influence of these forces, surface ten-
sion is allowed to drive the deformation of the fluid
filament, which resists the deformation through viscous
and elastic forces, and gravitational forces are rendered
inconsequential through small sample dimensions. In
this experiment, a cylindrical fluid filament is placed
between two circular endplates, similar to a filament
stretching experiment. As opposed to separating the end-
plates at a constant strain rate while measuring force and
radius, in this test a rapid axial step strain is imposed,
resulting in a stretched fluid filament. The plate sepa-
ration occurs at a rate faster than the longest relaxation
time in the test fluid. The capillary break-up rheometer
monitors the filament radius as a function of time as it
thins under capillary pressure. The extensional stress is
derived from the surface tension of the fluid σ , reducing
the calculation of extensional viscosity to

ηapp = σ/Rm

ε̇eff
= σ/Rm

− 2
Rm

dRm
dt

= − σ

2dRm/dt
.

(9.188)

The behavior of Newtonian fluids in a capillary break-
up rheometer is well predicted, and these experiments
are useful for easily determining their shear viscosity
if the surface tension is independently known. As dis-
covered by Papageorgiou [9.68], the midpoint radius of
a Newtonian filament is expected to evolve according to

Rm(t) = 0.0709
σ

ηs
(tc − t) , (9.189)

where tc is the critical break-up time of the filament.
McKinley and Tripathi [9.25] showed very good cor-
relation between the shear viscosity measured with

a torsional shear rheometer and results obtained on
a capillary break-up rheometer using this expression.
Capillary break-up rheometry has been used to evalu-
ate the time-dependent change in extensional viscosity
of adhesives containing a volatile solvent [9.69], the ex-
tensional rheology of ink and paint [9.70], the relaxation
times of non-Newtonian fluids [9.71, 72], and to probe
time scales in low-viscosity fluids [9.73].

Results from Filament Stretching Rheometer Ex-
periments. The considerable improvements made in
filament stretching rheometer designs have allowed re-
searchers to attempt another round robin comparison of
results to compare and validate the basic approach. As
opposed to the original M1 round robin study, this round
robin proved to be much more successful. Three univer-
sities [9.74] constructed filament stretching rheometers
based on the original concept by Sridhar [9.17] that
were capable of type 3 experiments. Although the basic
design was the same in all three instruments, differ-
ent motion control systems, diameter sensors, and force
transducers were used in the three systems. The lim-
itations of the mechanical systems were discussed in
detail in this work, and standard error propagation anal-
ysis was performed to determine the errors in the results
corresponding to various stretching regimes.

In this round robin study, the researchers tested
three solutions of high-molecular-weight polystyrenes
dissolved in oligomeric styrene oil. The polymer con-
centration of all three solutions was 0.05 wt %, and
the polystyrenes all had very narrow molecular-weight
distributions. The material and viscometric properties,
including weight-averaged molecular weight of the
polystyrene (Mw), zero-shear viscosity (η0), and Zimm
relaxation time (λ), are shown in Table 9.6.

The three institutions generated master curves to
determine the stretching history that would yield the op-
timal diameter profile required for a type 3 test [9.61,62].
The resultant diameter profiles of the idealized stretch-
ing history showed both excellent agreement within the
institutions, as well as good agreement with the ideal
curve, given that the experimental diameter at each point
was within 10% of the ideal curve.

One set of computed extensional viscosities is shown
in Fig. 9.48. The Deborah numbers in these tests were
De = 12.0−17.0, due to temperature variations and
slight variations in motion control between the three
institutions. However, these differences did not impact
on the results, given the extremely good comparison of
the three sets of results shown. The error bars at the four
locations were determined from the error propagation

Part
C

9
.1



Non-Newtonian Flows 9.1 Viscoelastic Polymeric Fluids 657

Table 9.6 Viscometric properties of polystyrene-based test
fluids dissolved in styrene oil. The solution concentration
was 0.05 wt % for all samples

Fluid Mw[g/mol] η0[Pa s] λ[s]
SM-1 2 × 106 39.2 3.7

SM-2 6.5 × 106 46.1 31.1

SM-3 2.0 × 107 55.5 155

analysis. The results show that the refinements in instru-
mentation and testing technique have resulted in a very
reproducible and reliable extensional rheometry test.

In addition to examining the interlaboratory repro-
ducibility of this testing technique, Anna and co-workers
thoroughly examined the ideal operating range of these
rheometers. Achievable strain and strain rate regimes
are limited by motor length and motor velocity. The
final measurable extensional viscosity is limited by both
the resolution of the force transducer and the diameter-
sensing device. Highly elastic fluids can exhibit an
instability at the endplates, causing partial decohe-
sion of the material at higher levels of strain, which
influences the measured extensional viscosity [9.75].
Lower-viscosity fluids are susceptible to gravitational
sagging at lower strain rates, which is characterized by
the Bond number (Bo) and the ratio of the Bond number
to the capillary number Ca. Anna et al. provide critical
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Fig. 9.48 Comparison of transient extensional viscosity re-
sults for the round robin study on fluid SM-1 from three
institutions MIT (circles), Monash (squares) and Toronto
(triangles). The error bars at strains a to d indicate the es-
timated error at low, moderate, and high Hencky strains
(reproduced with permission after [9.74])

test conditions where these conditions can occur based
on fluid properties and test geometry [9.74].

Results from Capillary Break-up Extensional Rheo-
metry. Two representative studies are presented that
employ capillary break-up rheometry to indicate the util-
ity of this technique. In the first, Stelter and coworkers
used a capillary break-up rheometer to quantify the re-
laxation times and extensional viscosities of a series
of ionic and nonionic polymers as a function of con-
centration [9.76]. This work exploited the influence of
ionically charged polymer molecules on their chain flex-
ibility to explore the effects of polymer chain flexibility
on the extensional flow behavior.

When a non-Newtonian fluid is stretched in a capil-
lary break-up rheometer, the evolution of the fluid thread
diameter D(t) is expected to thin in two distinct regimes,
with the first regime decreasing exponentially with time
t according to the expression

D(t) = D0 e−t/3λ , (9.190)

where D0 is the filament diameter after the initial stretch
at time t = 0. In the second regime, the filament thins
linearly according to

D(t) = D0 − σ

µel,t
t , (9.191)

where σ is the surface tension of the solution, and µel,tis
the terminal extensional viscosity.

These authors prepared nonionic solutions from
Praestol 2500, a linear polyacrylamide (degree of
hydrolysis 3–4%, 8–10 × 106 g/mol), polyethylene
oxide (PEO, 8–10 × 106 g/mol), and a branched graft
copolymer composed of a carboxymethyl cellulose
backbone and polyacrylamide branches (CMC-g-PAM).
Two ionic solutions were prepared from a linear
polyacrylamide Praestol 2540 (degree of hydrolysis
40%, 14 × 106 g/mol), and a xanthan gum solution
(2 × 106 g/mol). All solutions were prepared with con-
centrations in water at 62–4000 ppm, resulting in values
of c[η] between 1-2, which indicates that the solutions
are in the semi-dilute range; c is the polymer con-
centration and [η] the intrinsic viscosity. The terminal
extensional viscosity µel,t is plotted as a function of
relaxation time in Fig. 9.49.

During extensional testing, each polymer system
showed a dependence of the measured relaxation time
and terminal elongational viscosity on solution concen-
tration, resulting in the multiple data points shown in
Fig. 9.49. The data arrange on two distinct lines. The
Praestol 2500, lacking substantial hydrolysis and there-
fore ionic behavior, will act as a flexible polymer chain,
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Fig. 9.49 Terminal elongational viscosity plotted as a func-
tion of relaxation time for three nonionic and two ionic
semidilute aqueous solutions. Line 1 corresponds to flex-
ible polymer chain behavior, while line 2 corresponds to
rigid-like behavior. (After [9.76] with permission)

as will the polyethylene oxide. The CMC backbone of
the graft copolymer is only weakly ionic, so that this
copolymer will also act as a flexible chain. The repulsive
behavior of the charges on the ionic polyacrylamides will
prevent flexible chain motion, so that these chains will
act in a rigid-like manner. The testing allowed these
researchers to clearly differentiate materials exhibit-
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Fig. 9.50 Transient midpoint diameter profile for polystyrene-based
[SM-1 (◦), SM-2 (�) and SM-3 (�)]. D1 is the initial diameter, and
tcap is trhe capillary time calculated as tcap = η0 Dt/2σ . (After [9.65]
with permission)

ing rigid-rod-like behavior and flexible chain behavior.
Chain behavior will influence the spraying properties of
polymer solutions.

In another study, Anna et al. investigated the
dependence of the extensional flow properties on mo-
lecular weight with a series of dilute polystyrene
solutions [9.65] . In this work, the results from capil-
lary break-up rheometry tests conducted on the three
test fluids were compared with results measured on a fil-
ament stretching rheometer. The three test fluids had the
viscometric properties already shown in Table 9.6.

The evolving midpoint diameters of the three test flu-
ids tested in the capillary break-up rheometer are shown
in Fig. 9.50. Regression on the linear portion of the plot
yielded relaxation times that compared well with the
relaxation times determined from shear rheology and
reported in Table 9.6, according to (9.190).

Conversion of the diameter versus time data to the
apparent extensional viscosity versus Hencky strain with
(9.187) and (9.185), respectively, allows a direct com-
parison between the capillary break-up rheometric data
and the filament stretching data, as shown in Fig. 9.51.
The differences between the two sets of curves are conse-
quences of the different kinematics in the two devices.
The best comparison between the tests occurred with
SM-2, where the two types of extensional tests ap-
proached the same final steady-state Trouton ratio of
Tr ≈ 5000. It is not surprising that the transient exten-
sional viscosities leading up to η̄ in the SM-2 fluid tested
in the two instruments were not similar, given that the fil-
ament stretching test was conducted at a constant strain
rate, while the capillary break-up rheometer test imposes
a variable strain rate set by the fluid itself. It is expected,
however, that the final steady-state viscosity will be inde-
pendent of the prior strain-rate history, however, which
the results from SM-2 confirm. The final steady-state
plateau can usually not be reached for highly elastic
fluids due to endplate instabilities [9.66], which was
observed in SM-3. Additionally, gravitational sagging
can also limit the operating range of filament stretching
rheometry. As Anna and McKinley suggest, capillary
break-up rheometry provides a means of increasing the
available operating range of extensional rheometry tests
in highly elastic fluids [9.65].

Commercially Available Instruments. Several exten-
sional rheometer designs have been commercialized in
the past. A list of previously and currently available
instruments is summarized in Table 9.7. Rheometrics
commercialized an opposed jet device in the 1980s
under the model name RFX. Now discontinued, the
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Fig. 9.51 Comparison of transient extensional viscos-
ity measured in a filament stretching rheometer (solid
symbols) and apparent extensional viscosity measured
with a capillary breakup rheometer (open symbols).
The lines show the predictions from multrimode FENE
(finite extensible nonlinear elastic) calculations. [SM-
1, De = 17.0 (•), De ≈ 2/3 (◦); SM-2, De = 15.2 (�),
De ≈ 2/3 (�); and SM-3 De = 21.2 (�), De ≈ 2/3 (�)].
Values below a Tr = 3 are usually the results of gravitation
sagging. (After [9.65] with permission)

instrument suffered from the underlying problems of
opposed jet devices, namely a nonhomogeneous de-
formation and a significant pre-shear history, both of
which complicate the data interpretation [9.77]. The
instrument is also limited to strains of approximately
ε = 1, and can suffer from inertial effects [9.78]. Despite
these limitations, the RFX was the only commer-
cially available rheometer for examining low-viscosity
fluids, and provided useful information for indexing
materials. Ng and coworkers [9.79] performed op-
posed jet measurements on dilute solutions containing
carboxymethyl cellulose, polyacrylamide, and poly-
isobutylene to examine their impact on drag reduction,
and were able to observe differences in the solutions in
extensional flows, while shear flows led to no measurable
differences.

Two extensional rheometers for melts were pre-
viously available that both used the constant-length
geometry previously discussed. The MXR2, developed
by the National Physical Laboratory’s Center for Mater-
ials Measurement and Technology and commercialized
by Magna Projects, stretched polymer melt filaments by
winding them onto a rotating wheel. The filaments were

Table 9.7 Previously and currently available extensional rheometers

Instrument name Company Viscosity range [Pa s] Flow type Data type

Currently available

Rheotens Göttfert (Rock Hill,
SC)

> 100 Fiber spinning Indexer

CaBER r© Thermo (Karlsruhe,
Germany)

0.01 – 10 Capillary breakup η(ε̇0, ε)

Sentmanat extension
rheometer (SER)

Xpansion Instruments
(Tallmadge, OH)

> 10000 Constant-length fila-
ment stretching

η(ε̇0, ε)

Previously available

RFX Rheometrics
Scientific

0.01-1 Opposed jet Indexer

RME Rheometrics
Scientific

> 10000 Constant-length fila-
ment stretching

η(ε̇0, ε)

MXR2 Magna Projects & In-
struments

> 10000 Constant-length fila-
ment stretching

η(ε̇0, ε)
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both heated and buoyed by an oil bath. The RME, devel-
oped by Meissner and coworkers and commercialized
by Rheometrics [9.19], employed stationary tread-like
grips that stretched a polymer melt filament at controlled
rates. The filament was both heated and buoyed by gas
passed through a hot porous frit. The RME could reach
Hencky strains of εH = 7 and strain rates of ε̇0 = 1 s−1.
Neither the MXR2 nor the RME are currently being
manufactured.

A currently available melt extensional rheometer
is the Sentmanat Extension Rheometer (SER) (Xpan-
sion Instruments, Tallmadge, OH), shown in Fig. 9.52.
The SER is designed to be field-installed on commer-
cially available shear rheometers, thus allowing them to
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Fig. 9.52 Rheotens filament windup rheometer for charac-
terizing melts

Fig. 9.53 Rotating cylinders of SER melt rheometer. The
rectangle shows the uniform texting area

perform extensional rheometric experiments. The SER
employs two rotating drums that wind up the polymer
melt filament, imposing constant, step, or variable strain
rates, depending on user choice. The torque exerted on
one of the drums provides a measure of the stress in the
sample.

A variant of the controlled-rate rheometer discussed
above is a controlled-velocity device, embodied in the
the Rheotens (Göttfert, Rock Hill, SC). The Rheotens
is a fiber spinning apparatus, whereby polymer melt is
pumped from an upstream tube. A set of wind-up wheels
elongates the fluid, while a force transducer mounted on
one of the take-up wheels monitors the resulting force

Fig. 9.54 CaBER r© capillary breakup rheometer. Inset
shows a closeup of a thinning fluid filament stretched in
the instrument

exerted by stretching the sample. The Rheotens has sig-
nificant pre-shear induced while the polymer melt is
pumped through the upstream tube, and its extensional
flow field has variations in strain rate [9.80]. As a re-
sult of these complications, the data obtained from the
Rheotens is usually used to index polymer melts, rather
than interpreting the data as absolute extensional rheo-
metric data. An example of a Rheotens is shown in
Fig. 9.52.

The only currently commercially available exten-
sional rheometer for fluids is the CaBER (ThermoFisher
HAAKE, Karlsruhe, Germany). An example is shown in
Fig. 9.54. The CaBER is a capillary break-up rheome-
ter, and is based on the work of Rozhkov, Entov, and
coworkers [9.26, 67, 81]. In this instrument, a fluid fila-
ment is stretched rapidly between two circular endplates
to a fixed level of extensional strain. After the cessation
of flow, a laser micrometer monitors the axial midpoint
diameter of the fluid filament as a function of time as the
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filament thins and breaks up under the influence of sur-
face tension, elasticity, and viscosity. In contrast to the
previous devices, the CaBER does not impose a specific
deformation rate on the sample; rather, the deformation
rate is set by the material. The extensional viscosity as
a function of strain rate and strain can be determined
from the profile of diameter versus time and knowl-
edge of the surface tension of the test fluid. The CaBER
is useful for moderate- to low-viscosity fluids, including

Newtonian fluids. Once a researcher has determined that
the CaBER data departs from the break-up kinematics of
a Newtonian fluid using the models provided in the soft-
ware, they can compare the data to other non-Newtonian
models. The quality of the fit of the non-Newtonian rheo-
logical model provides insight to the type of viscoelastic
behavior exhibited by the test fluid. Similar to the model
fitting used in shear rheology, the optimal choice of the
fluid model is up to the researcher.

9.2 Thixotropy, Rheopexy, Yield Stress

Thixotropy is a decrease of the apparent viscosity under
constant shear stress or shear rate, followed by a grad-
ual recovery when the stress or shear rate is removed.
It comes about first because of the finite time taken for
any shear-induced change in the microstructure – that
confers the viscosity – to take place. The microstructure
is brought to a new equilibrium microstructure by com-
petition between the processes of tearing apart by stress
and flow-induced collision, in a time that can be min-
utes. Then, when the flow ceases, Brownian motion is
able to move the elements of the microstructure around
slowly to more-favorable positions and rebuild the struc-
ture. This can take many hours to complete. The whole
process is completely reversible.

In this Section, the history of thixotropy is reviewed.
The effects of the microstructural changes on the flow
properties, which result in the various manifestations
of thixotropy, are described. The various mathematical
descriptions of the phenomenon are summarized.

In their Glossary of Rheological Terms, Barnes,
Hutton and Walters [9.82] (following the 1975 British
Standards Institution definition) defined thixotropy as
‘A decrease of the apparent viscosity under constant
shear stress or shear rate, followed by a gradual recov-
ery when the stress or shear rate is removed. The effect
is time-dependent.’

They also defined anti-thixotropy as the precise op-
posite of thixotropy and said that rheopexy is a synonym
of anti-thixotropy. These terms are now generally ac-
cepted in the rheological world as definitive descriptions.

Thixotropy comes about because of the finite time
required for any shear- or stress-induced changes in
the microstructure of structured liquids – suspensions,
emulsions, polymer solutions, etc. – to take place.
The microstructure of the liquid involved is brought
to a new equilibrium by competition between the pro-
cesses of reordering or tearing apart by stress and

flow-induced collision, in a time that can typically
be minutes. Then, when the applied flow or stress
ceases or is removed, Brownian motion is able to move
the elements of the microstructure around slowly to
more-favorable positions and hence rebuild the struc-
ture. This manifests itself as an increased viscosity
and can take many hours to complete. The whole
process of breakdown and rebuilding is completely re-
versible if the basic elements are not destroyed during
flow.

Non-experts have deliberately built such thixotropic
behavior into some commercial products to make them
usable, with the best-known examples being thixotropic
paints. However, as will be shown, what is usually
wanted in these cases is extreme shear thinning. How-
ever the way it is brought about usually introduces
thixotropy as well, which is then almost always an
irritation.

9.2.1 A History of Thixotropy

In the Beginning
Previous reviews of thixotropy have been produced
by Bauer and Collins [9.83], Mewis, 1979 [9.84],
Cheng [9.85] and Godfrey [9.86] and by the present
author in 1997. Barnes [9.87] noted that the origins
of thixotropy as a recognized physical phenomenon go
back to 1923 when Schalek and Szegvari found that
aqueous iron oxide gels ‘have the property of becom-
ing completely liquid through gentle shaking alone, to
such an extent that the liquified gel is hardly distinguish-
able from the original sol. These sols were liquified but
become solidified again after a period of time ... the
change of state process could be repeated many times
without any visible change in the system’ [9.88,89]. The
word thixotropy was used by Peterfi in 1927 [9.90,91] in
the first paper that properly described the phenomenon,
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combining the Greek words thixis (stirring or shaking)
and trepo (turning or changing).

By 1935 Freundlich had published a book called
Thixotropie [9.92] which dealt with the subject: this was
the first time that the term was introduced into the title
of a publication. Freundlich and coworkers soon found
thixotropic effects manifested by a whole variety of sys-
tems including vanadium pentoxide sols, starch pastes,
and pectin gels.

It is clear that thixotropy originally referred to the
reversible changes from a flowable liquid to a solid-like
gel. Previously these kinds of physical changes had only
been known by changing the temperature, when such
gels would melt on heating and then recooling. It was
believed at the time that a new kind of phase change had
been found albeit a similar behavior of various yoghurts
and kefirs was long known but had not attracted the
attention of rheologists.

Progress
Early work in this area in the USA is exemplified by
three papers published by McKillen [9.93] in 1932, who
reported the results of his doctoral investigations into
the thixotropy of a large number of flocculated paints.
He showed that the fluidity (the inverse of viscosity) as
a function of time decreased in some cases by four orders
of magnitude, showing an almost quadratic dependence
on the rest time.

Writing in the UK in 1942, Scott-Blair [9.94] could
still state that ‘the whole subject [of thixotropy] is very
new’, but in the update of his textbook published in
1949, nearly 120 papers on thixotropy were cited, so
things had moved on quickly. Among the examples of
thixotropic materials that he cites are clays and soil
suspensions, creams, drilling muds, flour doughs and
suspensions, fibre greases, jellies, paints, carbon-black
suspensions, and starch pastes. He also lists a number
of papers on so-called thixotrometers, instruments spe-
cially devised to characterize the phenomenon. In this
respect he raised some interesting points, among them
whether thixotropy ought to be studied at constant shear
rate or at constant stress, which is still a controversial
question.

Scott-Blair quotes Hamaker’s explanation of
thixotropy as being due to the fact that ‘particles
can form a loose association which is easily de-
stroyed by shaking but restores itself on standing’:
this explanation still stands. With our present knowl-
edge of microstructural changes, it is probably safe
to say that all materials that are shear thinning are
also thixotropic, in that they will always take a fi-

nite time to bring about the rearrangements needed in
the structural elements that are responsible for shear
thinning. However, the number of times that these ef-
fects come within the measurable range (say > 1 s) is
limited. As Scott-Blair concludes, ‘If this recovery is
very rapid, the phenomenon is observed as structural
viscosity [shear thinning]; if slow, it is observed as
thixotropy’.

In the 1930s and 1940s Pryce-Jones [9.95, 96]
studied around 250 paints, using a so-called thixotrom-
eter that he made himself [9.97]. He noted that ‘It
is a well-established fact that thixotropy is more pro-
nounced in systems containing non-spherical particles’,
this is because they have to find themselves in the best
three-dimensional (3-D) structure by rotation as well as
movement, and progress from a solid gel to a freely flow-
ing liquid due to complete microstructural breakdown
(Fig. 9.55).

The full extent of thixotropy was maintained by
Bauer and Collins in their 1967 review [9.83]: ‘When
a reduction in magnitude of rheological properties of
a system, such as elastic modulus, yield stress, and vis-
cosity, for example, occurs reversibly and isothermally
with a distinct time dependence on application of shear
strain, the system is described as thixotropic’. They went
on to say that thixotropy was ‘usually conceived as an un-
usual property of very special systems such as aqueous
iron oxide dispersions, thixotropy in the sense described
above, has been found to be exhibited by a great many
and a large variety of systems. Along with the breakdown
in structure, other non-rheological features change, such
as conductivity and dielectric constant’.
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Fig. 9.55a–c Breakdown of an idealized two-dimensional
(2-D) thixotropic system: (a) completely structured giv-
ing elastic, solid-like behavior; (b) partly structured giving
a viscoelastic response and (c) completely unstructured
giving a viscous, shear-thinning response

Part
C

9
.2



Non-Newtonian Flows 9.2 Thixotropy, Rheopexy, Yield Stress 663

How is Thixotropy Generally Understood Today?
To guide a researcher or an engineer in deciding whether
the material with which he or she is dealing is thixotropic
or not, the following are various definitions offered in the
current general scientific literature, scientific dictionar-
ies, and encyclopaedias that reflect these two points of
view. Some are misleading, while even the best are often
incomplete. The following are a selection that illustrate
the situation.

Oxford Encyclopaedic Dictionary of Physics [9.98].
‘Thixotropy: certain materials behave as solids under
very small applied stresses but under greater stresses
become liquids. When the stresses are removed the
material settles back into its original consistency. This
property is associated with certain colloids which form
gels when left to stand but which become sols when
stirred or shaken, due to a redistribution of the solid
phase.’

Chambers Dictionary of Science and Technol-
ogy [9.99]. ‘Rheological property of fluids and plastic
solids characterized by a high viscosity at low stress, but
a decreased viscosity when an increase in stress is ap-
plied. A useful property of paints, because it makes for
a thick film which is nevertheless easily worked.’

McGraw–Hill Dictionary of Scientific and Technical
Terms [9.100]. ‘Property of certain gels which liquefy
when subjected to vibratory forces, such as ultrasonic
waves or even shaking and then solidify again when left
standing. Thixotropic clay: a clay which weakens when
disturbed and increases in strength upon standing.’

Van Nostrand’s Scientific Encyclopaedia [9.101].
‘A thixotropic fluid is a fluid whose viscosity is a func-
tion not only of the shearing stress, but also of the
previous history of motion within the fluid. The vis-
cosity usually decreases with the length of time the fluid
has been in motion. Such systems commonly are concen-
trated solutions of substances of high molecular weight
colloidal suspensions.’

Oxford Concise Science Dictionary [9.102]. ‘More com-
mon, however, is the opposite effect in which the
viscosity depends not only on the viscosity gradient
but also on the time for which it has been applied.
These liquids are said to exhibit thixotropy. The faster
a thixotropic liquid moves the less viscous it becomes.
This property is used in non-drip paints (which are more
viscous on the brush than on the wall) and lubricat-

ing oils (which become thinner when the parts they are
lubricating start to move).’

Chambers 20th Century Dictionary [9.103]. ‘Thixotropy:
the property of gels of showing a temporary reduction
in viscosity when shaken or stirred.’

Definitions given in more-specialized dictionaries
emphasize the time aspect of thixotropy.

Polymer Technology Dictionary [9.104]. ‘A term used
in rheology which means that the viscosity of a material
decreases significantly with the time of shearing and
then increases significantly when the force inducing the
flow is removed.’

Polymer Science Dictionary [9.105]. ‘Time-dependent
fluid behavior in which the apparent viscosity decreases
with the time of shearing and in which the viscosity
recovers to, or close to, its original value when shearing
ceases. The recovery may take place over a considerable
time. This may sometimes occur with polymer systems,
when molecular disentanglement increases with time of
shearing.’

The definition of thixotropy in the rheological litera-
ture has changed over the years. The (American) Society
of Rheology was quoted by Reiner and Scott-Blair in
1949 [9.106] as defined thixotropy as ‘that property of
a body by virtue of which the ratio of shear stress to
rate of deformation (viscosity) is temporarily reduced
by previous deformation’.

Some time later thixotropy was defined as ‘a com-
paratively slow recovery, on standing, of the consistency
lost through shearing’.

Gellants like Carbopol, polyacrylates and polysac-
charides are used to make fuels and oxidizers (and their
simulants) for rocket engines gel. The gelled products
become thixotropic (see, e.g., [9.107]).

Internet Use. In general on the Internet, the word
thixotropy is often very loosely defined and certainly not
according to rheological orthodoxy. At best such defini-
tions are confusing, but often they are incorrect in that no
reference is made to time as a variable, the indispensable
part of the proper rheological definition of thixotropy. To
illustrate this point, the following (anonymous, but eas-
ily found) selection of typical definitions currently given
on the Internet is cited. These appear in discussions cov-
ering a wide range of non-Newtonian liquid products. In
most cases, the term thixotropy is either partly or com-
pletely confused with what we would properly define as
shear thinning (Fig. 9.24 in Sect. 9.1.1).
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Typical definitions:

• ‘Thixotropy – the property of some gels of becoming
fluid when stirred or shaken, and setting to gel again
when allowed to stand.’• ‘Reversible behavior of certain gels that liquefy
when they are shaken, stirred, or otherwise disturbed
and reset after being allowed to stand. Thixotropy oc-
curs in paint ... which flows freely when stirred and
reverts to a gel-like state on standing.’• ‘High thixotropy materials become thinner when
they are sheared.’• ‘The property of certain gels to become liquid upon
being shaken or agitated and to coagulate again when
left in an undisturbed condition.’• ‘Thixotropy is the property of [clay] slips becoming
thicker when they are at rest, i. e., thixotropy too high
means that the slip thickens up very quickly.’

Definitions referring to specific systems:

• ‘Characteristic of a lubricant to become momen-
tarily ... thinner due to mechanical action such as
stirring.’• ‘The property of some printing inks of becoming
fluid when worked and setting to a semi-solid state
when at rest; the cause of some inks tending to back
away from the ink fountain roller.’• ‘The thixotropic index (of adhesives) – a ratio of
the low-shear viscosity to high-shear viscosity. For
our purposes, the thixotropic index is the Brookfield
viscosity at 5 rpm divided by the viscosity at 50 rpm.’• ‘The ability of wet clay to maintain a given shape.’• ‘The property possessed by certain gels of liquefying
when shaken. This is the ability to resist draining off
vertical surfaces while retaining spreadability under
the applied stress of a brush, roller, or squeegee.
Thixotropy should not be confused with viscosity ...
a thixotropic liquid’s viscosity is high when at rest
and diminishes when stressed.’• ‘In slip-casting, bad drainage, brittleness, casting
spots, cracking, blabbiness, pin holing are all due
to too-low thixotropy, i. e., too fluid.’• ‘Property of certain materials to ... liquefy upon ag-
itation ([paint] viscosity decreases upon application
of shear during brushing or roller), and to stiffen
to its original state when allowed to rest (viscosity
increases). A product that possesses thixotropy can
resist the pull of gravity.’• ‘The ink with good thixotropy is not good in leveling,
while it is excellent in reproducibility and thick-
coating.’

• ‘Thixotropy... the viscosity of a substance decreases
as the substance is set in motion by some mechanical
action such as stirring or shaking. Thixotropy can be
observed in non-drip paints – as the paint is being
applied the viscosity drops and when the paint is
on the wall the viscosity increases to its stationary
value.’

Even the celebrated Encyclopaedia Britannica has
a very strange definition of synovial fluid ‘it is
a markedly thixotropic fluid; that is, one which is both
viscous and elastic’. Of course the proper definition of
its rheological properties is ‘viscoelastic’.

Helpful Internet Definitions
On the other hand, there are very helpful definitions.
A good example is that found on the Thermo-Haake
website [www.thermohaake.com/],

Definition of thixotropic flow behavior:

• Decrease of viscosity as a function of time upon
shearing, 100% recovery (= regaining the original
structures) as a function of time without shearing.

Determination

• Time curves – at constant shear rate to observe
the destruction of the structures within the mater-
ial, dynamic (oscillation) experiment or time curves
after different waiting times to observe/determine
the regeneration of the sample.• Flow curves – upwards and downwards (loop test)
at constant temperature. The hysteresis is a measure
for the thixotropy.

Then the definition given in the IUPAC Compendium
of Chemical Terminology 2nd Edition (1979, 51, 1217)
(available online) is also very helpful:

• Thixotropy: see work softening.• Work softening: the application of a finite shear to
a system after a long rest may result in a decrease
of the viscosity or the consistency. If the decrease
persists when the shear is discontinued, this behav-
ior is called work softening (or shear breakdown),
whereas if the original viscosity or consistency is
recovered this behavior is called thixotropy.• Work hardening: opposite of work softening, in
which shear results in a permanent increase of vis-
cosity or consistency with time.

It is obvious then that, while most rheologists take
a general view of thixotropy which covers all time effects
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resulting from microstructure changes, in the popular
image, the older idea of a transition on shearing–resting
is still often held. Strictly speaking, what is usually
meant by thixotropy in that case would now be termed
extremely shear thinning, to give near solid-like prop-
erties at rest but flow under stress, as for instance in
thixo-forming using metals or the addition of so-called
thixotropes to paints.

A better and extended definition of thixotropy is
clearly needed, and it should contain the ideas of both
considerable shear thinning (i. e., gel–fluid transition)
and also time changes over and above those encountered
when in its structured state the thixotropic material might
be viscoelastic with its attendant time effects.

9.2.2 Description
of Thixotropic Phenomenon

General Considerations
As stated above, all liquids with microstructure can
show thixotropy, because thixotropy only reflects the
finite time taken to move from any one state of mi-
crostructure to another and back again, whether from
different states of flow or to or from rest. The driv-
ing force for microstructural change is the result of the
competition between breakdown due to flow stresses,
build-up due to in-flow collisions, and Brownian mo-
tion. Brownian motion is the random thermal agitation
of atoms and molecules that results in elements of the mi-
crostructure being constantly bombarded, which causes
them to move to a favorable position where they can –
given the necessary force – attach themselves to other
parts of the microstructure. Very occasionally situations
arise where existing weakly attached microstructural
elements – brought together by collision during shear
– are slowly torn apart by the constant action of the
random Brownian motion. In that case, the opposite
of thixotropy is seen, i. e., anti-thixotropy (rheopexy),
where flow and rest destructures the material.

The general term microstructure, as used here, while
usually associated in thixotropic systems with particles,
can also mean alignment of fibres, favorable spatial
distribution of particles in suspensions or drops in emul-
sions (Sect. 9.3), or entanglement density or molecular
associations in polymer solutions. All these determine
the level of viscosity and elasticity (Sect. 9.1), and they
all take a finite time to change from one state to an-
other under the action of shear and/or Brownian forces.
In these cases, the maximum microstructure is seen
when the alignment and spatial distribution are random
(in three dimensions) and entanglement density is at

a maximum. Both these conditions result in the great-
est viscous (and usually elastic) response. On the other
hand, minimum microstructure is when there is max-
imum alignment with the flow of fibres; the drop or
particle spatial distribution is asymmetrical in the flow
direction, or there are a minimum number of entangle-
ments or associations – all these leading to minimum
viscous and elastic response.

When the time scales involved in these changes
become long compared with either the response of a vis-
cometer (or rheometer, Sect. 9.1.1), or the flow time in
a particular flow geometry, we can sensibly talk about
thixotropy. These time scales often range from seconds
to hours, with rebuilding usually taking much longer
than breakdown.

Typical Behavior
If we place a thixotropic material into a viscome-
ter/rheometer (Fig. 9.56) and apply a constant shear rate,
the measured viscosity will decrease with time, but it will
eventually tend to a steady, constant value. If we then
switch off the shear and allow the material to rest for
a some time (without drying or any other artefacts such
as sedimentation or separation occurring) and switch the
shear on again, the measured viscosity will initially be
higher, but will decrease and end up at the same value as
that seen after the original shearing. However, the level
for the original value will not necessarily be the same,
because that will depend on how carefully or vigorously
the material was initially loaded and how long it was left
to rest before shearing.

If on the other hand, a third experiment is performed
where the material is allowed to come to equilibrium
and then allowed to rest for the same length of time as
before, the results will be identical. If now, after equi-
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Fig. 9.56 Shearing a thixotropic liquid after short and long
rest times
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librium is achieved, the shear rate is instantaneously
decreased to a lower value, the measured shear stress
drops instantly, but thereafter it will slowly increase to-
wards a new equilibrium. If instead of applying a given
shear rate we applied a particular shear stress, then the
inverse applies – the shear rate would increase as the
structure breaks down and the change to another (lower)
shear stress will result in a sudden decrease in shear rate
followed by a further drop, Fig. 9.57.

If we now enquire what is happening on a micro-
scale, we can imagine the picture in Fig. 9.58, where
the viscosity/shear-rate behavior of a typical thixotropic
material (which for the sake of argument could be a floc-
culated suspension) is presented. We start from a point
where the microstructure at rest is a series of large flocs.
Then, if the applied shear rate is increased progres-
sively and sufficient time allowed, the floc size decreases
until at a high enough shear rate, the floc has disinte-
grated completely into its constituent primary particles.
Because large flocs trap more continuous-phase liquid
than smaller flocs of the same particles, the viscosity is
higher. The minimum viscosity is seen with individual
particles.

We now imagine another experiment where the shear
rate is increased stepwise from point a to end up at
point b in Fig. 9.58. Instantaneously, the floc size will be
that appropriate to the shear stress condition at point a,
but as it experiences the higher shear rate at position a,
it begins to erode, until it reaches an equilibrium size
appropriate to the higher rate. This process can take

��	������	���������	
�	2�	���	��
���	

��	������	

��	������	��

/�	��
�3�

BL0���A��0�
6��0	�

/0��
�0�

��	������	�����������	
�	2�	���	��
���	

��	������	��

��	������	

BL0���A��0�
6��0	�

Fig. 9.57 Two kinds of step experiment and their effect on
thixotropic liquids

some time. If now the opposite happens – the shear rate
is instantaneously decreased – the individual particles
(which gave the low viscosity) begin to collide and floc-
culate until the size of the flocs formed is appropriate to
the new, lower shear rate. This process also takes time,
with the build-up proceeding at a different rate to the
breakdown.

Any concentrated suspension of particles is shear
thinning, thus when we consider flocs, they show the
phenomena as illustrated in Fig. 9.58. If we imagine that
the particles in a floc are permanently glued together and
thus the floc size is fixed, the flow curve of such a sus-
pension of fixed-size flocs would follow the lines shown
in the figure according to the floc size. If the floc size
is now decreased (and the overall concentration main-
tained) but again the floc size remains unchanged when
sheared, the flow curve will be lower and (for a given
concentration) the degree of shear thinning decreases.

However because we are interested in systems floc-
culated in a secondary minimum, the size of the floc is
not constant but decreases with increasing shear rate (or
shear stress). Because viscosity decreases with floc size
(see above), we now have a double shear-thinning ef-
fect. This means that flocculated systems are very shear
thinning, see the equilibrium curve in Fig. 9.58. The ex-
treme shear thinning also results in such flocculated,
thixotropic systems appearing to have a yield stress,
since the stress only decreases very slowly as the shear
rate is decreased.
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Fig. 9.58 The relationship between microstructure and
(thixotropic) flow properties, illustrated for a flocculated
suspension
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The true steady-state behavior of a thixotropic liquid
is seen both after an infinite shear time at any shear rate
and shear stress of interest or infinite rest time. Of course,
as all true equilibrium states are approached asymptot-
ically, one comes close to this state after a long time
rather than an infinite time, but even then, breakdown
times of hours and days might be necessary to describe
a very thixotropic system fully.

In a flocculated system, breakdown is towards an
equilibrium situation that is governed by the balance of
hydrodynamic shear stresses pulling structures apart by
erosion, and of Brownian and shear forces building the
structure up by collision and accretion of particles that
agglomerate into flocs. The forces holding the structure
together are colloidal in nature, acting over short dis-
tances (∼ 10 nm) within the composite particle (floc).
At rest, only the Brownian rebuilding forces are present,
and these are quite small compared to the shearing, with
energies of of the order of kBT , where kB is the Boltz-
mann constant and T is temperature. This means that
the rebuilding time can be very long, since this small,
random force takes a long time to rearrange large par-
ticles that, as flocs, are getting larger as they move into
a more favorable structure, which is then manifested as
a higher viscosity.

The typical response to a stepwise change from
one steady-state condition to another in terms of
the viscosity is often characterized by the so-called
‘stretched-exponential’ model:

η = ηe,∞ + (ηe,0 −ηe,∞)
(

1− e−( t
τ )
)r

, (9.192)

where ηe,0 is the viscosity at the commencement of
shearing, ηe,∞ is the viscosity after an infinite time,
τ is a time constant and r is a dimensionless constant
(which in the simplest case is unity). This equation can
cope with build-up and breakdown in steps up or steps
down with the values of τ and r depending on both the
level and the direction, i. e., going from 0.1 to 1 s−1 will
not have the same value of r found as going from 1
to 10 s−1. The values of r vary with the conditions of
the test, as well as the particular system being tested
and they decrease linearly with the log of the shear rate,
typically from 0.7–0.9 at 10−2 s−1 to 0.3 at 1 s−1 in
Mewis’s experiments [9.108]. He also showed that, for
a typical flocculated system (fumed silica in paraffin
oil), τ is a decreasing function of ηe,0γ̇ /ηcont, where
ηcont is the viscosity of the continuous phase, which
when taken into account properly describes the effect of
temperature. (Mewis also reports optical, dielectric, and
conductivity results on these systems.)

Mewis’s approach was also used to describe the
thixotropy of hydrophobically modified hydroxyethyl
cellulose and nonassociative cellulose water solutions,
see Maestro et al. [9.109]. The Mewis model fitted
structure rebuilding experiments with an exponent r of
around 2.

Heymann et al. [9.110] investigated the build-up af-
ter shearing of the yield stress of newsprint inks, with
a formulation containing carbon black (Sect. 9.3). A pe-
riod of pre-shearing was carried out at 1500 Pa, and then
the flow curves were measured as a function of time. For
inks, judged to have a yield stress, an equation similar
to that above was used to describe the rebuilding of the
shear stress

σy(t) = σy,0 +[σy,∞ −σy,0](1− e− t
τ ) . (9.193)

For these materials so described, the values of τ were
found to be well over 100 s. Because of this it was judged
that the recovery behavior had no relevance to the print-
ing process, because process times are of the order of
a few seconds at most.

Not only can shear break down or build up flocs,
but it can also change their internal morphology. For
instance, the work of Mills et al. [9.111] showed that
shearing freshly prepared flocculated suspensions can
densify individual flocs, causing reorganization within
the flocs. This shows how important it is to condition
such systems before shearing them in experiments to
elucidate their thixotropic behavior. They found that,
following prolonged shearing, loosely packed flocs be-
came tightly packed and more monodisperse. This can
be interpreted as a loss of structure – rheomalaxis or
rheodestruction.

The experiments of Woithers et al. [9.112] showed
how important thixotropy can be in typical flocculated
systems. They examined the behavior of a depletion-
flocculated polymer latex suspension and showed that
the shear stress dropped significantly with time, and the
effect was still present after one hour. The values of
the initial and final viscosities they found were at least
an order of magnitude different. They also found that
the unsheared samples contained more open flocs, while
shearing flocs made fresh flocs that were denser.

Viscoelasticity and Thixotropy
Viscoelastic systems sheared in their linear region show
time dependency because the microstructure takes time
to respond to the flow/stress (Sect. 9.1). At short times
(high frequencies) structures cannot respond quickly,
and we see an elastic response, while at low frequencies,
the system can adjust itself continuously, i. e., it can flow,
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showing viscous effects (Sects. 9.1 and 9.1.1). Thus,
when observed over all time (and frequency) scales, the
system is viscoelastic.

For nonlinear viscoelastic – or simply inelastic but
shear-thinning systems – not only does the microstruc-
ture take time to respond to the flow, but it is also changed
by the flow and this change will itself take time. This
is the essential difference between linear viscoelasticity
and thixotropy – that while both are time effects, the for-
mer is in the linear region, where the structure responds
but remains unchanged and the latter takes place in the
nonlinear region where the structure is broken down by
deformation as well as responding to it.

Shear thinning can occur for many reasons, e.g.,

• alignment of rod-like particles in the flow direction• loss of entanglements in polymer solutions• rearrangement of microstructure in suspension and
emulsion flow• breakdown of flocs

Since changes in any of these states take some time
to come about (either from rest or from some other
configuration), thixotropy is always (in principle) to
be expected from a thinning mechanism. However
thixotropy becomes significant when its time scale be-
comes significantly longer than the response times of
instruments used to test rheology or longer than some
flow time in a process, e.g., the average time for a li-
quid to flow through a pipe. Thixotropic time scales
can be longer than viscoelastic time scales and practi-
cally important when these time scales become minutes
and longer for breakdown. This will inevitably mean
many more minutes or even hours for the recovery
of the structural nature of most microstructural fea-
tures that produce thixotropic effects (see above). It
is obvious that, at conditions near the fully structured
rest state, viscoelastic effects will also be seen. The
typical response to a start-up experiment from a rest
state shows this. Only a few theories have sought
to account for this effect, which shows concurrently
the breakdown/rebuilding of both viscous and elastic
responses.

The picture presented becomes even more compli-
cated when we consider the linear viscoelastic response
of a rebuilding structure, where the typical storage and
loss moduli – G′ and G′′ (Sect. 9.1) – evolve with
time. This can be used as a measure of the rebuild-
ing mode since the test is conducted at low-enough
stresses/deformations that the evolving structure is unaf-

fected by deformation. The growth of G′ particularly is
very sensitive to structure rebuilding. Barut et al. [9.113]
studied an acrylic polymer solution in a mixture of sol-
vents, with titanium dioxide (TiO2) or a mixture TiO2
and aluminosilicate particles. These were pre-sheared
in a controlled-stress rheometer at 200 Pa for 2 min and
after this ceased, the linear oscillatory properties were
monitored for 10 min at strains of less than 0.1 over
a frequency range of 0.03–62.8 rad s−1. The form of
the rebuilding curve of the storage modulus was also of
a stretched-exponential form:

G′ = G′∞ − (G′∞ − G′
0) exp(−kt p) , (9.194)

where G′
0 is the storage modulus at the commence-

ment of oscillations, G′∞ is the storage modulus after
an infinite time, and k and p are material parameters.

Williams and Ren [9.114] used an oscillatory
rheometer operating over the range 250–800 Hz to ex-
amine the rebuilding of 0.045 g/ml aqueous Laponite
RD dispersions (synthetic-type clay, circular discs 300 ×
10 Å), again measured by G′ but now derived from the
phase velocity. At these high frequencies, G′ is a par-
ticularly sensitive measure of the structural solid-like
response of the clay. They showed that restructuring
was significant over the first 10 minutes or so, but was
still going on after 20 minutes. Viewed on a log scale
there is a rise from an initial value at small times and
a fast build up through a power-law region, eventu-
ally (as it must) flattening out at times greater than
20 minutes.

Bouda and Mikešová [9.115] simultaneously moni-
tored the AC conductivity and the storage modulus G′
to establish the build-up of a carbon-black network in
a polyethylene melt. After an initial period where the
conductivity was constant, it then increased rapidly. The
time a sample with 7.4% by weight took to show the
rapid increase was nearly 200 min. Similar behavior was
also observed for G′. They explained the observations
as resulting from the setting up of a continuous network,
and used percolation theory to show that the observed be-
havior was explainable on the basis of diffusion-limited
aggregation of small clusters of primary carbon-black
particles under the action of Brownian motion. As the
flocs collide and stick together they eventually form an
interconnecting network as the percolation threshold is
reached, at which point the electrical conductivity and
the storage modulus G′ rose rapidly; see also [9.116].

On the other hand, Greener and Connelly [9.117]
point out how easy it is to misinterpret thixotropy
loops, particularly if there is viscoelasticity present in
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the sample being tested. They compared the supposed
thixotropic behavior of an aqueous poly-acrylamide
solution with the behavior of the Wagner model (cf.
Sect. 1.3) and show that all the effects are accounted
for by the viscoelastic behavior alone, and not by true
thixotropy.

9.2.3 Typical Thixotropic Experiments

Thixotropic/Hysteresis Loops
One of the favorite ways of measuring thixotropy is to
perform a loop test; that is to say, to linearly increase
the shear rate (or sometimes shear stress) from zero to
a maximum value, and then to return at the same rate to
zero. This test can then be repeated, until eventually an
invariable loop behavior is seen; see Fig. 9.59. The area
between the up and down curve is automatically meas-
ured in some computer-based rheometers as a measure
of thixotropy.

However, this kind of test is to be depreciated, for al-
though useful as a quick, qualitative test, the procedure
has a number of disadvantages. First, the loop test is of-
ten carried out too quickly, and inertial effects due to the
measuring head are introduced but not always recog-
nized. (However, inertia effects can now be accounted
for by some rheometer software packages.) Secondly,
both shear rate and time are changed simultaneously, in
a material where the flow properties are a function of
both shear rate and time – as thixotropy obviously is.
This is bad experimentation because the response can-
not then be resolved into the separate effects from both
variables from the one experiment. However the prob-
lem in interpreting the loop is even more difficult when
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Fig. 9.59 A typical thixotropic loop test

we realize that the first part of the behavior on start-up
is essentially elastic (cf. the overshoot in Fig. 9.13). As
the strain becomes large this moves to nonlinear elastic
response. If the behavior were just linear elasticity, then
the strain in a simple loop test would increase paraboli-
cally, and the curve would be concave to start with, but
soon turns over. At the same time the viscous behavior
can become apparent, giving a tendency to flatten out.
The viscous behavior then itself becomes nonlinear as
the microstructure begins to break down at large strains.
As the strain rate increases further, the liquid would like
to shear-thin, but this takes time since the structure can-
not adjust itself fast enough to the increasing shear rate.
When the time is long enough and the structure has bro-
ken down, the down curve which will be under the up
curve. Rebuilding will then begin to take place slowly.
Even with an apparatus that responds perfectly to the
stress and strain, interpreting the data to obtain the pa-
rameters corresponding to a model is very difficult, if
not impossible.

A simpler and more-sensible test for a thixotropic
liquid is performing and deriving results from stepwise
experiments where the shear rate or stress is changed
from one condition to another with a carefully controlled
prehistory. Even so, it is impossible to eliminate the
elastic response and instrument inertia.

Start-Up Experiments
Any experiment that starts from rest is another kind
of thixotropic test. The typical behavior of strain- or
stress-controlled experiments is shown in Fig. 9.60.

Most, if not all, thixotropic materials that have been
at rest for some time show viscoelastic behavior, so the
immediate response of such tests is elastic, then depend-
ing on the conditions, a thixotropic response will be seen
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Fig. 9.60 Various regions of start-up flow
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as an overshoot in the stress in strain-controlled exper-
iments or an increase in the strain–time curve in creep
tests (Sect. 9.1). This sometimes happens after a criti-
cal strain has been achieved. This initial elastic response
giving way to a thixotropic viscous response makes the
behavior quite complicated.

Artefacts Involved in Measuring Thixotropy
The greatest difficulty in understanding and modeling
thixotropic materials is in knowing the effect of the –
often unknown – deformation prehistory on the liquid
of interest. This is particularly true in situations where
a thixotropic liquid is subject to mixing and pumping,
or even the seemingly simple task of filling a viscome-
ter or rheometer. In both cases it would be interesting
to be able to predict the subsequent flow even if only
the initial response was known, say the initial torque
on a viscometer operating at a certain shear rate, or
the torque on a mixing vessel prior to the liquid being
pumped out.

A number of methods have been devised to estab-
lish a consistent initial condition: fixed rest time after
sample loading; pre-shear at a prescribed shear rate
for a prescribed time followed by period; pre-shearing
to equilibrium at a low shear rate followed by testing
at a higher shear rate, etc. These eliminate the prob-
lem in characterization, but they can never completely
eliminate the problem in practice, since the effects of
prehistory on a previously untested sample are always
unknown.

The mechanical inertia of the rotating members in
viscometers and rheometers (Sect. 9.1.1) means that, in
experiments where the shear rate or stress is changed
quickly or instantaneously, the instrument response is
delayed, and this is often mistaken for thixotropy, and
even if thixotropy is present, this can complicate its mea-
surement. Sometimes the presence of a low-compliance
spring complicates the measurement because the output
of the experiment relates to this spring response.

For isotropic materials, as we have seen, a typical
source of thixotropy phenomenon is the breakdown of
large flocs. However this also leads to the appearance
of apparent slip at the wall, e.g., depletion giving large
effects, see Barnes [9.118]. This is a case where ob-
serving the pressure gradient alone in a pressure-driven
rheometer (Sect. 9.1.1) will not differentiate between
or account for both effects. A detailed investigation of
the flow profile will alone show what is happening. As
well as pipe flows, there are many apparently simple
flows where the shear rate or shear stress is not constant
spatially, for instance, concentric cylinders and paral-

lel plates (Sect. 9.1.1). These geometries are often used
in the rheological characterization of thixotropic liq-
uids, and unwittingly many workers are unaware of the
complications.

9.2.4 Semi-Empirical
Phenomenological Theories Used
to Fit Experimental Data

Requirements of Useful Models
The ideal model to describe thixotropic behavior would
start from the fact that some rheology-determining phys-
ical entity takes time to change when the flow field
around it is changed or is changing. As we have al-
ready said, this might be, for example, the size of a floc,
the orientation angle of an alienable particle, or the den-
sity of transient entanglements. In the simplest models,
all such fundamental parameters change instantly with
shear, shear rate, or shear stress. First we have to know at
what rate these changes take place, and then if we know
how the microstructure relates to the stress, we can pre-
dict the overall behavior. Most workers in this field have
used theories to describe viscous thixotropic phenomena
while only a few have attempted to describe viscoelastic
effects. Representative classes of theories are described
below and others in that field are noted.

Viscous Theories
Current theories for thixotropy fall into three groups:
first those that use a very good description of microstruc-
ture described by a numerical value of a scalar parameter,
typically λ and then use dλ/dt as the working param-
eter; second those who attempt some description of the
temporal change of the microstructure as for instance
the number of bonds, or attempt to describe real floc ar-
chitecture using fractal analysis, and third those that use
time data itself on which to base a theory.

Indirect Microstructural Theories
Most workers in this area have developed mathematical
theories of thixotropy. Based on some numerical scalar
measure of structure, often designated by λ and using
this simplistic concept, the completely built structure
is represented by λ = 1 and completely broken down
by λ = 0. In the simplest case of a typical, inelastic,
non-Newtonian liquid with upper and lower Newtonian
viscosity plateaux, λ = 1 corresponds to the zero-shear
viscosity η0 and λ = 0 corresponds to the lower asymp-
totic viscosity at an infinite shear rate η∞, with λ taking
intermediate values between.
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Thixotropy is then usually introduced via the time
derivative of the structure parameter dλ/dt, which is
given by the sum of the build-up and breakdown terms,
which in the simplest theories are only controlled by
the shear rate and the current level of the structure λ.
The general description of the rate of breakdown due to
shearing is given by the product of the current level of
structure and the shear rate raised to some power. The
driving force to build up is controlled by the distance the
structure is from its maximum value, raised to another
power. Thus

dλ

dt
= g(γ̇ , λ) = a(1−λ)b − cλγ̇ d , (9.195)

where a, b, c, and d are constants for any one system. The
value of the function g(γ̇ , λ) is negative if the system is
breaking down towards equilibrium; if it is positive, it
is building up to equilibrium. At equilibrium, for every
value of shear rate there is a particular value of λ, which
in the equation is found by setting dλ/dt to zero.

Godfrey [9.86] summarized the development of these
two-process models beginning with

• Goodeve and Whitfield in 1938 [9.119], which led to
an earlier version of the above equation• to Moore [9.120] with both b and d as unity,• progressing through Cheng and Evans [9.121] with
b unity, but d being non-unitary,• through to the very general structural kinetic
model of Mewis, with both powers taking no-
unitary values, the formulation used by Lapasin’s
group [9.122].

The next step in this kind of approach is to relate the λ

– as calculated using the equations above – to the stress
σ or viscosity η in some suitable equation. As we shall
see this has been done in a variety of ways which range
from the Bingham equation

σ = σy + kγ̇ (9.196)

through the Cross model to a Cross-like model con-
taining a yield stress. Most of the differences between
the theories in this area are accounted for in combina-
tions of these structure change and structure–viscosity
formulations.

Baravian et al. [9.123] proposed a modification of
the Cheng and Evans approach. Their study is worth
looking at in detail for two reasons. First it follows the
traditional route to describe thixotropy, and second, it
shows how long and seemingly involved the procedure
to describe thixotropy becomes.

They postulate that the relationship between viscos-
ity and structure is given by

η(σ, t) = η(λ) = η∞
(1− Kλ)2 , K = 1−

(
η∞
η0

)− 1
2

.

(9.197)

This assumes that the effect of stress on the viscosity is
also accounted for by the current value of the structural
parameter λ, which can be written

λ =
[

1−
(

η∞
η

) 1
2
]

/K , (9.198)

where η is the current value of viscosity. Then for any
system one has to find the values of η0 and η∞ (and thus,
K ), and from these, all values of η can be converted into
values of λ. They assume that the relationship between
the equilibrium value of the structural parameter λ and
the shear stress σ is given by

λequil(σ) =
[

1+
(

σ

σc

)p]−1

, (9.199)

where σ is the shear stress and σc is its critical value.
From any one particular equilibrium position of

stress, 1 Pa jumps were made up and down, and plots
of dλ/dt versus λ were made. These were of the form

λ = 1

ta

(

1− λ

λequil

)

. (9.200)

This kind of curve was obtained for many values of
equilibrium stress. The values of the constants were then
described by the equation:

λ(t) = λequil + (λini −λequil) exp

(

− t

ta

)

, (9.201)

where λini is the initial value of λ.
Thus, for all values of stress, they could now de-

fine λini, λequil, and ta. Using the stress-up as well as
stress-down data, the values of ta were the same. This
theory was used to describe a loop test very well, once
instrument inertia had been accounted for.

Other variations on this theme include that of De
Kee et al. [9.124] (following Tiu and Boger [9.125])
who described the breakdown behavior of various food
systems by

dλ

dt
= −cγ̇ d(λ−λequil)

n , (9.202)

where c is a constant parameter.
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The stress was then described by a multiple expo-
nential-type flow law given by

σ(γ̇ ) = λ

[

σ0 + γ̇
∑

i

ηi exp(−ti γ̇ )

]

, (9.203)

where ηi and ti are the model parameters. The theory was
used to characterize viscosity decay curves for yoghurt
and mayonnaise.

Direct Structure Theories
Denny and Brodkey applied reaction kinetics to
thixotropy via a simple scheme that described the dis-
tribution of broken and unbroken bonds [9.126]. The
number of these bonds was later related to the viscos-
ity. The forward and reverse rate constants, k1 and k2,
represented the breakdown characteristics in flow, and
the build-up kinetics, see for instance van den Tem-
pel [9.127] who related the flocculated system of fat
globules. Denny and Brodkey wrote the rate of structure
breakdown as (cf. Ruckenstein and Mewis [9.128]):

− d(unbroken)

dt
= k1(unbroken)n − k2(broken)m ,

(9.204)

and solved to give the viscosity by assuming that it
is linearly proportional to the unbroken structure, with
a maximum value (η0) when completely structured and
a minimum value (η∞) when completely destructured.
The rate constant k2 is assumed to be independent
of shear rate, being merely a description of Brownian
collisions leading to restructuring and the rate of break-
down constant is related to shear rate by a power-law
expression.

The way the well-known Cross model was derived
is instructive [9.129]. Assuming that the structured li-
quid was made up of flocs of randomly linked chains of
particles, Cross described a rate equation of the form:

dN

dt
= k2 P − (k0 + k1γ̇

m)N , (9.205)

where N is the average number of links per chain, k2 is
a rate constant describing Brownian collision, k0 and k1
are rate constants for the Brownian and shear contribu-
tion to break down, P is the number of single particles
per unit volume, and m is a constant less than unity. At
equilibrium dN/dt is zero, so

Ne = k2 P

k0(1+ k1
k0

γ̇m)
. (9.206)

Then, assuming that the viscosity was given by a con-
stant η∞ plus a viscous contribution proportional to

the number of bonds Ne, he derived his well-known
relationship

η−η∞
η0 −η∞

= 1

1+ k1
k0

γ̇m
, (9.207)

where ηe is the equilibrium value of viscosity at long
time of shearing (cf. (9.247) in Sect. 9.3).

Cross could have used the nonequilibrium data to
derive a thixotropic model, which others did later using
his model.

Lapasin et al. [9.130] used a fractal approach to
describe flocculated suspensions. They argued that

dNmax

dt
= a(N − Nmax)−bσq(Nmax − Nmax,∞) ,

(9.208)

where Nmax is the number of primary particles in a floc,
Nmax,∞ is the lower limit to which Nmax tends as the
shear stress σ becomes infinite, and a and q are material
constants. This can be solved for N 	 Nmax to give

Nmax = Nmax,∞ + aN

b
σ−q , (9.209)

which yields

(
η

ηs

)− 1
2

= 1− φ

φmax

B + A

(

Nmax,∞ +
(

σ
σc

)−q
)β+1

−1

B + Nmax,∞ +
(

σ
σc

)−q −1
,

(9.210)

where φ is the volume fraction of flocs, and A and B are
constants, whereas β = 3/D −1, where D is the fractal
dimension of the floc.

This equation describes the breakdown of flocs under
flow, and predicts a yield stress and a high-shear-rate
viscosity. It described very well the behavior of both
titanium dioxide (TiO2) and mica dispersions in steady
state. (A much more-complicated theory of this kind had
been proposed much earlier by Eyring [9.131].)

Simple Viscosity Theories
Frederickson [9.132] formulated an expression for the
rate of change of fluidity Θ (the inverse of viscosity) of
a non-Newtonian system as

dΘ

dt
= k1γ̇

2
(

Θ∞ −Θ

Θ

)

− k2(Θ −Θ0) . (9.211)
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He used this expression for steady-state flow (dΘ/dt =
0), recovery at rest (i. e., zero shear rate), the sudden
application of a step stress, and a loop test. Like the Cross
model, this model also has higher and lower Newtonian
plateaux at equilibrium, and if the quadratic dependence
on shear rate is replaced a power-law relationship, they
become similar.

Mewis and Schryvers [9.133] devised a theory that
also circumvents the use of any parameter such as λ, and
instead used the viscosity as a direct measure of struc-
ture. They proposed that the rate of change of viscosity
rather than rate of change of structure be the viscosity
difference between the steady state and current values
of viscosity (not the structure difference), viz.

dη

dt
= K [ηs(γ̇ )−η]n , (9.212)

where ηs is the steady-state viscosity.
This integrates to give

η = ηe,∞ − (ηe,∞ −ηe,0)

× {[(η−1)Kt(ηe,∞ −ηe,0)n−1 +1]n−1

+1}1/(1−n) . (9.213)

In the notation ηe,0 and ηe,∞ the initial subscript refers to
the fact that the viscosities referred to are at equilibrium,
while the second refers to the shear rate.

Mewis and Schryvers then made the (Newtonian)
assumption that ηe,0 = ηe,∞ = µ, which makes the equa-
tion simpler since it is much easier to measure the
eventual viscosity of the initial steady-state condition.
This assumes that the viscosity at the end of the initial
steady-state period as that at the beginning of the new
shear-rate test, i. e., that the system is essentially be-
tween those conditions. This is reasonable under some
conditions but, as Mewis’s work has shown, it is only
strictly true for most systems at higher shear rates. Using
a value of n of 5/3, they fitted experimental data very
well for carbon black in mineral oil.

Kristen et al. [9.134] modeled the thixotropic break-
down behavior of maize starch pastes using the equation:

(η−η∞)1−m = [(m −1)kt +1](η0 −η∞)1−m ,

(9.214)

where η0 and η∞ are the asymptotic values of viscosity η

(representing the fully structured and fully destructured
states, respectively) measured at time t for any particu-
lar shear rate γ̇ , and k and m are material constants. This
approach had been used with previous minerals and in-
dustrial suspensions [9.135]. For the starch paste they
studied the data was satisfactorily described by m = 3.

Over the shear rate range tested, the steady-state flow
curves could be described by a power-law model.

Viscoelastic Theories
Almost any viscoelastic theory can have thixotropy in-
troduced if the particles that give the viscous and elastic
responses are made to change in the way we have de-
scribed for purely viscous behavior. Probably a model
due to Acierno et al. [9.136] gives the best example of
this approach. They considered a model based on a se-
ries of Maxwell elements (Sect. 9.1). The number of
elements in their model was such that they could be
represented by a continuous spectrum. Simplifying the
model to a discrete series, it is possible to write the
behavior as

σ =
∑

i
σi ,

σi

Gi
+ θi

d

dt

(
σi

Gi

)

= θi γ̇ , (9.215)

where σi is the stress, Gi the modulus, and θ the relax-
ation time (= ηi/Gi ) of the i-th element in the discrete
spectrum.

Thixotropy is introduced via the well-used structure
parameter λ (labeled xi in their paper):

Gi = G0,iλi , θi = θ0,iλ
1,4
i . (9.216)

The rate equation is then given by

dλi

dt
= 1−λi

θi
− aλi

θi

(
Ei

Gi

) 1
2

, (9.217)

where Ei is the instantaneous elastic energy in the i-th el-
ement. This is the same as the Moore linear model [9.84],
except that the shear rate is now replaced by the gen-
eralized expression (Ei/Gi )1/2/θi that accounts for the
elasticity as well as the viscosity. The theory gives an ex-
cellent description of most of the rheological behavior of
a low-density polyethylene melt in shear and extensional
transient and steady-state flow. The model is equiva-
lent to the Moore model if reduced to the viscous case.
Shoong and Shen [9.137] introduced a power-law de-
pendence in the breakdown term, which then compares
with the Cheng and Evans’ inelastic model.

Quemada [9.138] developed a thixotropic model
based on an explicit viscosity–structure relationship,
η(S), between the viscosity and a structural variable
S. Under unsteady conditions, characterized by a re-
duced shear rate, γ (t), shear-induced structural change
obeys a kinetic equation (through shear-dependent re-
laxation times). The general solution of this equation is
a time-dependent function, S(t) = S[t, γ (t)]. Thixotropy
was modeled by introducing S[t, γ (t)] into η(S), which
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led directly to η(t) = η[t, γ (t)] without the need for any
additional assumptions in the model. Moreover, whilst
observation of linear elasticity requires small enough
deformation, i. e., no change in the structure, larger de-
formations cause structural buildup/breakdown, i. e., the
presence of thixotropy, and hence leads to a special case
of nonlinear viscoelasticity that can be called thixoe-
lasticity. Predictions of a modified Maxwell equation,
obtained by using the above-defined η(S) and assum-
ing G = G(0)S (where G(0) is the shear modulus in the
resting state defined by S = 1) were discussed in the
case of start-up and relaxation tests. Similarly modified
Maxwell–Jeffreys and Burger equations (Sect. 9.1) are
used to predict creep tests and hysteresis loops. Discus-
sion of model predictions mainly concerned both the
effects of varying the model variables or/and the ap-
plied shear-rate conditions and comparisons with some
experimental data.

9.2.5 The Breakdown and Build-Up
of Isolated Flocs

Two key mechanisms of thixotropy for typical systems
are floc erosion and Brownian collisions. Work has been
published on these topics for diluted flocs and it is in-
structive to relate these studies to thixotropic build-up
and breakdown of suspensions of flocs.

The diffusion rate of isolated flocs decreases
significantly as their size grows. Reynolds and Good-
win [9.139] measured the diffusion coefficients of
isolated flocs and found a rapid decrease of diffusion
rate with floc size, with the particular value depending
on the floc geometry, which they studied as linear or
clustered flocs. As these are quite moderate floc sizes,
it is obvious that flocs of hundreds or thousands of pri-
mary particles will move very sluggishly. The effect of
primary particle size on translational diffusion coeffi-
cient was worked out by Einstein as a simple inverse
dependence on size (cf. (3.203) in Sect. 3.7). However
the rotational diffusion of particles scales as the inverse
cube of particle size [9.140]. This behavior explains why
exponential expressions for rebuilding contain a driving
force such as (1−λ) because rebuilding starts as the
floc size grows and the diffusion coefficient decreases.
This means that collisions become less frequent, and
as rebuilding progresses it gets slower and slower, but
theoretically never stops.

The breakdown of isolated flocs in imposed shear
fields has been studied by a number of workers. Sonn-
tag [9.141] summarized the results as df = Cγ̇ s where s
has been measured as 0.2 or 0.5. The surface shear force

experienced by an isolated floc is given by the prod-
uct dfdηγ̇ , where df is the floc size, d is the size of the
primary particles, η is the viscosity of the continuous
phase, and γ̇ is the shear rate. It is this force which prod-
uces surface erosion of primary particles if it is greater
than some bond shear strength between the primary par-
ticles, see Mûhle [9.142]. This expression shows that
breakdown in a given shear field is fastest for the largest
sized flocs, i. e., at the shortest times as being propor-
tional to the shear rate raised to a power. These facts are
reflected in the structure breakdown criteria normally
used, dλ/dt ∝ −λγ̇ n .

9.2.6 Examples of Systems and Studies
from the Literature

Previous Work
There are a very large number of systems that have
been found to be thixotropic; previous reviews have
listed many examples (see Bauer and Collins [9.83],
Mewis [9.84], Cheng [9.85], and Godfrey [9.86]). Here
a set of largely new examples is given, with special
emphasis on hitherto unreported eastern European and
oriental studies.

The present author (Barnes [9.87]) has produced
extensive tabulations of work on specific thixotropic
systems in the following areas:

• Thixotropic paints, inks and coatings: when coatings
are applied to vertical or inclined surfaces, the time
taken for rebuilding to occur can cause the material to
drain. This is obviously undesirable. The thixotropic
breakdown of paints is important when such paints
are being put onto the brush or brushed out. The
desirable properties of nondrip paint might appear
quite quickly, but the paint has to be worked to make
it thin enough to apply evenly.• Thixotropic detergent systems: thixotropy in com-
mercial detergent liquids can give rise to problems
when they have to be poured from containers
or poured into machines. Then dispersion can be
a problem. If rebuilding is very slow, physical insta-
bility can result due to sedimentation or creaming.• Thixotropic clay systems: clays are probably the
best known examples of thixotropy, because of the
extreme changes brought about by shear. A clay sus-
pension can be shaken in a bottle, and the sound
generated is almost water-like, but on standing
the clay becomes completely gelled and manifests
a ringing sound if tapped in a glass container. Clays
such as the natural bentonites and the manufactured
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and modified Laponites, because of the extensive na-
ture of the very thin sheets from which they are made
up, give a very good thickening effect without giv-
ing the unwanted viscoelastic effects found in some
kinds of polymeric thickeners. However, because of
the size of these clay sheets, the rate of structuring is
very slow and also the difference between the fully
formed structure at rest and the flowing dispersion
is large.• Thixotropic oils and lubricants: greases are
thixotropic because of the flocculation of the dis-
persed material suspended in an oil phase. This is
very important in lubricating situations where the
grease has to break on shearing so that no unwanted
extra drag is experienced in bearings.• Thixotropic coal suspensions: coal–oil and coal–
water suspensions show considerable thixotropy, and
problems with start up of pumps and after stop-
ping the flow can be quite severe. The pump duties
required for flow of sheared suspensions are very
different from start up of a rested suspension. This
can result in pump failure, since start-up torques can
be very high.• Thixotropic metal slushes: if metals are sheared
just below their melting point, they take on the
appearance of a shear-thinning liquid. However,
they have been described as thixotropic. While they
might possess some thixotropy, the title is probably
a misnomer because shear thinning is perhaps more
important than thixotropy. In fact, as stated above,
thixotropy is probably a nuisance, because what
is needed is a fast-responding, very shear-thinning,
liquid-like material for casting.• Thixotropic rubber solutions: the manufacture of
black rubber tyres, etc., uses carbon black. When
dispersed, carbon-black particles are attracted to one
another, and form a network throughout the rubber
solution. The latter itself is shear thinning, and the
carbon-black network also renders a degree of shear
thinning, but is also thixotropic.• Thixotropic food and biological systems: many food
and biological systems are well known examples of
thixotropy. For instance, flow makes them thinner,
but leaving them to rest thereafter thickens them
again. Thixotropy in food thickeners such as xan-
than gums can cause problems in that the suspending
properties given to liquids may take time to ap-
pear after shearing and this could cause some initial
sedimentation or creaming of suspended material.• Thixotropy in creams and pharmaceuticals products:
creams and other personal-product and pharmaceu-

tical materials are given body by using so-called
thixotropes that happen to be thixotropic. Here the
original meaning of thixotropy of conferring gel-like
properties is still very often the controlling idea. The
time effects seen using these materials are therefore
again only of nuisance value.

Published Work on the Engineering
Consequences of Thixotropy

Flow in Mixers. Edwards et al. [9.143] found that the
behavior of a range of thixotropic materials in a series
of mixers was quite easy to characterize if one assumed
that the mixer behaved as a viscometer running at the
same shear rate as the average shear rate in the mixer.
An average shear rate for the flow in a cylindrical vessel
with anchor, helical ribbon or helical screw impellers is
given by the impeller rotational speed N (rev s−1) times
a constant depending on the impeller geometry, k, where
values of k ranges from about 12 for the helical screw,
to around 20 for the anchor, or 30 for the helical ribbon.
They compared the torque produced by the mixer with
the signal from a viscometer running at the same shear
rate, both of which could halve over the course of the
experiment. For salad cream, tomato ketchup, yoghurt,
paint and 3 and 4% aqueous Laponite dispersions, they
found that the average viscosity as a function of time
in the mixer at a given impeller speed compared well
with that in a viscometer running at the same shear
rate. For the salad cream, tomato ketchup, and paint, the
viscosities agreed to within 10%. The predicted values
for 3 and 4% Laponite agreed reasonably well for the
anchor and helical ribbon, but were 20–40% too low for
the helical screws. This latter fact was probably due to
the strongly non-Newtonian behavior and nature of the
Laponite dispersions.

Flow in Pipes. When a thixotropic liquid enters a long
pipe from a large vessel where it has been at rest, the
development of the velocity and pressure fields in the
pipe is very complicated. The large pressure involved
in the start-up of flow of a thixotropic liquid can cause
problems in terms of the necessary pump performance.
Often cavitation can be the cause, since even though
the pump could cope with sheared material, it might be
unable to initiate flow of the material that has been at
rest for some time. Cavitation in the liquid within the
pipe can also occur.

Once flow has started, the liquid near the pipe wall
is subjected to the highest shear rate and the lowest ve-
locity; hence it is subjected to the shear for longer than
the fluid flowing in the middle of the pipe. This re-
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sults in a very fast and prolonged breakdown near the
wall, giving a low-viscosity layer that effectively lubri-
cates the inner, more-viscous layers (the phenomenon
quite similar to the one expected for a purely Bing-
ham fluid possessing a yield stress). If the pipe is long
enough, the flow profile will evolve such that even-
tually the steady state profile is established. However,
for short pipes the flow can be quite complicated, with
a nonlinear pressure profile being a distinct possibility.
Distinguishing thixotropy from a developing slip layer
caused by particle depletion can be very complicated
(Barnes [9.114]).

Schmitt et al. [9.144] derived an equation for the pre-
diction of the mean value of the friction factor during
the flow of a thixotropic fluid in a horizontal rectilinear
cylindrical pipe. According to their equation, the pres-
sure drop is a function of three dimensionless numbers:
the generalized Reynolds number Re standing for the ra-
tio of inertial to viscous forces for an Ostwaldian fluid,
a modified memory effects number, the Deborah num-
ber De = θ/tch, where θ is the characteristic memory
time, and tch the characteristic flow time, and a struc-
tural number Se, which is correlated to the maximum
breakdown of structure of the fluid. This equation is only
valid for laminar flows and is based on several hypothe-
ses described in [9.144]. The rheological model used
in [9.144] is based on a structural approach, featuring
a rheological state equation describing shear stress, and
a structural decay equation. The fluid was stirred yoghurt
and its structural parameter λ follows a second-order ki-
netic equation. Experimental validation of the friction
factor formula showed good agreement.

Recent Publications on the Subject
of Thixotropy

Much work has been presented since the present au-
thor originally reviewed the thixotropy literature in
1997 [9.87].

Chinese workers seem to be leading the field recently
in studying thixotropic systems and their work deserves
separate mention. First Hou et al. [9.145] showed a novel
type of thixotropic or, as they called it, complex be-
havior. Similarly Li et al. [9.146] looked at the effect
of pH on the thixotropy of ferric aluminium mag-
nesium hydroxide/montmorillonite suspensions. They
found that for relatively low ratios of Fe-Al-Mg-mixed
metal hydroxide, MMH, to sodium montmorillonite
(MT, 0, 0.012 and 0.051 by weight), when the pH
was slowly increased, the suspension behavior changed
from negative, anti-thixotropy (rheopexy), to typical
thixotropy; when the ratio of MMH to MT was rel-

atively high (0.091), rising gradually, the suspension
behavior changed from ‘complex’ thixotropy to negative
thixotropy (rheopexy) with increasing pH. In another se-
ries of similar experiments reported by Li et al.[9.147],
thixotropy and negative thixotropy (rheopexy) were re-
ported. This showed the complex effects of time and
shear rate in influencing the microstructure. The experi-
ments were carried out by first shearing the suspension at
high shear rate to destroy the microstructure of the sus-
pension, then monitoring the change of the viscosity or
stress with time at a low shear, i. e., to study the process
of structure recovery. The shear history and the shear rate
strongly influenced the recovery process for MMH/MT
suspensions. The system with a weight ratio (R) of
MMH/MT of 0.0 and with R = 0.013 both show typi-
cal thixotropy in the shear-rate range 10–1022 s−1, i. e.,
shear rate does not change the thixotropic type behav-
ior of the suspensions. The suspension with R = 0.051
showed complex thixotropy under lower shear-rate val-
ues (10 and 170 s−1), but showed negative thixotropy
(rheopexy) under higher shear-rate values (511 and
1022 s−1). The system with R = 0.091 showed negative
thixotropy (rheopexy) at lower shear-rate values (10 and
170 s−1), but shows complex thixotropy at higher shear-
rate values (511 and 1022 s−1). With increasing shear
rate, the viscosity of these suspensions decreases gradu-
ally, and the degree of change in viscosity similarly slows
down, i. e., the thixotropic behavior becomes weaker.

Li et al. [9.148] have also reported on the influence of
measuring conditions on the thixotropy of hydrotalcite-
like/montmorillonite (HTlc/MT) suspensions. Three
kinds of these suspensions were studied, their mass
ratios of HTlc to MT, R, were 0.013, 0.051, 0.091, re-
spectively. The HTlc/MT suspension with R = 0.013
showed normal thixotropy at zero time of shearing,
t(s) = 0, but it changed to rheopexy with increasing t(s).
The suspension with R = 0.051 transformed from com-
plex thixotropy at low shear rate or positive thixotropy
at high shear rate into negative thixotropy (rheopexy)
with increasing t(s). The suspension with R = 0.091
showed complex thixotropy when the shear rate was
1022 s−1, and showed negative thixotropy (rheopexy)
at 10 s−1. However, the suspension changed from nega-
tive thixotropy to the weak complex one with increasing
t(s) when the shear rate was 170 or 341 s−1. For all the
systems, the equilibrium viscosity decreased gradually
with t(s) at the low shear rate, but the equilibrium vis-
cosity increased with t(s) at high shear rate because of
the memory effect.

Last of all for these systems, we quote the work
of Li et al. [9.149] on the influence of electrolytes
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on the thixotropic behavior of ferric aluminum mag-
nesium hydroxide-montmorillonite suspensions [Fe-
Al-Mg-MMH and Na-montmorillonite (MT)]. When
sodium or magnesium chloride were added to the
suspension, the thixotropy of the suspension changed
from positive and complex into negative thixotropy
(rheopexy), but the electrolytes did not change the
thixotropic type of a rheopexic suspension. When alu-
minium chloride was added to positive thixotropic
systems, they were transformed to a complex one,
whereas a complex and negative thixotropic sus-
pension remains unchanged, for additions less than
0.01 mol/L; when the level of added aluminium chlo-
ride was increased, all types of thixotropic systems are
changed to non-thixotropic! In addition, both sodium
and magnesium chloride controlled the initial viscosity,
measured after cessation of intensive shearing increase,
but the value of the viscosity decreased rapidly with
time. The equilibrium viscosity of the suspension de-
creased gradually with increasing concentrations of
chlorides in the suspension. With increasing concentra-
tion of aluminium chloride, the equilibrium viscosities
of the positive thixotropic suspension and the com-
plex thixotropic suspension increase at first, but later
decreased, and the equilibrium viscosity of negative
thixotropic (rheopexic) suspensions decreased gradu-
ally.

The thixotropic properties of mixed suspensions
containing oppositely charged colloidal particles were
studied by Guo et al. [9.150]. In particular, the rheo-
logical properties of single-component clay dispersions
and clay/MMH mixed dispersions containing oppositely
charged colloidal particles were investigated. As the clay
concentration is increased, the clay suspensions develop
from Newtonian to yield-stress behavior. Adding sodium
chloride to clay/MMH mixed suspensions caused a de-
crease in the yield values and apparent viscosities. In
the structural recovery measurements, the time depen-
dence of viscoelastic properties of clay/MMH mixed
dispersions showed only very small variations of the
storage moduli over three hours, in contrast to unusual
thixotropic properties of aqueous single-component
dispersions of Laponite or MMH. The results were
explained using attractive electrostatic interactions be-
tween clay and MMH particles due to their opposite
charges, similar to the edge(+)/face(-) interactions in
single-component clay dispersions at low pH values.

Sun et al. [9.151] investigated the rheological
properties of aqueous dispersions of the aluminium–
magnesium mixed-metal hydroxide (MMH), which
forms solid-like structures. Special emphasis was placed

on thixotropy, with structural recovery at rest after
steady shear, was characterized by steady shear and
small-amplitude oscillatory shear measurements. With
increasing MMH concentration, the behavior changed
from predominately viscous to a solid-like response.
The magnitude of the storage modulus, G′, increased
strongly and became less dependent on frequency
with increasing MMH concentration. After cessation of
steady shear, the complex viscosity increased monotoni-
cally with time and even after three hours no equilibrium
viscosity value was seen, while shear stress under steady
rate of 10 s−1 approached the equilibrium value only
after about 10 min. The recovery of the MMH sus-
pension after cessation of steady shear was strongly
affected by pre-shear history and rebuilding time, so
that the greater the intensity of pre-shearing, the lower
the values of the elastic moduli after pre-shearing had
ceased. Conversely, the longer the rebuilding time, the
larger the values of the elastic moduli. These results were
similar to those obtained for clay dispersions of differ-
ent ionic strength and clay concentration. Similarities
in particle size and shape, though oppositely charged,
and rheology between the two systems provided indi-
rect evidence of similar rebuilding mechanism, so it was
assumed that, for positively charged MMH suspension,
long-range electrostatic double layers forces led to the
formation of a solid-like structure.

The rheological properties of calcium-carbonate-
filled polypropylene were examined by Wang and
Yu [9.152] using a Rheometrics dynamic analyzer. The
study included steady-shear tests, transient stress growth
tests with sequential deformation history, and two-step
dynamic oscillatory shear flow. Thixotropic behavior
was observed in transient tests for highly filled com-
pounds at volume loading exceeding a critical value at
about 20%. The material responses of these viscoelastic
thixotropic materials depended on the duration of shear
as well as on the rate of shear. The effects of filler on the
rheological behavior of highly filled compounds were
dominant at low strain rates; however, the effects of ac-
tivity of the filler were almost negligible at high strain
rates because of complete breakdown of the filler net-
work. The time scales for structural changes in filled
systems often lengthened compared with the viscoelas-
tic time constants of the unfilled melt. The magnitudes
of rheological properties and the degree of hysteresis
appeared to increase with increasing volume loading of
filler particles. Conversely, surface treatment of fillers,
which presumably reduced the interaction between the
filler particles and the extent of agglomeration, resulted
in major reductions of both the rheological properties
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and the degree of hysteresis. The diverse experimental
observations were interpreted in terms of a system form-
ing a filler network due to weak interparticle forces. The
thixotropy resulting from breakdown and recovery of
the filler network was dependent on the characteristic
time of the individual test.

An experimental investigation was carried out by
Assaad et al. [9.153] to determine the influence of
thixotropy on the use of concrete. Five self-consolidating
concrete (SCC) mixtures prepared with different com-
binations of cementitious materials and two flowable
mixtures of different stability levels were assessed. The
thixotropy of the fresh concretes was evaluated us-
ing the variations in apparent yield stress with time
and the evolution of the structural breakdown curves.
Changes to the impeller of a modified Tattersall con-
crete rheometer were proposed for the protocol used
to assess thixotropy. Instead of the H-shaped impeller
that rotates in a planetary motion, a four-bladed vane
impeller rotating coaxially around the main shaft was
used. This resulted in less slip in the flow of the fresh
concrete and an increase in the sheared surface during
rotation. Test results showed that thixotropy was not an
inherent property of a typical SCC. However, the con-
crete exhibited a high degree of thixotropy when mixed
with ternary cement containing 6% silica fume and 22%
fly ash compared with similar concrete made with 4%
silica fume and no fly ash. The incorporation of set-
accelerating and set-retarding agents resulted in greater
and lower degrees of thixotropy, respectively. In the case
of one particular very flowable concrete, the addition of
a viscosity-modifying additive was shown to increase
thixotropy significantly compared with similar concrete
made without any viscosity-modifying admixture.

Kinlock et al. [9.154] carried out a rheological study
of concentrated aqueous nanotube dispersions, at con-
centrations at which the nanotubes interacted with each
other. The dispersed nanotubes represented a high-
aspect-ratio system. The dispersions were thixotropic
and hence recovered their structure, and hence their
viscosity, on standing.

An experimental study of the viscosity of a macro-
scopic suspension, i. e., a suspension for which
Brownian motion can be neglected, under steady shear
was published by Voltz et al. [9.155]. Their suspension
was made up to a high packing fraction and density
matched with the Newtonian continuous phase. The
thixotropic behavior was characterized by a long re-
laxation time that was a unique function of shear. The
relaxation times showed a systematic decrease with in-
creasing shear rate. These relaxation times were larger

when decreasing the shear rates, compared to those
observed after increasing the shear.

Mujumdar et al. [9.156] developed a nonlinear rheo-
logical model to account for the time-dependent elastic,
viscous and yielding phenomena of thixotropic mater-
ials that exhibit an apparent yield stress. A key feature of
their formulation was a smooth transition from an elasti-
cally dominated response to a viscous response without
a discontinuity in the stress–strain curve. The model was
phenomenological and based on the kinetic processes re-
sponsible for structural changes within the thixotropic
material. As such, it could predict thixotropic effects,
such as stress overshoot during start-up of a steady shear
flow and stress relaxation after cessation of flow. An
analysis and comparison to experimental data involv-
ing oscillatory shear flow were provided to evaluate the
accuracy of the model and to estimate the model param-
eters in a series of concentrated suspensions of silicon
particles and silicon carbide whiskers in polyethylene.
The data obtained with this experimental system indi-
cated much better agreement between the theory and
experiments than that obtained in earlier work by the
authors.

A simple model consisting of the upper-convected
Maxwell constitutive equation (cf. Sect. 1.3) and a ki-
netic equation for destruction and construction of
structure, first proposed by Fredrickson in 1970, was
used by Bautista et al. [9.157] to reproduce the com-
plex rheological behavior of viscoelastic systems that
also exhibited both thixotropy and rheopexy under shear
flow. The model required five parameters that have
a physical significance and could be estimated from
rheological measurements. Several steady and unsteady
flow situations were analyzed with the model. The model
predicted creep behavior, stress relaxation, and the pres-
ence of thixotropic loops when the sample is subjected
to transient stress cycles. The same kind of behavior
has been observed with surfactant-based solutions and
dispersions.

To account for thixotropic effects of typical gelled
suspensions in the the paint, foodstuffs and pulp and pa-
per areas, Yziquel et al. [9.158] proposed a structural net-
work model based on a modified upper-convected Jef-
freys model with a single relaxation time and a kinetic
equation to describe the flow-induced microstruc-
ture evolution. Three distinct kinetic equations were
tested for this purpose. The proposed model described
yield and thixotropic phenomena, nonlinear viscoelas-
tic behavior and output signal distortions observed
for relatively small strain amplitude during oscillatory
measurements, and overshoots observed in stress growth
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Table 9.8 Details of various studies of thixotropic systems

System Worker(s) Description

Vesicular lava Bagdassarov, Pinkerton [9.160] Effect of delayed bubble deformation and recovery

Aqueous fluid gels, based on mix-
tures of xanthan and gellan

Martinez-Padilla et al. [9.161] Effect of electrolyte addition on thixotropy

Semi-solid dairy desserts Tarrega et al. [9.162] Effect of test temperature

Aqueous pseudo-bohemite suspen-
sions

Li et al. [9.163] Effect of source of bohemite and electrolyte

Aqueous smectite suspensions Malfoy et al. [9.164] Effects of the nature of the exchangeable cation and
clay concentration

Aqueous solutions of an amphoteric
guar gum

Zhou et al. [9.165] Effects of concentration, salts, and temperature

Ayran, a Turkish yoghurt drink Koksoy and Kilic [9.166] Effects of water and salt level

Semi-solid metal alloys Koke and Modigell [9.167] Effects of shear rate and cooling rate on microstructure

Roll coating of paints Lopez and Rosen [9.168] Thixotropy of paints correlated with levelling perfor-
mance

Some cosmetic products Moise and Aruxandei [9.169] Development of equations to describe thixotropy

Concentrated yoghurt (labneh) Abu-Jdayil and Mohameed [9.170] The effect of storage time, 1–14 days

experiments. A comparison of model predictions and
experimental data for fumed silica and coating colors
was also presented. However, different model parame-
ters had to be used to correctly predict the different flow
properties indicating that a more-versatile or general-
ized kinetic equation needed to be developed. Goodwin
and Reynolds [9.159] noted that the rheology of such
flocculated dispersions is dependent on the suspension
microstructure and its time evolution as well as the type
and magnitude of the interparticle forces. Much current
work focuses on this microstructure as recent develop-
ments in experimental techniques have made this type of
information more accessible. They noted that computer
simulation continued to add breadth to the understanding
of the behavior of flocculated suspensions.

Last, we consider in detail two studies that used di-
rect measurement of the flow fields in thixotropic fluids.
Corvisier et al. [9.171] studied the velocity profile of
a thixotropic fluid flow in a pipe. The axial velocity
distribution was determined using a particle image ve-
locimetry (PIV) technique (cf. Sect. 5.3.2) and ultrasonic
velocity profile measurement. At the entrance section,
the fluid was assumed to be in a homogeneous structural
state corresponding to a high shear rate. The experi-
mental results showed a progressive flattening of the
velocity profiles as the fluid restructured as it moved
down the pipe. Raynaud et al. [9.172] used a magnetic
resonance imaging system to investigate the flow field
in a concentric cylinder flow, using thixotropic and very
shear-thinning colloidal suspensions. The velocity pro-
files between the coaxial cylinders were found to be

made up of two parts: first, close to the inner cylin-
der the fluid is sheared at a rate larger than a critical,
finite value (in contrast with the behavior of an ideal
yield stress fluid), while second, where the fluid is not
sheared at all close to the outer cylinder. They moni-
tored the displacement of the critical radius in time after
sudden changes of the imposed rotation velocity. They
established that the apparent thixotropy of these fluids
could be followed by the displacement of the interface
between the sheared and unsheared regions.

We conclude our review of recent work with a gen-
eral list of some other interesting thixotropic systems
published by workers from a wide range of countries, to-
gether with a brief description of the work, see Table 9.8.

9.2.7 Overall Conclusions

Thixotropy comes about first because of the finite time
taken for any shear-induced change in microstructure
to take place. The microstructure is brought to a new
equilibrium by competition between the processes of
tearing apart by stress and flow-induced collision, in
a time that can be minutes. Then, when the flow ceases,
Brownian motion is able to move the elements of the
microstructure around slowly to more-favorable posi-
tions and thus rebuild the structure. This can take many
hours to complete. The whole process is completely
reversible. The manifestation of the effect of the mi-
crostructural changes on the flow properties result in the
various manifestations of thixotropy described in the
present chapter.
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9.3 Rheology of Suspensions and Emulsions

Suspensions and emulsions or more generally disper-
sions are disperse materials containing at least two
phases of immiscible constituents. Due to their com-
plicated physical and chemical nature, the rheological
behavior of suspensions and emulsions is very com-
plex. Nonlinear flow behavior, normal stress differences,
viscoelasticity, and yield stresses are some examples
of the effects that can occur in the flow processes of
these materials. In this Section some essential basics of
the rheological behavior of both material classes, sus-
pensions and emulsions, are described. A classification
of disperse materials is given. Common properties of
suspensions and emulsions obtained in rheological mea-
surements are discussed and some important sources
of errors that may occur in rheological measurements
are explained. The physical fundamentals of suspension
rheology concerning the properties of the disperse and
continuous phases are summarized. The mechanisms
of particle–particle interactions and their consequences
regarding the stability are shown. A classification of
models describing the viscosity as a function of solid
volume concentration and shear rate is given. Typical

Table 9.9 Most important properties for characterizing dis-
persions (modified after Chander [9.173])

Properties of the disperse phase

Particle size and size distribution

Particle shape and shape distribution

Surface properties

Density viscosity, viscoelasticity (emulsions)

Surface energy

Particle volume concentration

Properties of the continuous phase

Viscosity, viscoelasticity

Aqueous, nonaqueous

Dissolved substances

Properties of the interface

Electric double layer

ζ potential

Adsorption density

Thickness of the adsorbed layer

Structure of the adsorbed layer

experimental results of the rheological behavior of sus-
pensions both in shear and elongational flows as well as
in complex flow situations are summarized. Emulsions
as liquid–liquid systems show a similar flow behavior
under certain circumstances. A survey of the deviating
rheological behavior compared to suspensions is given.
Methods of fabrication of emulsions are described.
Common ground between the rheology of suspensions
and emulsions complete the chapter.

9.3.1 Preliminaries

Basics and Definitions
This chapter deals with the large class of two- or mul-
tiphase materials that occur in many fields of natural
and engineering sciences, industry, and daily life. The
chapter is structured as follows. In the first part, we intro-
duce the classification of disperse systems and explain
some general assumptions for proper rheological mea-
surements of such multiphase materials. In the second
part, the theoretical fundamentals, which are necessary
to understand the rheology of suspensions, are summa-
rized and, based on these fundamentals, representative
experimental results of the flow behavior of solid–liquid
systems are illustrated and discussed. The third part
deals with theoretical basics and experimental results
of liquid–liquid systems, whereby we only refer to phe-
nomena occurring additionally compared to solid–liquid
systems.

Suspensions and emulsions or, more generally, dis-
persions are ubiquitous materials. Their appearance
ranges from biological materials such as blood or cell
suspensions over pharmaceutical or food products of the
daily life to inorganic materials such as concrete, drilling
mud, printing inks or multicomponent metal melts to
name a few.

These examples show that dispersions are highly
complex systems. Hence, the rheological behavior of
dispersions depends on the composition of the sys-
tem. The most important parameters are summarized
in Table 9.9.

Knowledge of the rheological properties of disperse
systems is a prerequisite for the increase of effective-
ness of production and processing operations, but also
for the handling of disperse products by the customer.
Disperse systems consist of at least one solid or liquid
phase (the disperse phase), which is dispersed in a li-
quid continuous phase or matrix liquid. Both phases
are immiscible. In the context of this chapter only
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solid–liquid and liquid–liquid dispersions will be con-
sidered. Dispersions with a dispersed fluid-like phase
in a solid continuous phase (porous bodies, solid foams)
and a solid or liquid phase dispersed in a gaseous contin-
uous phase (dusts, smoke, aerosols, foams) are outside
of the scope of this chapter.

Based on the state of aggregation of the disperse
phase these materials are distinguished in the fol-
lowing way. Suspensions are materials that contain
a granular solid material dispersed in a Newtonian or
non-Newtonian matrix liquid. Emulsions consist of a li-
quid phase dispersed in a second liquid. In some cases,
both a liquid and a solid phase may be dispersed in more
than one liquid continuous phase.

Dispersions may be regarded as the generic term
for materials consisting of discontinuities of any kind
dispersed in a continuous phase of different composi-
tion or state [9.174]. Regardless of its size or shape,
such a discontinuity or discrete element is called a par-
ticle, which stands both for solid, slightly deformable,
or liquid discontinuities.

According to the International Union of Pure and
Applied Chemistry (IUPAC) recommendations [9.175],
a colloidal) dispersion is a system, in which particles
of (colloidal) size of any nature (gas, liquid, solid) are
dispersed in a continuous phase. This definition includes
both suspensions and emulsions. The term colloidal is
used for particles having at least one dimension in the
size range 1 nm to 1 µm. Particles with mean size above
1 µm are called noncolloidal.

In the literature, another nomenclature can often be
found. The term dispersion is used for a material con-
sisting of fine insoluble or only slightly soluble solid
particles with sizes larger than 1 µm distributed through-
out a continuous medium [9.176], whereas emulsions
are cited separately without any reference to the particle
size. In this context, a suspension with colloidal solid
particles is a colloidal dispersion [9.177]. The problem
with this notation is that information on the particle size
is necessary.

Due to the uncertainties and ambiguities of this
second nomenclature, the first classification with the
term dispersion as generic term describing multiphase
materials should be preferred.

At the level of the particles, dispersions can generally
be classified concerning their size, size distribution, and
the shape or shape distribution of the constituents of the
disperse phase. Based on the particle size, dispersions
can be classified as shown in Fig. 9.61.

According to the particle size distribution (PSD),
a dispersion is termed monodisperse if all particles are

(nearly) of the same size. If more than one discrete size
distribution mode occurs, the dispersion is referred to
as heterodisperse. If only a few discrete size modes
occur the dispersion is paucidisperse, e.g. bimodal, tri-
modal [9.175]. A dispersion consisting of particles of
many sizes is called polydisperse, if less than 90% of the
size distribution lies within ±5% of the average diameter
d̄, i. e.,

1.645σSD

d̄
> 0.05 , (9.218)

where σSD is the standard deviation [9.174]. This
classification is valid for single particles and not for
aggregates. Due to agglomeration or coalescence, the
number and size of particles can change.

A second possibility to quantify the polydispersity of
a dispersion is to calculate the (weighted) polydispersity
index PDI as the ratio of the volume average diameter
d̄V and the number-average diameter d̄N

d̄V =
∑

i
nid4

i

∑

i
nid3

i

, d̄N =
∑

i
nidi

∑

i
ni

, PDI = d̄V

d̄N

(9.219)

with ni as the number of particles with diameter di .
A dispersion is called polydisperse if the relation PDI >

1.05 holds.
A third possibility to characterize the polydisper-

sity of a dispersion is given by the so-called grade of
dispersity ξ [9.178] according to

ξ = dV,84 −dV,16

2dV,50
(9.220)

with dV,i as the volume-average diameter (9.219) below
which 1% of the particles lie. A dispersion can then be
classified as
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Fig. 9.61 Classification of disperse systems with respect to particle
size
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Fig. 9.62a–c Hydrodynamic forces acting on a spherical (a) and
nonspherical particle (b) in a steady homogeneous shear flow and
(c) on a spherical particle in a nonhomogeneous shear flow (Af-
ter [9.179], with permission by B. G. Teubner)

• monodisperse if ξ < 0.14,• quasi-monodisperse if 0.14 ≤ ξ ≤ 0.41,• polydisperse if ξ > 0.41.

In this chapter we use the grade of dispersity to charac-
terize the polydispersity of a dispersion.

A formal specification of the size of particles with
shapes deviating from a sphere is difficult. For this rea-
son, some methods are developed to specify the size
of nonspherical particles. In most cases, it is suffi-
cient to reduce the size of a nonspherical particle to
the diameter of an equivalent sphere concerning the
mass, volume, surface or settling velocity. The spher-
icity has been proposed as a measure of the deviation
of the particle shape from that of a sphere. Different
definitions of sphericity are in use. One of the most im-
portant definition suggested by Wadell [9.180] relates
the squared volume-equivalent diameter dV (diameter
of a sphere with the same volume as the particle) to
the squared surface-equivalent diameter dS (diameter of
a sphere with the same surface as the particle) of a par-
ticle [9.176]. Various other equivalent circle diameters
or shape factors can be determined from the projected
area of a particle [9.176, 181–185].

It is unusual and also impossible to classify disper-
sions with regard to all possible particle shapes. If the
particle shapes strongly deviate from a spherical shape,
the flow behavior of the dispersion will be modified
compared with that of hard-sphere suspensions under
the same conditions. Hence, a shape factor or shape

factor distribution function is necessary. Additionally,
the particle size and shape distribution functions af-
fect the applicability of the measuring geometry of the
rheological measurements.

Basic Assumptions for Correct Measurement
of the Macroscopic Rheological Properties
of Dispersions

There are some essential and necessary requirements
to be fulfilled in order to characterize dispersions
rheologically in the right manner concerning the rep-
resentative sampling, stability of the sample (settling,
aging), migration, the stability of the flow, thermal
effects, and the validity of the continuum hypothesis.

These requirements apply independently of the type
of the rheological experiment (steady, transient, oscilla-
tory) and the measuring geometry used (coaxial cylinder,
cone-and-plate, torsional plate–plate, capillary, and oth-
ers; Sect. 9.1.1).

In static experiments gravity forces are in com-
petition with the Brownian forces. To estimate the
sedimentation of samples of suspensions (of spheri-
cal particles), the ratio between gravity (settling) and
Brownian forces

gravity (settling) force

Brownian (thermal) force
= (ρd −ρc)ga3

kBT/a
(9.221)

should be provided, where ρd and ρc are the densities
of the disperse and continuous phase, g is the accel-
eration of gravity, a is the particle radius, kB is the
Boltzmann’s constant, and T is the absolute tempera-
ture. If this ratio is greater than unity, sedimentation
may occur. As shown by Larson [9.186], sedimentation
takes place for ∆ρ = ρd −ρc ≈ 103 kg/m3 and par-
ticles or aggregates larger than 1 µm in radius. Prior to
rheometric experiments, the tendency to sedimentation
should be checked and if necessary, the experimental
flow conditions should be adjusted so that during the
experimental time the sedimentation does not play an
important role. On the other hand, under shearing flow
conditions sedimentation is always retarded.

Beyond sedimentation, particle migration under flow
conditions can also falsify measurements due to the re-
sulting gradient in solid volume concentration inside
the dispersion. Normal force defects acting on particles
can cause particle migration. Böhme [9.179] sketched
the phenomenon of particle migration by illustrating the
normal forces acting on a single solid particle in a non-
Newtonian shear flow. In Fig. 9.62a the normal forces
are equal in magnitude and of opposite sign due to the
symmetry. Hence, no particle migration occurs. This is
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also true for a nonspherical particle (Fig. 9.62b). The
spherical and nonspherical particles only rotate due to
the shear force and torque. In case of a nonspherical
particle, the particle rotation increases the effective hy-
drodynamic diameter. Magnus forces due to the rotation
of particles in a potential flow do not play any role here
and hence do not contribute to migration.

If the shear flow is nonhomogeneous (Fig. 9.62c), the
normal stresses at the upper and lower side of the sphere
can be quite different. The resulting force acts in the
direction of decreasing shear rates and migration occurs.
The migration can also occur in Newtonian fluids if the
shear flow is nonhomogeneous [9.187]. Hence in any
case nonhomogeneous shear flows should be avoided
for correct measurement of viscosity, e.g., in coaxial
cylinder rheometers (Sects. 9.1.1 and 9.1.2).

Particle inertia can also influence the results of tran-
sient or oscillatory experiments. If the shear viscosity of
the continuous phase is too small or if the particles are
too heavy or too large, they cannot follow the unsteady
external flow field. With the particle Reynolds number

ReP = ρcγ̇a2

ηc
(9.222)

an estimation of the inertial effects is possible. In this
equation, γ̇ and ηc are the shear rate and the viscosity
of the continuous phase, respectively. Values of ReP
approximately greater than 10−1 indicate that particle
inertia may be of relevance [9.188].

One of the most essential assumptions of rheome-
try is the existence of a hydrodynamically stable flow.
During experiments, flow instabilities (e.g., secondary
flows in cone-and-plate geometries or Taylor vortices in
coaxial cylinder geometries) can falsify the results. De-
tails on stability of rheometric flows can be found in the
monographs of Walters [9.189] and Macosko [9.188].

An important problem may arise if temperature ef-
fects come into play. Temperature gradients in the gap
of the measurement geometry, or viscous dissipation
lead to density differences. This may firstly result in
convective flows superimposed on the main flow in
a rheometer. Secondly, temperature gradients affect the
rheological properties of the continuous phase. Hence,
it is important to avoid local temperature differences
by tempering the measurement system. If this is not
possible or the tempering is not sufficient, it is neces-
sary to correct the data numerically (further information
on this problem can be found in the monograph of
Macosko [9.188]).

Finally, for all rheological measurements, it is neces-
sary to ensure that the material can be regarded as

a continuum. In other words, the continuum hypothe-
sis must be fulfilled [9.190]. The macroscopic physical
behavior of a fluid under rheometric considerations must
be the same if it is perfectly continuous and uniform in
structure. The physical quantities associated with the
fluid (e.g., density, viscosity) contained within a given
volume will be regarded as being spread uniformly over
the whole volume. Jeffrey and Acrivos [9.191] pointed
out, that it is possible to regard the dispersion as a contin-
uum when the length scales describing the motion of the
suspension as a whole are much larger than the average
size or average separation of the particles. An essen-
tial consequence of the continuum hypothesis is that the
size of the largest particle in the dispersion should be
substantially smaller than the gap size of the measure-
ment geometry. In rheology, it is a common rule that
the maximum particle size must be at least one order
of magnitude smaller than the smallest dimension of the
measuring geometry. Barnes [9.192] showed that this ra-
tio increases with increasing volume concentration of the
disperse phase. Independent of the continuum hypothe-
sis, the behavior of single particles or particle collectives
in both shear and elongational flows may be of interest as
shown by several publications concerning these issues
in shear flows.

Aggregation, agglomeration (occurring in suspen-
sions), or coalescence, Ostwald ripening, and creaming
(occurring in emulsions) during rheological measure-
ments influence the particle distribution function and
should be prevented by implementation of appropriate
actions.

If all the criteria mentioned above are fulfilled,
it is possible to measure the material function of in-
terest using the methods and devices described in
Sect. 9.1.1 (shear flows), Sect. 9.1.3 (elongational flows)
and Sect. 9.2 (thixotropy, rheopexy and yield stress).

The rheological nomenclature used in this chap-
ter is based on the recommendation of the Executive
Committee of the Society of Rheology [9.193].

9.3.2 Suspensions

The rheological behavior of suspensions is influenced
by a very large number of parameters. Due to the fact
that suspensions are multiphase materials one has to take
into consideration both the properties of continuous and
disperse phases, as well as the interactions within and
between both phases.

This section gives a survey of the rheology of sus-
pensions. It starts with a short general description of the
properties of the components of a suspension. The sta-
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bilizing mechanisms are explained. Then a dimensional
analysis is applied to show the influencing factors on
the viscosity. Subsequently, the basics in measurements
and possible sources of errors will be given and repre-
sentative results of rheological measurements in shear
and extensional flow are illustrated and discussed. For
more details, we refer to the textbooks of Larson [9.186],
Russel et al. [9.194], and Morrison and Ross [9.195].

Properties of the Continuous Phase
The continuous phases and their properties can be clas-
sified from different points of view – physicochemically
or rheologically.

The continuous phase, consisting of water (aqueous
suspension) or organic solvent (nonaqueous suspen-
sion), can be characterized by its chemical composition,
dielectric constant, refractive index, or surface tension
(cf. Sects. 3.7.2 and 6.1, and 3.2, respectively). An
important property of the continuous phase is the po-
larizability. A liquid is polarizable if dissociation of
the species is possible under special circumstances or
if the molecules are dipole-like. By addition of surfac-
tants, dispersants, or electrolytes, it can show strongly
different properties compared to the pure liquid. The
polarizability affects the type of specific interactions be-
tween the continuous and disperse phases when charged
species (particles, polymers, polyelectrolytes) are added.
If the continuous phase is nonaqueous, the charge prop-
erties of the particles are not so important since other
mechanisms of interaction between the phases such as
hydrodynamic interactions are more dominant [9.195].

The rheological properties of the continuous phase
may have an essential influence on the overall rheo-
logical properties of the suspensions. If a suspension
consists of particles dispersed in a Newtonian liquid, all
deviations from the Newtonian behavior (nonlinearity,
viscoelasticity) stem from the presence of the disperse
phase.

Non-Newtonian continuous phases such as poly-
mer melts or aqueous solvents containing surfactants or
other additives modify the interparticle interactions in
suspensions and emulsions. In the non-Newtonian case
the problem of a locally inflated shear rate due to the
particle movement becomes relevant. Due to the shear
dependence a viscosity distribution may occur inside of
the continuous phase. Thus, the movement of the par-
ticles during flow may be modified compared with the
case of a Newtonian continuous phase. If the continu-
ous phase is highly elastic, normal stress differences due
to local shear rates (Sect. 9.1.2) can fragmentize weak
aggregates into smaller species.

Properties of the Disperse Phase
The disperse phase may consist of particles, which
have a variety of sizes, size distributions, shapes, den-
sities, and surface morphologies. The surface of the
particles can be chemically treated or untreated. The
treatment of the particle surface influences the interpar-
ticle interactions and, hence, the rheological properties
of the suspension.

In the simplest case of a dispersion, the particles
are spherical, rigid, and monodisperse. In the case of
deviations from the spherical shape, the aspect ratio,
i. e., the ratio of the main axes of the particle, must be
taken into account. If the aspect ratio is high enough,
e.g., for rods, the particles align during the flow which
results in a corresponding viscosity. Polydispersity of
the particles may decrease the viscosity under certain
circumstances (cf. Subsect. “Influence od solid volume
concentration” in this section).

An additional difficulty arises if the particles are
porous or if the particles aggregate. In these cases some
amount of the continuous phase may be immobilized in
the pores of the particles or in the interspaces between
the aggregated. Thus, the amount of continuous phase
around the particles decreases. Hence, the apparent solid
volume concentration as well as the dispersion viscosity
is then higher than expected for nonporous particles or
nonaggregating dispersions.

Polymer blends consisting of immiscible compo-
nents with a distinct lower viscosity of the dispersed
phase show that the particles deform under flow. The
steric or electrostatic layer surrounding particles can
be deformable under flow (soft spheres). These effects
modify the overall flow behavior of the suspension.

Brownian Motion
If the particles suspended in a low viscous contin-
uous phase are sufficiently small (less than 1 µm), they
perform a stochastic thermal movement, called Brow-
nian motion. Nonspherical particles (rods, ellipsoids)
additionally show a rotational Brownian motion.

The mechanism of translational Brownian motion
can be described by a translational diffusion coefficient.
For an isolated particle (or droplet) the diffusion coeffi-
cient is the ratio of the thermal energy of the particle and
the (Stokes–Einstein) friction force acting at the particle
which is suspended in a Newtonian continuous phase of
the viscosity ηc

Dt = kBT

ft
, (9.223)

where ft = 6πηcaH is the translational friction coeffi-
cient with aH being the hydrodynamic radius of the
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particle. For a spherical particle aH is equal to its ra-
dius a (cf. [9.196] for a survey on the hydrodynamic
radii for nonspherical particles). It is seen that the diffu-
sion coefficient is inversely proportional to the viscosity
of the continuous phase and the particle size. Under the
assumption that the observation time t is long enough
with respect to the viscous relaxation time τv, i. e., t 	 τv
with τv = ρca2

H/ηc, the mean squared displacement of
the particle is [9.194]

〈

s2(t)
〉

= 2Dtt . (9.224)

In the case of rotational Brownian motion, the mean
displacement and the translational friction coefficient
must be replaced by the mean squared change of the
orientation angle

〈

φ2(t)
〉

and the rotational friction co-
efficient fr, respectively. Hence, a rotational diffusion
coefficient Dr = kBT/ fr comes into play [9.198, 199].
Details concerning the Brownian motion can be found in
the textbooks of Russel et al. [9.194], van de Ven [9.198],
Takeo [9.196], and Doi and Edwards [9.199].

Interparticle Interactions and Stabilization
If particles in a suspension approach each other, various
types of interactions occur (Fig. 9.63). These interpar-
ticle interactions are determined by the solid volume
concentration. Beyond the hydrodynamic interaction,
there are several other interactions. An extensive re-
view on surface forces can be found in the monograph
by Israelachvili [9.200]. For hydrodynamic interactions
we refer to the monograph by van de Ven [9.198]. In the
following sections we consider the influence of the hy-
drodynamic interaction on the suspension and emulsion
viscosity not in detail but implicitly through the solid
volume concentration and additionally by the Péclet
number indicating the nonlinear flow behavior at higher
solid volume concentrations (cf. Subsect. “Dimensional
Analysis” in this section).

Hard- and Soft-Sphere Interaction. The simplest case
of a suspension is that the particles behave like hard
spheres. The relevant influence parameters are then vis-
cous forces, Brownian motion, and the excluded volume
of the particles. The interaction potential Vhs, which
generally characterizes the kind and the range of inter-
particle forces, has the form

Vhs(r) =
⎧

⎨

⎩

∞ r ≤ a

0 r > a
, (9.225)

in the case of rigid repulsion. Here, r is the radial co-
ordinate starting from the midpoint of the particle. An
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Fig. 9.63 Stabilization methods for dispersions (after
[9.197], with permission by Marcel Dekker)

interacting particle causes short- and long-range effects
in its neighborhood. Hence, it is (geometrically or virtu-
ally) surrounded by a layer (electric double layer, steric
molecules). The effective diameter of the particle is then
larger than its geometric diameter. If the particles can-
not approach each other more than a certain distance,
say 2δ or below, due to repulsive forces, the particle ra-
dius a must be replaced by an effective particle radius
aeff = a(1+δ/a) with δ as the thickness of the surround-
ing layer. If the surrounding layer is deformable and the
particles can approach each other less than the distance
2δ, these interactions are called soft-sphere interactions.
In the following, an overview of the interparticle forces
is given.

Van der Waals Forces. Van der Waals forces are
a combination of dispersion interaction (London),
dipole–dipole interaction (Keesom) and dipole-induced
dipole interaction (Debye) [9.201]. These forces are
caused by a temporal asymmetry of the charge dis-
tribution around a neutral atom or molecule due to
the motion of its electrons. The interaction energies
between two single atoms or molecules decay as the
inverse sixth power of the atom distance. The na-
ture of the van der Waals interaction is determined
by the material-specific Hamaker constant, which char-
acterizes the relative strength of the van der Waals
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force between two surfaces. We consider now only two
spheres 1 and 2 with given radii a1 and a2 (or a ra-
tio of radii y = a2/a1 ≤ 1) and with different properties,
surrounded by a continuous phase 0. Hamaker [9.202]
obtained for the van der Waals interaction energy VA the
relation [9.203]

VA(x) = − Aeff

12

(
y

x2 + xy + x
+ y

x2 + xy + x + y

+2 ln
x2 + xy + y

x2 + xy + x + y

)

(9.226)

with x = h0/2a1 as the dimensionless surface distance
(h0 is the minimum separation between the surfaces
of the spheres). The parameter Aeff is the effec-
tive Hamaker constant, which is calculated according
as

Aeff = A00 − A01 − A02 + A12 , (9.227)

where Aij are the Hamaker constants of the dis-
perse phase (i = j = 0), of the sphere 1–sphere 2
interaction (i = 1, j = 2), of the continuous phase–
sphere 1 interaction (i = 0, j = 1), and of the continuous
phase–sphere 2 interaction (i = 0, j = 2), respec-
tively.

From (9.226) follows that the van der Waals inter-
action potential depends both on the diameter ratio of
the spheres and on the interparticle distance. For x � 1
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Fig. 9.64 Electrical potential and double layer surrounding
a charged particle in a polar liquid (after Birdi [9.203], with per-
mission by CRC)

the interaction potential is inversely proportional to the
interparticle distance. If the components 1 and 2 are
identical, the Hamaker constant is positive and, hence,
the van der Waals interaction is always attractive. In
contrast, when the continuous phase 0 has a Hamaker
constant between those of the components 1 and 2, the
van der Waals interaction may be repulsive [9.203].
Hamaker constants for some inorganic materials have
been calculated by Bergström [9.204]. A characteristic
value for dimensional-analytical estimates can be given
by VA = Aeff , which is of the order 10−20 –10−19 J for
the most materials.

Due to the fact that the van der Waals interaction
(in the majority of cases) is attractive, it decreases the
stability of suspensions by promoting the formation of
aggregates.

Electrostatic Forces. There are three main mechanisms
that cause the formation of charged phase interfaces
in aqueous dispersions: the transition of ions from the
disperse to the continuous phase, the specific adsorption
of ions from the continuous phase at the surface of the
particles, and the adsorption of polar surfactants at the
phase interface.

These mechanisms lead to a (partial) charge sepa-
ration between the particle surface and the surrounding
liquid volume. Along with the thermal motion a diffused
electrical double layer is generated which consists of the
charged surface, neutralizing counterion, and, farther
from the surface, co-ions distributed in a diffusive man-
ner [9.203]. Stern proposed a model that assumes that,
near the particle surface, some of the counterions are
adsorbed (Stern plane) whereas the remaining counteri-
ons are distributed diffusively in a double layer (Gouy
plane) due to thermal motion. The dependence of the
electrical potential or repulsive interaction energy, re-
spectively, on the distance from the particle surface and
the electric double layer are shown in Fig. 9.64. Further-
more, the potential at a certain distance, the shear plane,
is denoted ζ . Russel et al. [9.194] defined the shear plane
as the envelope where shear appears in the fluid adja-
cent to a rigid body when fluid and solid are in relative
motion.

In the simplest case the repulsive interaction en-
ergy between two identical charged spheres of the same
radius a with a surface potential ψ0 is given by [9.205]

Ve(x) = 2πεrε0ψ
2
0a

⎧

⎨

⎩

ln
(

1+ e−κx
)

κa > 10 ,

e−κx κa < 5 ,

(9.228)

Part
C

9
.3



Non-Newtonian Flows 9.3 Rheology of Suspensions and Emulsions 687

where x denotes the distance of the particle surfaces, εr
and ε0 are the relative permittivity of the material and the
permittivity of the vacuum, and κ−1 is the Debye length
which can be regarded as the thickness of the double
layer (Fig. 9.64). It can be shown that for small distances,
i. e., within the Stern plane the repulsive interaction en-
ergy decreases linearly with increasing particle distance.
A characteristic value for dimensional-analytical esti-
mates can be given by Ve = εrε0ψ

2
Sa with ψ2

S as the
potential at a characteristic distance from the particle
surface, e.g., the zeta potential.

The electrostatic forces have a stabilizing effect on
the suspensions by preventing the particles from ag-
glomeration (electrostatic stabilization).

DLVO Theory. Derjaguin and Landau [9.206] as well
as Verwey and Overbeek [9.207] developed indepen-
dently the first quantitative theory of interactions in
dispersions – the Derjaguin–Landau-Verwey–Overbeek
(DLVO) theory. The total interaction force between two
particles is supposed to be a superposition of the attrac-
tive van der Waals forces and the repulsive electrostatic
forces. A typical curve of the total interaction energy
versus interparticle distance shown in Fig. 9.65 ex-
hibits a maximum representing an energy barrier against
agglomeration and two minima, i. e., a primary and a sec-
ondary minimum. The primary minimum stems from
strong short-range repulsive forces. If the particles are
small, the secondary minimum is not very distinctive.
Between the primary and the secondary minimum a lo-
cal maximum, i. e., a so-called electrostatic barrier may
appear. If this barrier is high enough, agglomeration
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Fig. 9.65 Diagram of the potential energy between two
particles in dependence on the surface distance: DLVO
theory

does not take place. For larger particles, the secondary
minimum may be deep enough to cause weakly floc-
culated agglomerates due to the slight dominance of
attractive forces. A schematic illustration of the po-
tential energy and the corresponding structure of the
suspension are depicted in Fig. 9.66. Dominant attrac-
tive forces cause aggregation or flocculation of particles
and, hence, a destabilization of the suspension, whereas
strong repulsive forces stabilize the suspension.

Steric Forces. An alternative to stabilize suspensions is
steric stabilization. In contrast to the electrostatic sta-
bilization, this method can be used in aqueous and
nonaqueous systems. The mechanism of steric repulsion
can be realized by the adsorption of organic molecules at
the particle surface [9.205]. The adsorbed molecules act
like a brush, where the strength of this polymer bridge
depends strongly on the molecular weight (chain length).
If the adsorbed layer has a sufficient thickness and den-
sity, the attractive forces can be reduced in a manner
that aggregation or bridging flocculation is prevented.
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Fig. 9.66 Schematic illustration of the relationship be-
tween the total interparticle potential energy and suspension
structure (after Lewis [9.205], with permission by the
American Ceramic Society)
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Table 9.10 Some relevant physical quantities and corresponding dimensionless groups in suspension rheology

Property Dimensional expression Dimensionless group

Viscosity η ηr = η/ηc (relative viscosity)

Viscosity of the continuous phase ηc ρr = ρd/ρc (density ratio)

Density of the disperse phase ρd ReP = ρcγ̇a2/ηc (particle Reynolds number)

Density of the continuous phase ρc ξ (polydispersity measure)

Polydispersity ξ (dimensionless) ϕ = n(4π/3)a3 (volume concentration)

Number density n Pe = ηcγ̇a3/kBT (Péclet number)

Particle radius a δ/a (relative surface layer thickness)

Gap width of the rheometer h a/h (continuum parameter)

Adsorption layer thickness δ tr = t/
(

ηca3kBT
)

(relative startup time)

Time t Ga = (ρd−ρc)ga
ηc γ̇

(settling parameter)

Acceleration of gravity g

Thermal energy kBT

Dispersion (van der Waals) energy Aeff
Aeff

εrε0ψ2
Sa

Electrostatic energy εrε0ψ
2
Sa

If two sterically stabilized particles with the adsorption
layer thickness δ approach each other, two main domains
can be distinguished: a domain, where δ < x < 2δ, i. e.,
where the two steric layer interpenetrate, and a domain,
where x < δ with an additional compression of the lay-
ers. Hence, the interparticle forces depend on both the
distance x and the strength of the steric layers.

The long segments of the polymer or surfactant pro-
truding into the continuous phase can adsorb onto the
surface of neighboring particles and form a polymer
bridge between the particles [9.176].

Electrosteric Forces. Polyelectrolytes as stabilizers for
aqueous suspensions combine steric and electrostatic in-
teractions (electrosteric stabilization). They have at least
one type of functional groups (e.g., carboxyl or sul-
fonic acid groups) that can be ionized. This functional
group is responsible for the electrostatic interactions.
The chain of the polyelectrolyte causes steric interac-
tions. The adsorption of polyelectrolytes is influenced
by the electrochemical and physical properties of the
particle surface and the continuous phase. It is inter-
esting to note that small amounts of polyelectrolytes
can neutralize the surface charge of the particle and,
consequently, weak flocculation may occur. At higher
amounts, the polyelectrolytes stabilize the suspension
due to the long-range repulsive forces caused by the
electrosteric forces.

The thickness of the polyelectrolyte layer is mainly
influenced by the concentration of the electrolyte in
the aqueous continuous phase, i. e., the pH value, and

the ion strength (a measure of electrolyte concentra-
tion) [9.208].

Depletion Forces. Depletion forces are a result of the
interactions between large colloidal particles suspended
in a continuous phase that contains non-adsorbing,
smaller constituents – so-called depletants (polymers,
polyelectrolytes, smaller particles). Due to depletion,
stabilization occurs because the particle aggregation
is inhibited by unadsorbed polymer in the continuous
phase. That is, depletion characterizes a situation where
the concentration of depletants increases with increasing
distance from the particle surface up to an equilibrium
value obtained in the continuous phase. This distance,
called the depletion layer thickness, has an order of
two depletant diameters. The shape of the depletant
molecules influences the depletion force. It is known that
rod-like macromolecules, compared to spheres, increase
the depletion force. In the case where the depletants
are removed from the interparticle gap due to an os-
motic pressure difference (exclusion of the free polymer
from the interparticle regions) flocculation may occur.
With increasing depletant concentration, restabilization
is possible.

Dimensional Analysis
By application of dimensional analysis (Chap. 2.2) we
can identify the parameters that influence the rheolog-
ical behavior of the suspensions. It results in a number
of dimensionless groups (dimensionless ratios of vari-
ous influence parameters) which characterizes the ratio
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of the various influence parameters which allow the
estimation of the physical relevance or irrelevance of in-
fluence parameters. In Table 9.10 the relevant physical
parameters for suspensions are summarized.

From dimensional analysis it can be deduced that the
following general relation holds for the dependence of
the relative viscosity ηr on the dimensionless influence
parameters (Table 9.10):

ηr = f

(

ϕ,
δ

a
,

a

h
, ξ, ρr, tr, Ga, Pe, ReP,

Aeff

εrε0ψ
2
Sa

)

.

(9.229)

In the following, we consider buoyant (ρr → 1) suspen-
sions with negligibly small particle Reynolds numbers
(ReP � 1). For suspensions that are not highly con-
centrated one can also neglect the influence of the
interparticle forces. Hence, the functional relation for the
relative viscosity of suspensions within the continuum
hypothesis (a � h) reduces to

ηr = f

(

ϕ,
δ

a
, ξ, tr, Pe

)

. (9.230)

The continuum parameter a/h, used in this context, is
similar to the Knudsen number Kn as the ratio of the
molecular mean free path and the characteristic body
length. Kn is applied in the field of rarefied gas dynamics
or flows in microchannels. For convenience we do not
change the functional symbol f . For suspensions with
monodisperse unvarying particle size, (9.230) takes the
form

ηr = f (ϕ, Pe) . (9.231)
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Fig. 9.67 Scheme of the shear viscosity as a function of shear rate and shear stress, respectively. The curve parameter is
the solid volume concentration

in the steady state and for thin surface layers δ � a.
The Péclet number gives the ratio between the shear
force and the Brownian force, or in other words, the ra-
tio between order due to shearing and disorder due to
Brownian movement. The presence of particles changes
the flow behavior from linear flow behavior (Newto-
nian) to nonlinear flow behavior (non-Newtonian) due
to the hydrodynamic interactions between the particles.
Hence, with increasing concentration the nonlinear flow
behavior increases, which shows the coupling between ϕ

as a measure for hydrodynamic interaction and Pe rep-
resenting the nonlinear flow behavior.

Only for highly diluted suspensions does the relative
viscosity depend solely on the solid volume concentra-
tion yielding a Newtonian behavior if the continuous
phase is Newtonian

ηr = f (ϕ) . (9.232)

In the literature one can often find another definition of
the Péclet number:

Peeff = σa3

kBT
= ηγ̇a3

kBT
. (9.233)

In contrast to the Péclet number given in Table 9.10,
this effective Péclet number is based on the macros-
copic shear stress σ = ηγ̇ or the effective viscosity of
the dispersion η, respectively.

Influence of Solid Volume Concentration
The solid volume concentration is defined as the ratio of
the volume of the disperse phase Vd to the total volume
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Vc +Vd, where Vc is the volume of the continuous phase:

ϕ = Vd

Vc + Vd
. (9.234)

This equation holds, strictly speaking, in the case of
nonporous hard spheres. In the case that the particle is
surrounded by a layer, the relative layer thickness δ/a
can be combined with the solid volume concentration ϕ

to form an effective solid volume concentration

ϕeff = ϕ

(

1+ δ

a

)3

, (9.235)

resulting in a modified form of (9.231):

ηr = f (ϕeff, Pe) . (9.236)

Dependent on the solid volume concentration, suspen-
sions can be classified into three main groups: diluted,
concentrated, and highly concentrated or solid suspen-
sions [9.173,209]. Generally, the flow behavior depends
on either the shear rate or shear stress, respectively, the
solid volume concentration, and the properties of the
continuous phase. A sketch of the possible observations
is depicted in Fig. 9.67.

Diluted suspensions of identical spherical particles,
i. e., suspensions with very low solid volume concen-
trations, show a Newtonian behavior. In this case the
distances between the particles are large enough, so that
the Brownian (thermal) motion of the particles predom-
inates over the effect of the interparticle interactions for
colloidal suspensions [9.209]. Einstein [9.210,211] was
the first who investigated the hydrodynamic forces re-
sulting from the motion of the continuous phase with
respect to noninteracting rigid spherical particles. He
derived the equation

ηr = η

ηc
= 1+ k1ϕ+O(ϕ2) (9.237)

for the viscosity of highly diluted suspensions obtained
in pure shear flow, where ηc is the viscosity of the
continuous phase and k1 = 5/2 = 2.5 is the Einstein co-
efficient. The order of approximation is denoted by the
symbol O(.). A generalization of the Einstein coefficient
is the intrinsic viscosity, which is defined as

[η] = lim
ϕ→0

ηr −1

ϕ
= lim

ϕ→0

ηsp

ϕ
, (9.238)

with ηsp as the specific viscosity. For other particle
shapes the intrinsic viscosity varies (cubes: 3.1; uni-
axially oriented fibres parallel to the tensile stress
component: 2l/d with l and d as fibre length and
diameter, respectively) [9.212]. Equation (9.237) shows

a linear increase of the suspension viscosity with increas-
ing solid volume concentration, however the behavior
remains Newtonian. It is applicable to suspensions of
spherical particles with solid volume concentrations up
to 10−2.

A further increase of the solid volume concentra-
tion, i. e., the transition to concentrated suspensions,
causes increasing interactions of the hydrodynamic fields
between spheres or aggregates. The interaction be-
tween two particles was described by Batchelor and
Green [9.213] as well as by Batchelor [9.214] to extend
Einstein’s equation to higher solid volume concentra-
tions:

ηr = 1+ k1ϕ+ k2ϕ
2 +O(ϕ3) . (9.239)

In this equation, the coefficient k2 describes the devia-
tion from the very dilute limit of the suspension. The
equation holds for solid volume concentrations up to
2 × 10−1. This type of power series, a pseudovirial ap-
proximant, can be summarized in a general equation for
the dependence of the relative viscosity on the solid vol-
ume concentration with ki as concentration-independent
expansion coefficients:

ηr =
N
∑

i=0

kiϕ
i . (9.240)

The relative viscosity in (9.240) represents both shear
and elongational viscosities. Table 9.11 gives examples
for the coefficients of some useful models for suspen-
sions of monomodal spherical particles (hard spheres)
based on power series expansion up to the order of 3.
For details refer to the book of Russel et al.[9.194].

It should be mentioned that the coefficient k2 = 7.6
obtained by Batchelor and Green [9.213] for the
extensional flow of equal-sized spheres, is uniquely de-
termined. However, in the case of a simple shear flow,
the coefficient k2 cannot be uniquely determined due to
the occurrence of closed orbits around a reference par-
ticle. This difficulty can be overcome by introduction of
some additional physical process, such as three-sphere
encounters or Brownian motion, or by the assumption
of some particular initial state. By allowing a superim-
posed Brownian motion Batchelor [9.214] calculated the
value of the coefficient k2 = 6.2. For non-Brownian sus-
pensions Batchelor and Green [9.213] found, with some
assumptions about the particular initial state, k2 = 5.2.

To extend the application range to higher solid vol-
ume concentrations up to ϕ < 0.60, Thomas [9.215]
proposed k2 = 10.05 and replaced the third-order term
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Table 9.11 Some models describing the dependence of the viscosity on the solid volume concentration for moderately
concentrated suspensions

Source N k0 k1 k2 k3 Comment

[9.210, 211, 216] 1 1 2.5 - - ϕ < 0.01

[9.213] 7.6 (elongation)

2 1 2.5 5.2 (shear) - ϕ < 0.2

[9.214] 6.2 (shear)

[9.217] 3 1 2.5 4.94 8.78

[9.218] 3 1 2.5 6.25 15.7 ϕ < 0.3

[9.219]

Low-shear limit 3 1 2.5 4±2 42±10 ϕ < 0.35

High-shear limit 3 1 2.5 4±2 25±7

empirically by an exponential term

k3ϕ
3 → 2.73 × 10−3 e16.6ϕ , (9.241)

contrary to asymptotic power-series expansion. Many
other models of this type with other coefficients are
available for special suspensions.

For higher solid volume concentrations, where hy-
drodynamic and surface force interactions as well as
many-body interactions become relevant, the power-
series expansion fails since the viscosity tends to infinity
at solid volume concentrations in the vicinity of the
maximum possible packing fraction. Furthermore, the
models given above (with the exception of the de Kruif
model [9.219]) are applicable only for a Newtonian be-
havior or in the low shear or elongation range. Hence,
another type of models has been developed taking into
account the fact that the viscosity reaches a maximum
value at concentrations near the maximum packing frac-
tion. The maximum packing fraction is a characteristic
scalar value that mainly depends on the particle size
distribution, particle shape (distribution), type of the
interactions between the disperse and continuous phases
and the shear intensity. For idealized regular packing
fractions of monodisperse hard spheres the values given
in Table 9.12 hold.

Table 9.12 Maximum packing fractions for regular arrangements of monodisperse spherical particles

Type of packing Maximum packing fraction ϕmax

(theoretically from geometry)

Face-centered cubic (fcc)
√

2π/6 = 0.7405

Body-centered cubic (bcc)
√

3π/8 = 0.6802

Random closed 0.6370

Hexagonal
√

3π/9 = 0.6046

Simple cubic π/6 = 0.5236

Diamond
√

3π/16 = 0.3401

Barnes et al. [9.82] summarized the results described
in the literature for nonspherical particles. Table 9.13
reveals that the product [η]ϕmax varies only in the range
1.31–3.77, depending on the kind of particles.

Mewis et al. [9.220] found from experimental data
a maximum packing fraction of ϕmax = 0.96 for soft
spheres, which approaches in case of infinite polydis-
persity ϕmax → 1.

Based on experimental data Kitano et al. [9.221] pre-
sented the following simple equation (9.242) to calculate
the maximum packing fraction for short fibres with an
average length-to-diameter (l/d) ratio of 6–27:

ϕmax = 0.54−0.0125 l/d . (9.242)

If the particle size distribution becomes broader, higher
values of the maximum packing fraction occur because
smaller particles can fill the gaps between larger par-
ticles. Under specific conditions this effect is often
coupled with a decrease of the relative viscosity. Ex-
amples for bi- and trimodal suspensions are given by
Barnes et al. [9.82].

In Fig. 9.68 the dependence of the relative viscosity
on the amount of smaller particles in a bimodal suspen-
sion of various solid volume concentrations is shown.
Similar results are described elsewhere [9.222–225].
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Table 9.13 Intrinsic viscosities and maximum packing
fractions for suspensions with asymmetric particles (in ex-
tracts from [9.82] with permission from Elsevier)

System [η] ϕmax [η]ϕmax
Glass fibres (l/d = 21) 6.00 0.233 1.398

Glass fibres (l/d = 14) 5.03 0.260 1.308

Glass rods (30 × 700 µm) 9.25 0.268 2.479

Laterite 9.00 0.350 3.150

Quartz grains (53–76 µm) 5.80 0.371 2.152

Glass fibres (l/d = 7) 3.80 0.374 1.421

Glass plates (100 × 400 µm) 9.87 0.382 3.770

Titanium dioxide 5.00 0.550 2.750

Ground gypsum 3.25 0.690 2.243

From Fig. 9.68 one can recognize that an addition of
smaller particles under perpetuation of the solid volume
concentration reduces the relative viscosity, especially
in the range of ϕ = 0.6 (amount of large particles) where
the relative viscosity has a minimum. This phenomenon
is known as the Farris effect. The path P → Q indicates
the 50-fold reduction in the relative viscosity of a sus-
pension with ϕ = 0.6 if the monodispersity is changed
to a bidispersity (50%/50%). The path P → S illustrates
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Fig. 9.68 Effect of binary particle-size fraction on the
relative viscosity with total percentage solid volume con-
centration as parameter (particle-size ratio of 1:5) (after
Barnes et al. [9.82] with permission by Elsevier)
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Fig. 9.69 Influence of the particle-size distribution on the
relative viscosity of a trimodal suspension of spheres. Con-
tours show values of the relative viscosity at 65% total solids
(after Barnes et al. [9.82] with permission by Elsevier)

that a 15% increase of the solid volume concentration
by the addition of smaller particles without a change of
the relative viscosity is possible.

In Fig. 9.69 a triangular plot of the relative viscos-
ity of a trimodal suspension with a total solid volume
concentration of 60% is shown. A relative viscosity
minimum of 25 is reached at a given optimum ratio
of the solid volume concentration of the components
whereas the binary mixture shows a relative viscosity of
30 [9.82].

These effects give rise to the possibility to influence
the viscosity of a suspension by an optimum mixing of
various fractions of the disperse phase.

In the case of nonspherical particles (ellipsoids,
cubes, rods, fibres) the maximum packing fraction de-
creases. At the same solid volume concentration, the
viscosity increases compared to that of a hard-sphere
suspension.

The maximum packing fraction is often obtained
by fitting of equations of the type shown in Table 9.14
[e.g., (9.244)]. These models describe the dependence
of the reduced viscosity on the solid volume fraction.
The applicability is not restricted to suspensions with
spherical particles because the parameter ϕmax or k can
be regarded as a fitting parameter.

Equations (9.243–9.245) can be formally expanded
in a power series according to (9.240), where the coef-
ficients now depend on the solid volume concentration.
For small solid volume concentrations the Einstein limit
(see eq. (9.237)) is reached.
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Table 9.14 Viscosity–concentration models for higher solid volume concentrations

[9.228] ln ηr = 2.5ϕ 9.243

[9.229] ηr = f (ϕ)
(

1− ϕ
ϕmax

)−p(ϕ)
9.244

[p = 2, f (ϕ) = 1]
[9.230]

(p = [η]ϕmax, f (ϕ) = 1)

[9.231] ηr = exp
(

2.5ϕ
1−kϕ

)

9.245

k = 1.35 (face centered cubic)

k = 1.91 (simple cubic)

[9.232, 233] dηr = ηr[η] (1− kϕ)−α dϕ 9.246

generalized differential form with k = 1/ϕmax, [η] = 2.5

α = 0 : Arrhenius

α = 1 : Krieger/Dougherty

α = 2 : Mooney

Extensive review articles on viscosity models for
suspensions (including models for suspensions of non-
spherical particles) are given by Rutgers [9.226] and
Jinescu [9.227].

Under shear the arrangement of the particles in
the fluid is modified, so that the maximum packing
fraction depends on the shear rate or shear stress ap-
plied (Fig. 9.70). Thus, the (shear-dependent) maximum
packing fraction has been introduced in the models
(e.g., [9.219, 234, 235]).

Wildemuth and Williams [9.234] developed a sim-
ple model to describe the shear-dependent maximum
packing fraction. They found the relation

1

ϕmax(σ)
= 1

ϕmax,0
−
(

1

ϕmax,0
− 1

ϕmax,∞

)

S(σ) ,

(9.247)

which describes the dependence of the maximum pack-
ing fraction on the shear stress. The values ϕmax,0
and ϕmax,∞ are the maximum packing fractions in the
low- and high-shear-rate limit. In analogy to some ki-
netic models to describe the time-dependent viscous
(thixotropic) behavior of suspensions using parameter
λ(t) (Sect. 9.2), the function S(σ) can be interpreted as
a scalar structural parameter with values between 0 and 1
depending on the given shear stress σ . For the structural
parameter the relation

S(σ) = 1

1+ Kσ−m (9.248)

has been proposed. The parameters K and m must be
evaluated by fitting the experimental data. With (9.244),
(9.247), and (9.248) the non-Newtonian behavior of con-
centrated suspensions can be modeled. A similar relation
has been proposed by Zhou et al. [9.235].

Moderately concentrated suspensions often possess
a monotonously decreasing viscosity with plateaus in the
low (η0) and high (η∞) shear rate limit and a power-law
region in between. In Table 9.15 some useful models
to describe the time-independent viscous behavior of
suspensions without yield stress in steady shear flows
with a minimum of parameters are summarized.

If the solid volume concentration approaches the
maximum packing fraction, a transition from liquid- to
solid-like behavior occurs. The interactions between the
particles become very intensive and a true or apparent
yield stress may occur. This results in a viscosity that
tends to infinity at very low shear rates or shear stresses
(Fig. 9.67). The main reason for this behavior is that
the free movement of particles is hindered by particles
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Fig. 9.70 Low- and high-shear limit of the relative vis-
cosity in dependence on the solid volume concentration
for monodisperse lattices (after Barnes et al. [9.82] with
permission by Elsevier)
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Table 9.15 Viscosity models (time independent) for suspensions without yield stress

[9.236] η(ϕ)−η∞(ϕ)
η0(ϕ)−η∞(ϕ) = 1

1+(σ/σcr(ϕ))m(ϕ) 9.249

1 ≤ m(ϕ) ≤ 2

σcr . . . critical shear stress

[9.129] η(ϕ)−η∞(ϕ)
η0(ϕ)−η∞(ϕ) = 1

1+k(ϕ)γ̇n(ϕ) 9.250

[9.237] η(ϕ)−η∞(ϕ)
η0(ϕ)−η∞(ϕ) = (1+ (τ(ϕ)γ̇ )m(ϕ))

n(ϕ)−1
m(ϕ) 9.251

special case: Carreau (m = 2) (cf. with (9.207) in Sect. 9.2)

τ(ϕ) characteristic material time

n(ϕ)−1 slope in the power-law region

m(ϕ) affects the shape of the transition

between zero-shear viscosity and power-law region

in their direct neighborhood. From a physical point of
view, the yield stress is not a single scalar value, but
it should be considered a region that characterizes the
solid–liquid transition. It is influenced by the solid vol-
ume concentration and the interparticle interactions, but
also by the intensity of the mechanical load and the type
of the flow. The most appropriate method to measure the
yield stress is to apply a shear stress ramp. Starting from
a very low value, the shear stress is slowly increased
and the shear strain or shear rate, respectively, is meas-
ured. To resolve the low-shear-stress range accurately,
the shear stress should be given as a logarithmic ramp.
Assuming a solid-like behavior below the yield stress,
a sharp increase of the slope of the γ (σ) curve occurs if
the given shear stress approaches the yield stress. The in-
tersection point of the asymptotes of the solid-like range
and the initial liquid-like ranges characterizes the yield
stress. It is important to note that the steepness of the
shear stress ramp influences the solid–liquid transition.
Hence, preliminary investigations are necessary to de-
termine the critical shear stress ramp where the yield
stress is independent of the ramp steepness.

Some useful models have been presented to
describe the flow behavior of the so-called viscoplas-
tic suspensions (Bingham, Herschel-Bulkley, Casson
(see [9.188]). However, it should be noted that the yield
stress obtained by fitting the model parameter to the ex-
perimental data is neither a unique nor a single material
property. It depends on the shear rate range and even on
the model used. Detailed information on the measure-
ment and estimation of the yield stress can be found in
the review articles by Nguyen and Boger [9.238] and
Barnes [9.239].

At higher shear rates, highly concentrated suspen-
sions with solid volume concentration of 50% and
higher may show shear thickening, i. e., the viscos-
ity increases with increasing shear rate or shear stress

(Fig. 9.71). This effect is caused by a more or less
sudden change in the microstructure of the suspen-
sion which could be investigated by means of scattering
methods (e.g., [9.240–242]). As Barnes [9.243] pointed
out, this shear-thickening region ranges over more than
one decade of shear rate. Most of the parameters shown
in Table 9.9 may control the shear-thickening behav-
ior. Usually, the shear-thickening effect is reversible
since the viscosity decreases again if the shear rate
or stress decreases. Schematically, the phenomenon of
shear-thickening is shown in Fig. 9.71. At higher solid
volume concentrations a shear-thinning region can be
observed which passes into a region with increasing vis-
cosity at a critical shear rate γ̇cr. The critical shear rate
increases and the onset of shear thickening is less se-
vere with a broadening of the particle size distribution.
Furthermore, a local viscosity maximum is reached at
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Fig. 9.71 Schematic representation of the viscosity func-
tion for shear-thickening suspensions as a function of the
solid volume concentration (see text for explanation, after
Barnes [9.82] with permission by the Society of Rheology)
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a shear rate γ̇m. Both characteristic shear rates shift to
lower values with increasing solid volume concentra-
tions. It is interesting to note that the critical shear rate
tends to zero if the maximum packing fraction is reached.

It should be mentioned that a correlation between the
particle size and the critical shear rate exists. Based on
the data in many publications, Barnes [9.243] gave an
empirical evidence of an inverse quadratic dependence

γ̇cr (a) = Ka−2 (9.252)

with a value of K ≈ 4 µm2/s obtained from a rough fit
to the available data.

Furthermore, the critical shear rate depends on the
solvability of the continuous phase with regard to a sta-
bilizer (nonaqueous suspensions) or pH value (aqueous
suspensions). Frith et al. [9.244] indicated for steri-
cally stabilized nonaqueous suspensions that the onset of
shear thickening scales with the viscosity of the continu-
ous phase due to the hydrodynamic effects. The critical
shear rate was found to decrease with decreasing sta-
bilizer layer thickness, i. e., if the continuous phase is
a better solvent for the stabilizer. Franks et al. [9.245]
demonstrated that the critical shear rate increases if the
pH value is adjusted farther from the isoelectric point
(IEP). At the (material-specific) IEP, the ζ potential is
zero. This effect has been explained by an increase of
the repulsive forces between the particles, which delay
the onset of shear thickening. If the pH value deviates
from the IEP, the addition of salt decreases the repulsive
forces and, hence, decreases the critical shear rate. From
these observations it can be concluded that shear thick-
ening is not only a hydrodynamic effect but depends on
the surface forces as well.

The effect of shear thickening does not only occur in
steady shear experiments. Raghavan and Khan [9.246]
observed so-called strain thickening in oscillatory shear
flows. Strain thickening in this case means that a critical
combination of a shear strain and an angular frequency
exists where the complex viscosity sharply increases.
Two different cases are possible: high critical strains
at low frequencies and high critical frequencies at low
strains. In the first case, a correlation with the re-
sults obtained in steady shear flow is possible using
a modified Cox–Merz rule (the Rutgers–Delaware rule,
Doraiswamy et al. [9.247])

∣
∣η∗(γ̂ω)

∣
∣= η(γ̇ )

∣
∣
ω=γ̇

. (9.253)

Compared to the original empiric Cox–Merz rule
((9.102) in Sect. 9.1.1), the angular frequency ω has been
scaled with the shear strain amplitude γ̂ , which now

describes the maximum dynamic shear rate in oscilla-
tory shear experiments. Gleissle and Hochstein [9.248]
extended the range of applicability of the Cox–Merz
rule using the concept of the shear stress equivalent in-
ner shear rate. The modified Cox–Merz rule has been
applied to the high-shear region where hydrodynamic
interactions dominate.

A simple rheological model in a closed form, which
describes the complete viscous behavior in simple shear
in a broad range of shear rates including the shear thin-
ning and the shear thickening region, is not yet available.
Here, the regions should be described separately by the
models given in Table 9.15.

Rheological Measurements
Before performing the rheological measurement the
following points should be clarified: a suitable meas-
urement geometry, and the dosage and rheological
preconditioning of the sample.

In Sect. 9.1.1 various measurement geometries have
been described. In the following only the properties of
the measurement geometries relevant to the investigation
of dispersions will be explained. Details can be found in
the monograph by Walters [9.189] or the contributions
by Powell [9.249] on rotational rheometry, and Mackley
and Rutgers [9.250] on capillary rheometry.

Choice of the Measurement Geometry – Settling,
Particle Migration, and Wall Slip. The choice of
the measurement geometry depends on the expected
rheological properties of the suspension. Because the
rheological properties are a priori unknown, prelimi-
nary measurements are absolutely necessary. However,
it is possible to choose a suitable geometry based on the
following information:

1. the shear rate or shear stress range of interest –
stability of flow in the range of interest

2. the existence of a possible yield stress, as well as the
order of magnitude of the viscosity and/or normal
stress differences

3. the possibility, to prevent wall slip or, if this is not
possible, to detect and correct for wall slip

The stability of flow is an important criterion for
the choice of the geometry. The cone-and-plate (CP)
system (cf. Fig. 9.32) is suitable for low and medium
shear rates. Especially at higher concentration, the flow
in CP systems becomes unstable, e.g., due to shear
fracture. Starting from the free surface at the edge,
the sample contracts with increasing time and shear
rate, which results in a decreasing shear plane. In
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controlled-shear-rate (CSR) experiments, the slope of
the flow curve is reduced dramatically and, hence, the
viscosity decreases apparently. This results in strong
shear-thinning behavior starting at a critical shear rate. In
controlled-shear-stress (CSS) experiments, shear frac-
ture is manifested as a sharp increase of the measured
shear rate. Independent of the problems of sample sta-
bility, the CP system with small cone angles (≤ 4◦)
is the most preferable geometry for the investigation
of suspensions because the shear rate and the shear
stress are approximately constant over the whole sam-
ple [cf. (9.139) and (9.143) in Sect. 9.1.2]. Especially
when investigating the yield stress in suspensions, the
CP geometry is the most suitable system. Furthermore,
the CP geometry allows the determination of the first
normal stress difference from the axial force [cf. (9.148)
in Sect. 9.1.2] which can easily be measured by modern
rotational rheometers.

Similar sample instabilities can be observed in
torsional plate–plate (PP) geometries (cf. Fig. 9.31). Al-
though the main advantage lies in the simple adjustment
of the shear rate by varying the gap height, the PP sys-
tem is unsuitable for the rheological measurements of
non-Newtonian suspensions due to the strong inhomo-
geneous shear field in the gap [cf. (9.136) in Sect. 9.1.2].
However, the torsional PP geometry is a necessary
tool for measurements of the difference between the
first and second normal stress difference [cf. (9.138) in
Sect. 9.1.2], i. e., for the estimation of the second nor-
mal stress difference if the first normal stress difference
is already known.

Because of the small gap height and the direction
of gravity perpendicular to the gap, sedimentation or
demixing effects influence the experimental results ob-
tained in CP and PP geometries to a major degree.
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Fig. 9.72 Erroneous flow curves of a shear-thinning sus-
pension in a coaxial cylinder system due to evaporation,
sedimentation, or friction between bob and sediment

Here, demixing effects manifest themselves as an un-
typical time-dependent decrease of the viscosity, which
in the case of a Newtonian continuous phase, tends to-
wards the viscosity of the continuous phase. This effect
could be misinterpreted as shear thinning or thixotropy
(Sect. 9.2).

It is possible to estimate the influence of settling
on the rheological measurements. Based on the balance
between the Stokes force (cf. Sect. 3.4.5), the gravita-
tional force, and the buoyant force an equation can be
derived to estimate the time required for a single sphere
to migrate over a length l

texp = 9

2

ηcl

∆ρga2
(9.254)

with ∆ρ = |ρd −ρc| and texp as experimental time (cf.
Sect. 3.4.5: falling-sphere viscometer). For spheres of
10 µm diameter in water and a migration length of 1/10
of a typical gap h of 1 mm (e.g., in a PP geometry), the
particle density must be within 0.2% of that of water
to prevent settling during typical measurement times of
1000 s [9.188]. As seen from (9.254), the density differ-
ence is inversely proportional to the square of the particle
size under unchanged conditions, i. e., if smaller par-
ticles are used, the possible density difference between
particles and liquid increases quadratically. The settling
time increases if the solid volume concentration is high
enough that hindered settling occurs or if a superposed
shear flow during measurements is realized. Generally,
the relation

2

9

texp∆ρga2

ηch
� 1 (9.255)

must be fulfilled to neglect the influence of settling.
The problems discussed with CP and PP geometries

can be at least partially avoided if coaxial cylinders (cf.
Fig. 9.29) are used since the gravity acts parallel to the
cylinder gap. Due to the length of the gap between the
two cylinders, the influence of sedimentation is not as
dramatic as has been described for the CP and PP ge-
ometries. However, sedimentation leads to depletion of
particles in the shear gap and hence to an initial de-
crease of the viscosity. If the solid volume concentration
is high enough, a compact layer of solid is generated at
the bottom of the outer cylinder. If this layer reaches the
lower edge of the inner cylinder, an additional torque oc-
curs due to solid friction between the inner cylinder and
the sediment. This observation, schematically shown in
Fig. 9.72, can be misinterpreted as shear thickening or
rheopexy (Sect. 9.2). Further problems may appear due
to Taylor vortices obtained in coaxial cylinder systems
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where the inner cylinder rotates (Searle systems) and/or
edge effects. An estimation of the critical shear rates or
shear stresses is possible with common methods.

Another general problem is partial evaporation of
the continuous phase during the measurements. Evap-
oration, i. e., the loss of continuous phase, leads to an
increase of the solid volume concentration, which causes
an increase of the relative viscosity due to the strong in-
fluence of the solid volume concentration. This effect
can be minimized by carrying out the measurements in
a saturated atmosphere of the continuous phase. If this is
not possible, a small amount of an immiscible nonevap-
orating liquid can be applied to the air–sample surface
to prevent evaporation.

One of the most well-known problems arising in
experimental investigations of suspensions is wall slip,
i. e., the violation of the no-slip condition at the walls
of the measurement geometry. There are two different
types of wall slip.

The first type, true wall slip, has been found with
unfilled polymers [9.252]. At higher shear stresses,
a relative velocity between the fluid at the wall and
the wall velocity itself sets in. This effect is generally
associated with the flow instabilities, e.g., during the ex-
trusion process (stick–slip phenomenon). However, the
true wall slip is only of relevance when dealing with
polymers.

�
�

=*�

* ��2

Q��� �	��	�

�

"

�

�+� �+�

'� �

"

�+,

�+"

�
�

=*�

Q��� �	��	�

�

"

�

�+� �+�

'� �

"

�+,

�+"

* ��2�� ��

Fig. 9.73a,b Concentration distribution over the shear gap:
(a) Couette flow, (b) plane Poiseuille flow. K is given by
(9.256) (after Ho and Leal [9.251] with permission by
Cambridge University Press)

With moderately and highly concentrated suspen-
sions, the second type, an apparent wall slip effect, can
occur which is caused by particle migration. An ini-
tially homogeneously distributed suspension, which is
subjected to non-homogeneous shear field, can demix
during the experiment. This demixing effect is caused
by additional forces acting at the particles, even in the
case where neither inertial nor interparticle forces are
relevant. The physical depletion of particles near the
solid walls occurring even without flow results from
a distortion of the local microstructure. Furthermore,
the local isotropy caused by the Brownian motion (of
colloidal particles) may be destroyed. The flow-induced
forces cause a movement of the particles from regions
of higher (near the walls) to regions of lower shear rates
or vice versa. This effect, called particle migration, re-
sults in a solid volume concentration distribution over
the sample. Ho and Leal [9.251] analyzed the problem of
particle migration both in drag (Couette, see Fig. 9.27)
and pressure-driven (plane Poiseuille, see Fig. 9.41) slit
flow theoretically. The solid volume concentration dis-
tributions are shown in Fig. 9.73. Ho and Leal found
a criterion for neglecting migration effects that compares
the inertial effects and Brownian motion

K = ρcū2a4

hkBT

⎧

⎨

⎩

< 0.1 Couette flow ,

< 0.01 plane Poiseuille flow ,

(9.256)

where ū is the mean velocity in the gap (Couette flow:
ū = 1

2 umax, plane Poiseuille flow: ū = 2
3 umax) and h is

the gap width. Figure 9.73 makes clear that, in the Cou-
ette device where the outer cylinder rotates, the particles
(spheres) move towards the centerline. In contrast, in
plane Poiseuille flow a maximum solid volume concen-
tration occurs at the distances of about 0.2h from the
walls. The intensity of migration depends, among other
things, on the mean velocity (or shear rate), particle size
and the thermal energy of the particle. The danger of mi-
gration strongly increases with the particle size, since the
influence of the thermal forces decreases with increasing
particle size.

An extensive numerical study of particle migration
in various geometries has been carried out by Gra-
ham et al. [9.253]. They used a modified shear-induced
migration model based on the model of Leighton and
Acrivos [9.254]. By using the momentum equation, mass
conservation equation, and a kinetic equation for the
change of the solid volume concentration, they calcu-
lated the steady-state spatial concentration profiles and
the resulting integral values of pressure drop or torque.
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For geometries with inhomogeneous shear fields, they
found particle concentrations varying from low values at
higher shear rates to higher values at lower shear rates.
The surprising result of the numerical study is that, even
in the case of a CP system with a practically homoge-
neous shear field, radial and azimuthal concentration
profiles establish. As a result, the driving torque in-
creases significantly due to the outward migration of the
particles, which can be misinterpreted as a dilatancy ef-
fect. It has been shown that the particle migration results
from the curvature of the CP geometry.

Allende and Kalyon [9.256] studied pressure-driven
flows of suspensions of neutrally buoyant, noncolloidal
and unimodal spheres dispersed in a Newtonian con-
tinuous phase. On the basis of the model of Phillips
et al. [9.257] they found that the shear-induced particle
migration is typically negligible for length-to-diameter
(or gap) ratios of 0–50 provided that the ratios of
particle-to-tube (or channel gap) radii are 5 × 10−3 and
smaller. Under these conditions, the wall concentra-
tion is within 2% of the initial concentration of the
suspension in the solid volume concentration range
0.1 ≤ ϕ ≤ 0.5.

Experimentally, the effect of particle migration
has been shown by the use of noninvasive methods.
Hartman Kok et al. [9.258] used the total-reflection
Fourier-transform infrared spectroscopy to determine
the thickness of the wall slip layer in dependence of
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Fig. 9.74 Sample fracture: shear stress as a function of time, includ-
ing photos of the sample under shear, at an apparent shear rate of
2 × 10−3 s−1 (after Aral and Kalyon [9.255] with permission by the
Society of Rheology)

the shear rate in a PP geometry. From rheological meas-
urements the thickness of the slip layer δS could be
estimated [9.259] by

δS = uSηs

σ
(9.257)

with uS as the slip velocity (obtained from a plot of
the apparent shear rate at the rim of the PP geometry
as a function of the inverse gap height). They found
a reasonable agreement between both methods where
the thickness of the slip layer was of the order of
1 µm and nearly independent of the Péclet number (or
dimensionless shear rate).

Other noninvasive methods such as nuclear magnetic
resonance (NMR, Abbott et al. [9.260] for PP geome-
try, Han et al. [9.261] for tube flow) or laser doppler
anemometry (LDA, Jana et al. [9.262]; Chap. 5.3.1) have
been used to investigate the distribution of the solid vol-
ume concentration in various measurement geometries.
Abbott et al. [9.260] found a particle-depleted zone near
the inner cylinder of a wide gap coaxial cylinder (CC)
geometry where the particle concentration at the outer
wall reached the maximum packing fraction. This may
lead to unsheared regions in the cylinder gap and hence
to erroneous measurements. The reason for this obser-
vation is again the inhomogeneity of the shear field. The
effect has been found to be irreversible and indepen-
dent of the shear rate and the viscosity of the continuous
phase. An essential conclusion is that wider cylinder
gaps amplify the occurrence of particle migration.

To avoid wall slip caused by particle migration, it is
necessary to disrupt the slip layer. This can be achieved
by serrated or at least roughened measurement systems.
The roughness must be larger than the slip layer thick-
ness, so that the peaks of the surface disrupt the slip
layer. On the other hand, to avoid secondary flows in the
valleys of the rough surface, the roughness should not
be too large.

The influence of the surface roughness on the rhe-
ological measurements of concentrated suspensions has
been investigated extensively and systematically by Aral
and Kalyon [9.255] for various PP geometries. The sus-
pension used was a poly(butadiene-acrylonitrile-acrylic
acid) terpolymer (PBAN) filled with glass beads of
85.4±35.3 µm diameter. Various materials with sur-
faces of different asperities have been investigated.
The authors found that wall slip generally occurs with
stainless-steel plates, but could be avoided with plates
made of aluminium oxide. A significant influence of
the surface roughness could be found for plates of the
same material. In Fig. 9.75, the influence of the sur-
face topology on the transient shear stress obtained
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in a start-up flow with a given shear rate is shown.
The number of the surface #6 to #9 corresponds to
the ratio of mean surface roughness to the diameter
of the plates (0.005, 0.006, 0.008, and 0.02). Obvi-
ously, the corresponding shear stress values increase
with increasing surface roughness. Furthermore, some
photographs are shown that depict the mechanism of
wall slip and shear fracture. At short times or low
shear strains (γ = γ̇ t), respectively, a homogeneous de-
formation of the sample occurs (see the marker lines
in Fig. 9.75), whereas at higher strains an increas-
ing shear fracture occurs. Shear fracture is caused by
internal slip within the sample. This leads to a dis-
continuity in the velocity field occurring between two
neighboring sample layers. It is interesting to note that,
in most cases described by Aral and Kalyon [9.255],
the absence of wall slip was coupled with the appear-
ance of shear fracture, i. e., the formation of a fracture
plane.

Both effects, i. e., wall and internal slip have also
been found by Persello et al. [9.263] for colloidal silica
dispersions using a marker technology. A result of their
experiments is that the plane of shear fracture, which
occurred at larger shear rates, typically moved from the
upper plate at the start of the experiment to the middle of
the gap if wall slip had been suppressed. The internal slip
layers occurred due to a partially demixing of the dis-
persion, i. e., the formation of a layer of the matrix liquid
acting as lubricant between the solid layers. Homoge-
neous deformation without wall slip and shear fracture
has been found at low shear stresses. In Fig. 9.74 the
effects of homogeneous sample deformation, wall slip,
and shear fracture are shown schematically.

It is not surprising that flow instabilities such as wall
slip can lead to unusable results. Walls et al. [9.264] in-
vestigated the influence of various surfaces of the test
geometry on the rheological properties of silica gels.
They found distinct differences of the viscosity and
storage modulus curves obtained with smooth and ser-
rated plates as shown in Fig. 9.76. From their results

H���(	�	�0�

	E��������

D�����M���������������	�3���

Fig. 9.75 Homogeneous deformation, wall slip, and shear
fracture (in modified form after Persello et al. [9.263] with
permission by the society of Rheology)

it can be concluded that wall slip occurs at a criti-
cal shear stress or critical shear stress amplitude. At
higher stresses, it seems that wall slip disappears and
both curves coincide.

Generally, it is possible to correct the effect
of wall slip if a Couette device with two differ-
ent inner (radii Ri,1 and Ri,2) cylinders and outer
cylinders (Ro,1 and Ro,2) is used. The radii ratio
β = Ro,1/Ri,1 = Ro,2/Ri,2 is the same for the two ge-
ometries, whereas the gap width varies. The wall slip
velocity can be calculated by using the formula of
Yoshimura and Prud’homme [9.265] for the Couette
device with β −1 � 1 (small gaps)

uS(σi) = β

β +1

(

Ω1 −Ω2

R−1
i,1 − R−1

i,2

)

, (9.258)

where σi is the same shear stress at the inner cylin-
der for the two independent measurements with angular
speeds Ω1 and Ω2 and the two cylinder systems 1 and
2. The true shear rate at the wall can then be obtained
from

γ̇i,a = γ̇i(σi)+ 2uS(σi)

Ri
. (9.259)

A plot of the apparent shear rate versus the in-
verse inner radius for a given shear stress results
in a straight line. The true shear rate can be ob-
tained from the intersection of the straight line
with the ordinate. The slope of the straight line
corresponds to the twofold increase of the slip veloc-
ity.

For torsional plate–plate geometries, Yoshimura and
Prud’homme [9.265] proposed

uS(σR) = γ̇aR,1(σR)− γ̇aR,2(σR)

2
(

h−1
1 −h−1

2

) (9.260)

to calculate the slip velocity from two independent ex-
periments carried out with two different gap heights h1
and h2 and apparent shear rates γ̇aR,1 and γ̇aR,2 at the
outer edge of the plates for the same shear stress σR at
the outer edge R. The true shear rate at the walls can
then be calculated according to

γ̇aR = γ̇R(σR)+ 2uS(σR)

h
. (9.261)

The same procedure can also be used for tube flows.
For further details on wall slip and its preven-

tion in rheometers we refer to the review article by
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Fig. 9.76a,b Influence of the surface topology (a) on the viscosity function and (b) the storage modulus (cf. (9.5) in
Sect. 9.1.1, adapted from Walls et al. [9.264] with permission from the Society of Rheology)

Barnes [9.266] who formulated some conditions which
usually lead to significant wall slip effects, such as:

• large particles in the disperse phase (including flocs
or aggregates)• a strong dependence of viscosity on the solid volume
concentration of the disperse phase• smooth walls (sandblasted walls or profiled cones,
plates or cylinders can prevent wall slip, but can lead
to shear fracture)• small flow dimensions• usually low speeds/flow rates• walls and particles with electrostatic charges while
the continuous phase is electrically conductive.

Dosage and Rheological Preconditioning of the Sam-
ple. Preconditioning of the rheological sample is an
important factor to get correct (and especially repro-
ducible) results. If rotational rheometers are used, the
suspension structure at rest can be destroyed by the fill-
ing process. Moreover, the lowering of the upper part of
the measurement geometry leads to a squeeze flow of the
sample. This flow process causes an intensive shear and
elongation of the sample and hence a modification and
an induced direction of the inner structure. Furthermore,
normal or shear stresses that cannot relax even at long
times occur, if the samples are highly concentrated and
show a yield stress. To avoid such problems, a simple
method has been developed by Heymann et al. [9.267]
to dose and preform a pasty suspension reproducibly.

They used a template with a circular opening in the
middle. The diameter of the opening corresponded ap-
proximately to the diameter of the cone or plate, the
thickness was nearly 90% of the maximum gap height
in CP systems. The sample is put into the circular open-
ing by a process similar to screen printing with a doctor
blade. After forming the circular sample disk, the tem-
plate was removed and the geometry was closed. The
main advantage of this handling is a preformed sample
of the thickness of the order of the gap height.

After filling, it is indispensable to use a pre-shear
phase to ensure reproducible results. The influence of
pre-shear on the results of rheological measurements
has been studied intensively. Heymann et al. [9.267] ana-
lyzed the influence of steady and oscillatory pre-shear on
the subsequent oscillatory experiments with suspensions
of polymethylmethacrylate (PMMA) spheres dispersed
in a Newtonian low-molecular-weight polydimethyl-
siloxane (PDMS). They found distinct differences
between the storage and loss moduli obtained in shear
stress controlled (CSS) amplitude sweeps after steady
and oscillatory pre-shear. At low shear-stress ampli-
tudes, the moduli were higher after oscillatory pre-shear.
At higher shear-stress amplitudes, where the hydrody-
namic interactions dominate, no significant differences
between steady and oscillatory pre-shear could be ob-
tained. Furthermore, the normal force, induced by the
closing of the test geometry, could be reduced and the re-
producibility could be enhanced by oscillatory pre-shear.
A problem arises if the suspension shows yield behav-
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ior. In both cases (stationary and oscillatory pre-shear),
the shear stress induced by pre-shear cannot relax com-
pletely and the subsequent measurements do not start
with a stress-free initial state of the suspensions. In par-
ticular, the oscillatory option is problematic because the
oscillation cannot be stopped in a well-defined way. This
problem can be avoided by a suitable choice of an event
control algorithm of the rheometer to set the shear stress
to zero.

A dramatic influence of the pre-experimental sample
preparation has also been demonstrated by Carreau
et al. [9.269]. They analyzed the influence of the homog-
enization procedure prior to the rheological experiments
on low-concentrated aqueous colloidal suspensions of
fumed silica particles with a mean diameter of 12 nm.
After manual mixing, the viscosity showed slightly
shear-thinning behavior. In contrast to this observa-
tion, the influence of ultrasonic dispersion was dramatic
because the viscosity was strongly shear thinning at
a clearly higher level. This has been explained by
the interaction between water and the silica particles
based on hydrogen bridges. At rest, large aggregates are
formed, which can be destroyed by shear only slightly.
After the ultrasonic dispersion, the suspension consist of
single particles that cause a higher viscosity level and can
be structured by shear. Furthermore, they observed in
controlled-shear-stress (CSS) experiments with suspen-
sions of fumed silica particles in polypropylene glycol
that the low-shear viscosity, the onset, and the im-
portance of shear thickening decrease with increasing
pre-shear stresses. This effect has been explained by
a break-up of aggregates due to pre-shear.

Schmidt and Münstedt [9.270] investigated the
rheological behavior of concentrated monodisperse sus-
pensions. They detected a significant influence of the
pre-shear time at a given shear stress on both the low-
shear viscosity and the dynamic moduli. The low-shear
viscosity was found to increase with increasing pre-shear
time, caused by structuring effects. In contrast to the loss
modulus, which has not been influenced significantly by
pre-shear, the storage modulus increased markedly with
increasing pre-shear times at low angular frequencies.
This was interpreted as a transition from a liquid- to
a solid-like viscoelastic structure of the particle network.

Summarizing all the results concerning the influ-
ence of pre-shear it is indispensable to insert a phase of
rheological sample preparation before any rheological
measurements are carried out with rotational rheometers
(Sect. 9.1.2). Furthermore, the pre-experimental his-
tory influences the rheological behavior of suspensions
markedly.

If capillary viscometers (Sect. 9.1.2) are used, the
influence of various mechanical histories is not as dra-
matic as in the case of rotational rheometers since the
sample flows from a reservoir with a larger diameter into
the capillary with a distinctly smaller diameter, driven
by a pressure. Due to the convergent flow field, elonga-
tional effects modify the structure of the suspension and
orientation phenomena disappear.

Viscometric Flows. In this chapter, the most relevant
experimental results and phenomena obtained in visco-
metric flows are presented and explained.

A typical example of the influence of the solid
volume concentration on the shear-stress-dependent vis-
cosity shown in Fig. 9.77 has been given by Laun [9.268]
for an aqueous suspension of charged polystyrene-
ethylacrylate copolymer spheres of 250 nm diameter.
The viscosity at low solid volume concentrations
ϕ < 0.18 remains Newtonian. Increasing the solid
volume concentration, non-Newtonian shear-thinning
behavior can be observed with a subsequent shear thick-
ening region at higher solid volume concentrations. At
very high solid volume concentrations a striking increase
of the viscosity at lower shear stresses can be obtained,
which could be an indication of an apparent, or possibly
true, yield stress.

These observations could be attributed to the par-
ticle structure changes by applying rheooptical methods
during the shear experiments. Lyon et al. [9.271] studied
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Fig. 9.77 Shear viscosity versus shear stress of a colloidal latex
suspension with 250 nm particles at different solid volume con-
centrations at nearly the same pH values (after Laun [9.268] with
permission by Hüthig & Wepf Verlag)
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the structure formation of suspensions in a simple shear
flow and found a transition from a disordered state at the
beginning of the experiment to an ordered state induced
by a given shear strain or time of shear. The noncol-
loidal monodisperse particles order in shear bands and,
locally, in a hexagonal pattern due to particle migration
across the streamlines of the flow.

By a combination of optical and rheological mea-
surements, similar effects in the dependence of viscosity
on the microstructure of the suspensions could be ob-
tained by Gondret and Petit [9.272] for oscillatory
shear (Fig. 9.78) as well as by Völtz et al. [9.274] for
steady shear. They found a time-dependent decrease of
the viscosity during shear, as shown for a moderately
concentrated suspension of noncolloidal spheres. The
decrease of the viscosity was coupled with a transi-
tion from a disordered to a periodic band-like [9.272]
or hexagonal structure [9.274] of the suspension. The
range of the characteristic structuring times can be some
milliseconds up to hours. Furthermore, it can be stated
that structural modifications from a disordered state via
a band-like and hexagonal to disordered structures are
the reason for the complex behavior of the suspensions.
These effects, dependent on the interparticle interactions
and solid volume concentration, occur in both colloidal
and noncolloidal suspensions.

Silbert et al. [9.275] studied concentrated, ag-
gregated colloidal suspensions of spherical particles
by numerical simulations. Among other things, they
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Fig. 9.78 Structuring of a suspension of noncolloidal particles in
a Newtonian continuous phase with a solid volume concentration of
0.2 in an oscillatory shear flow (after Gondret and Petit [9.272] with
permission by the AIP)

claimed, that the microstructure strongly depends on
the solid volume concentration under the same shear-
ing conditions, i. e., the same Péclet number. Starting
from a semiordered phase with a coexistence of particle
strings and disordered regions at ϕ = 0.47 they found
a transition to a hexagonally packed string phase at
ϕ = 0.50, an intermediate string/layer phase at ϕ = 0.55,
and finally to a truly ordered layered phase at ϕ = 0.57.

As shown in Table 9.10, the viscosity of a suspension
depends strongly on the interparticle interactions and,
hence, on the kind of stabilization (hard spheres, electro-
static stabilization, steric or electrosteric stabilization).
In the following, some illustrative experimental results
will be given for hard spheres, charged spheres, and
sterically stabilized spheres.

Shear Viscosity. In the absence of interparticle surface
forces the shear viscosity of hard-sphere suspensions
depends only on the solid volume concentration and
the dimensionless shear rate or Péclet number (9.231).
Krieger [9.273] investigated some model colloidal hard-
sphere suspensions of polystyrene spheres in water or
benzyl alcohol and metacresol. He proved that the rela-
tive viscosity data form a master curve independent of
the continuous phase, as portrayed in Fig. 9.79.

A viscosity function of this type can be best de-
scribed by (9.249) with m = 1. The critical shear stress
σcr, which characterizes the shear thinning region, has
been found to be dependent on the solid volume con-
centration. As demonstrated by de Kruif et al. [9.219]
the critical shear stress increases initially with increas-
ing solid volume concentration up to a value of ϕ ≈ 0.5.
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Fig. 9.79 Dimensionless viscosity function of hard sphere
suspensions (after Krieger [9.273] with permission by Else-
vier). Continuous phase: water (line), benzyl alcohol (open
circles), metacresol (filled circles)
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Fig. 9.80 Critical shear stress as a function of solid volume
concentration for colloidal hard-sphere suspensions (after
de Kruif et al. [9.219] with permission by the AIP)

After reaching this maximum, it decreases and reaches
zero for a solid volume concentration in the vicinity
of the maximum packing fraction, where the viscosity
diverges. The maximum of the critical shear stress at
ϕ ≈ 0.5 is an indicator that a hard-sphere disorder–order
transition is rheologically relevant [9.194]. The depen-
dence of the critical shear stress on the solid volume
concentration is shown in Fig. 9.80.

So et al. [9.277] indicated that it is possible to sup-
press shear-thickening effects for highly concentrated
suspensions of smaller stabilized hard spheres in con-
trast to suspensions with nonstabilized larger particles at
the same solid volume concentration. In the latter case,
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Fig. 9.81a,b Flow and deformation behavior of a suspension with ϕ = 0.474 and a mean particle radius a of 2.5 µm:
(a) flow curve, (b) shear stress versus shear strain (after Heymann et al. [9.276] with permission by the Society of
Rheology)

weak interparticle forces, i. e., attractive forces, lead to
a formation of clusters and hence to a modification of
the microstructure, which deviates from that of a face-
centered cubic or hexagonally close packing at solid
volume concentration above ϕ = 0.5.

Heymann et al. [9.276] studied noncolloidal sus-
pensions of PMMA spheres dispersed in a Newtonian
silicone oil. They measured the flow curves and shear
stress–shear strain curves of the suspensions of various
solid volume concentration in the controlled-shear-stress
(CSS) mode with different logarithmic ramp times tR.
An open question in rheology of highly concentrated
hard-sphere suspensions (or suspensions generally) is
how the transition from the solid-like behavior at low
shear strains or shear rates to the liquid-like behavior at
higher mechanical loading takes place.

An example is given in Fig. 9.81. At higher shear
stresses and shear rates all flow curves (Fig. 9.81a) co-
incide and no dependence on the ramp time is found.
The shear rate depends only on the actual shear stress.
Hence, the suspension shows typical liquid-like behavior
at high shear stresses with terminal Newtonian behav-
ior. At small shear stresses scattering of the data occurs.
However, the same data presented in the shear strain–
shear stress curves (Fig. 9.81b) unveils the problem. At
low shear stresses, the curves coincide, independent
of the ramp time. This indicates a unique relation be-
tween the shear stress and the shear strain. Hence, the
suspension behaves like a solid at low shear stresses. Ex-
periments with increasing and subsequently decreasing
shear stresses reveal strain hysteresis in the solid-like
regime, which depends on the solid volume concentra-
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Fig. 9.82 Viscosity change due to reversible swelling of
the surface layer as a function of shear rate at various tem-
peratures (after Senff et al. [9.278] with permission by the
American Chemical Society)

tion and the ramp time of the shear stress variation.
At very low shear stresses, Hookean behavior can be
speculated. By further increasing the solid volume con-
centration one leaves the region of suspension rheology
and arrives in the region of bulk materials.

Senff et al. [9.278] analyzed the rheological behavior
of sterically stabilized, temperature-sensitive core–shell
lattices. The polymer layer affixed at the particle surface
undergoes a volume transition as a function of the tem-
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Fig. 9.83 Steady shear viscosity for aqueous polystyrene
latex suspensions for ϕ = 0.4 at different ion strengths (after
Krieger and Eguiluz [9.279] with permission by the Society
of Rheology)

perature. Due to the volume change the effective size of
the particles and, hence, the solid volume concentration
changes. By small-angle X-ray and small-angle neutron
scattering it could be shown that the spheres behave as
hard spheres in both cases of shrunk and swollen surface
layers. The volume change was inversely proportional to
the temperature, i. e., the effective particle size increased
with decreasing temperature. The modification of the
solid volume concentration with the temperature can
be clearly recognized from the viscosity functions. The
viscosity increase over some orders of magnitudes with
decreasing temperature, shown in Fig. 9.83, is solely
caused by the increase of the effective solid volume
concentration due to swelling of the particle surface
layer.

Additionally to the influence parameters for neu-
tral hard spheres, the charge properties of the particles
and the continuous phase (εrε0ψ

2
S) and the ratio of the

particle radius to the Debye length (a/κ−1) must be
taken into account in the case of electrostatically and
electrosterically stabilized suspensions.

Krieger and Eguiluz [9.279] examined the rheo-
logical behavior of colloidal electrostatically stabilized
polystyrene lattices consisting of spherical particles with
a diameter of 110 nm in water as a function of the
ion strength, characterized by the concentration of hy-
drochloric acid. As seen in Fig. 9.84, the ion strength (or
the acid concentration) strongly influences the viscos-
ity. With decreasing ion strength, the viscosity increases
dramatically and a transition from liquid-like behavior
at higher ion strengths to a more solid-like behavior at
lower ion strength, comparable to that of deionized wa-
ter, occurs. The viscosity lies some orders of magnitude
above that for uncharged hard spheres. This effect is
caused by the increasing attractive forces and the for-
mation of aggregates. Similar results were obtained for
the viscosity as a function of electrosterically stabilized
silica-particle suspensions by So et al. [9.280].

By steric stabilization or surface modification of the
particles it is possible to modify the flow behavior of the
suspensions. In Fig. 9.85 the flow curves of suspensions
of noncolloidal untreated and surface-modified (treated)
silica spheres with a mean diameter of 4.6 µm dispersed
in a Newtonian silicone oil (NM1-200) are shown. The
flow curves were measured with increasing (open sym-
bols) and a subsequent decreasing shear stresses (filled
symbols). The surface of the treated particles has been
modified with octadecyl groups. It can be recognized that
surface modification leads to a decrease of the shear rates
at comparable shear stresses and solid volume concen-
trations. This indicates the occurrence of a yield stress
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due to the surface modification. Furthermore, it can be
stated that at low shear stresses hysteresis between the
up and down curves of the treated suspensions occurs,
which is caused by the brush-like structure of the surface
modification. At higher shear rates no differences be-
tween the behavior of untreated and treated suspensions
can be observed due to the dominance of the hydrody-
namic over the interparticle effects. The pure continuous
phase shows a Newtonian behavior.

Normal Stress Differences. Experimental results con-
cerning the first and second normal stress difference of
true hard-sphere suspensions with a Newtonian contin-
uous phase are very rare in literature due to their small
magnitude and the prevalence of many troublesome
artefacts.

Experimental results concerning the first and second
normal stress difference in charged or sterically stabi-
lized non-hard-sphere suspensions are also rare in the
literature. Most of the results have been obtained by
numerical simulation. For higher shear rates, a general
relation between the first normal stress coefficient Ψ1
(Sect. 9.1.2) and the shear rate

Ψ1(γ̇ ) ∼ |γ̇ |−n (9.262)

is valid. Brady and Bossis [9.282] investigated the
shear flow behavior of interacting charged spherical par-
ticles dispersed in a Newtonian continuous phase. From
numerical results, based on the Stokesian dynamics,
they found an inverse proportionality (Ψ1(γ̇ ) ∼ |γ̇ ∗|−1)
between the first normal stress coefficient and the
dimensionless shear rate γ̇ ∗ = 3πηa2γ̇ /εrε0ψ

2
S for

|γ̇ ∗| → ∞, which corresponds to the experimental re-
sults of Gadala-Maria [9.283]. Here, ψS is the surface
potential for infinite separation between the particle
surfaces. An initially constant first normal stress co-
efficient for low shear rates could not be obtained.
Schoukens and Mewis [9.284] observed, for suspen-
sions of carbon-black particles in mineral oil, which
form weak particulate structures, the proportionality
Ψ1 ∼ |γ̇ |−3/2. Again, no indication for a constant first
normal stress coefficient at |γ̇ | → 0 could be found.
Indeed, the exponent −3/2 shows that the anisotropic
structure of the particle network is weaker and can be
destroyed by shear.

In contrast to these observations, Moan et al. [9.285]
observed a qualitatively different behavior for aque-
ous, highly concentrated suspensions of oblate particles,
which interact through excluded volume and electro-
static potential. For the first normal stress difference N1
and the difference between the normal stress differences
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Fig. 9.84 Influence of the surface treatment on the rheological be-
havior of suspensions. Open symbols: up curve. Filled symbols:
down curve (Heymann and Aksel [9.281]). The numbers in the legend
indicate the solid volume concentration

N1 − N2, they found negative values. At low shear rates
both functions decreased to a minimum and increased
subsequently again. It is interesting that the second nor-
mal stress difference was negative at low shear rates and
increased to positive values at higher shear rates contrary
to the familiar behavior of polymers with a positive first
and a smaller but negative second normal difference.

Lin-Gibson et al. [9.286] detected in nanotube sus-
pensions a first normal stress difference which becomes
negative during shear over a time period of 1000 min.
By rheooptical investigations it could be shown that the
development of a negative first normal stress difference
is coupled with the formation of cylindrical aggregates
orientated perpendicular to the flow and shear gradient
direction. Similar effects were observed in emulsions
too (Sect. 9.3.3).

Zarraga et al. [9.287] measured in noncolloidal
suspensions of spheres in a Newtonian fluid nega-
tive values for both the first and second normal stress
differences with |N1| < |N2|. The normal stress dif-
ferences were proportional to the shear stress and the
difference between the first and second normal stress
difference, as well as the first normal stress difference
were proportional to the solid volume concentration with
N1 − N2 ∼ ϕ3 e2.34ϕ and N1 ∼ ϕ3 e2.34ϕ, respectively, in
the range ϕ = 0.35–0.5. For noncolloidal suspensions of
spheres in an elastic fluid with constant viscosity (Boger
fluid), Zarraga et al. [9.288] measured positive first and
negative second normal stress differences, as known for
polymers. The normal stress differences increased with
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the solid volume concentration, but the ratio |N1/N2| de-
creased as the solid volume concentration increased. The
magnitude of N2 at high solid volume concentrations ap-
proached the magnitude measured for the suspensions
with a Newtonian continuous phase [9.287], while the
magnitude of N1 could be attributed to the viscoelasticity
of the continuous phase.

A familiar normal stress behavior, known from poly-
mers, could be observed by Mall-Gleissle et al. [9.290].
They investigated suspensions of glass spheres dispersed
in a constant-viscosity but viscoelastic continuous phase
(Boger fluid). The first normal stress difference was pos-
itive and decreased in magnitude with increasing solid
volume concentration, whereas the second normal stress
difference was negative, with a magnitude that increased
with increasing solid volume concentration. The varia-
tion of both normal stress differences with the shear
stress followed a power-law behavior.

A new method to measure normal stresses of
non-Brownian suspensions at low to moderate solid vol-
ume concentration has been developed by Singh and
Nott [9.291]. Due to the low normal forces at moderate
solid volume concentrations the force signal was found
to be very noisy. Therefore, they used pressure holes
(cf. Fig. 9.35) to measure the radial component of the
normal stresses in a Couette device or the axial compo-
nent in a torsional PP device. They found that both the
first and second normal stress coefficients are negative
and |N1| < |N2| with a strong dependence on the solid
volume concentration at higher concentrations.
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Fig. 9.85 Typical master curves of the storage and loss
moduli as a function of the angular frequency for
a hard-sphere suspension with ϕ = 0.37 (after Shikata and
Pearson [9.289] with permission by the Society of Rheol-
ogy)

Summarizing the results concerning the normal
stress differences, it can be stated that suspensions be-
have in a more-complex manner than polymer melts or
solutions. It is not a priori clear how the magnitudes and
the sign of the normal stress differences depend on the
physicochemical properties of the suspensions. A cru-
cial assumption for an exact measurement of the normal
stress differences is an absolutely stress-free state of
the sample at the beginning of the experiment. Residual
stresses, induced by the closing procedure of the meas-
urement geometry, have an essential influence of the
results. One should be aware of the fact that normal stress
measurements are very sensitive to errors since normal
stress differences are of second order. Consequently, the
sample preparation must be carried out in a much more
exact way as it is necessary for the measurements of the
viscosity.

Storage and Loss Modulus, Fourier-Transform Rhe-
ology. Shikata and Pearson [9.289] investigated the
linear viscoelastic behavior of concentrated suspen-
sions of submicron silica spheres in a continuous phase
consisting of ethylene glycol and glycerol. Typical
master curves of the storage and loss modulus for this
hard-sphere suspension with a solid volume concentra-
tion of ϕ = 0.37 are illustrated in Fig. 9.86. The data
were obtained using the time–temperature superposi-
tion [9.292]) where a temperature-dependent shift factor
aT is used to shift the curves horizontally to produce
a master curve. (cf. Shikata and Pearson [9.289] for de-
tails; definitions of all the parameters shown in Fig. 9.87
are given in Sect. 9.1.1). The viscous properties domi-
nate over the frequency range investigated. Furthermore,
the loss modulus shows Newtonian regions at low and
high frequencies, whereas the storage modulus reaches
a plateau at high frequencies.

So et al. [9.280] analyzed the storage and loss mod-
uli of colloidal, electrosterically stabilized silica particle
suspensions in dependence on the solid volume concen-
tration and ion strength. At a given low ion strength they
found a transition from a viscously dominated behav-
ior via a gel-like to an elastically dominated behavior
with increasing solid volume concentration as shown
in Fig. 9.87a. It is noteworthy that the moduli vary
over more than four orders of magnitude. Furthermore,
a solid-like behavior arises with increasing solid vol-
ume concentration indicated by the plateau of the loss
modulus. Figure 9.87b shows the influence of the salt
concentration, i. e., the ion strength. At higher salt con-
centrations, the suspensions show liquid-like behavior
which passes to a gel-like behavior if the salt con-

Part
C

9
.3



Non-Newtonian Flows 9.3 Rheology of Suspensions and Emulsions 707

�+�"
I�	L0	��=�)HM�

�����+��8
�����+���
�����+�8"

��
"���

�+" " "� "��
�+�"

"��

"�

"

�+"

�(!��)�)C��

�+�"
I�	L0	��=�)HM�

:5��;���"�'��*
:5��;���"�'��*
:5��;���"�'"�*

��

�+" " "� "��

"�

�(!��)�)C��

�+��"

"

�+"

�+�"

Fig. 9.86a,b Storage (G′, filled symbols) and loss (G ′′, open symbols) moduli of an electrosterically stabilized silica
particle suspension as a function of frequency (after So et al. [9.277] with permission by Elsevier): (a) dependence on
the solid volume concentration at an ion strength [KCl] = 10−3 M, (b) dependence on the ion strength at a solid volume
concentration of ϕ = 0.4

centration decreases and the influence of the attractive
interparticle forces increases.

A crucial problem in determining the storage and
loss modulus is to meet the necessary condition of
linearity between input (strain or stress) and output
(stress or strain) signal. Due to the strong interac-
tions in highly concentrated suspensions the critical
shear strain or shear stress amplitudes are very small
in contrast to polymers. Exceeding the critical val-
ues (intentionally in large-amplitude oscillatory shear
(LAOS) or unintentionally) can lead to nonharmonic
output signals and the equations for the calculation of
the storage and loss moduli are no longer applicable
(Sect. 9.1.1). The only way out is the analysis of the
output signal concerning the occurrence of higher har-
monic components (overtones) by use of the method of
Fourier-transform rheology (FTR) as developed by the
group of Wilhelm [9.293–295]. Heymann et al. [9.267]
used this method to analyze the rheological behav-
ior of highly concentrated suspensions. As depicted
in Fig. 9.88 for a hard-sphere suspension with a solid
volume concentration of ϕ = 0.474, the fifth harmonic
in the shear stress signal occurs in the vicinity of the
yield stress (σy = 7.9 Pa), i. e., in the range of transi-
tion from solid- to liquid-like behavior. However, the
behavior of the suspension becomes already nonlin-
ear at a shear stress amplitudes below the yield stress

which is indicated by the first occurrence of the third
harmonic.

Kallus et al. [9.296] studied polymer dispersions
with the FTR method. An essential result of their experi-
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Fig. 9.87 Example of relative strain amplitude spectra obtained
in oscillatory shear flow for various shear stress amplitudes of
a hard-sphere suspension (for details see legend) (after Heymann
et al. [9.267] with permission by the Society of Rheology). The
curves are shifted vertically to avoid overlap. The amplitude of the
shear stress σ0 is defined in Fig. 9.3 in Sect. 9.1.1
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ments is that the particle surface characteristics influence
the nonlinear response significantly. The intensity of the
overtones was found to be higher for dispersions of par-
ticles with a hairy swollen surface layer compared to
a system of smooth particles at the same steady shear
viscosity.

A general classification of the rheological behav-
ior of complex fluids such as dispersions in LAOS has
been given by Hyun et al. [9.297]. They found four main
types of the fluid behavior in LAOS amplitude sweeps
and pointed out that it is possible to relate the results
of LAOS experiments to the microstructure of the ma-
terials. However, it must be emphasized again that the
calculation of the storage and loss moduli on the basis
of the linear theory is no longer valid, if overtones in the
output signal occur.

In the case of flocculated colloidal suspensions Ot-
subo [9.298] proposed a rule similar to the Cox–Merz
rule ((9.102) in Sect. 9.1.1), which relates the storage
modulus to the first normal stress difference at low
frequencies and shear rates, respectively

G′(ω) = 1

2
N1(γ̇ )

∣
∣
∣
∣
ω=γ̇

. (9.263)

Transient Experiments – Shear Creep and Start-Up
Flow. Studies on the transient behavior of suspensions
were carried out, e.g., by Heymann et al. [9.276] and
Schmidt and Münstedt [9.299]. Heymann et al. [9.276]
investigated the creep and start-up flow behavior of non-
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Fig. 9.88 Shear creep behavior of a suspension of PMMA
spheres in a Newtonian continuous phase for various shear
stresses (after Heymann et al. [9.276] with permission by
Springer)

colloidal suspensions of monodisperse PMMA spheres
(Heymann et al. [9.267] for details) dispersed in silicone
oil. They pointed out a qualitatively different behavior of
the suspensions below and above the yield stress in creep
flow. Below the yield stress a typical elastic behavior has
been found characterized by a time-independent creep
compliance at a given shear stress. Above the appar-
ent yield stress, a typical liquid-like behavior could be
observed. The results of the creep experiment could be
correlated to the start-up flow experiment. At low shear
rates a linear viscoelastic behavior was found, followed
by a nonlinear viscoelastic behavior with an overshoot
in the shear stress output. A further increase of the shear
rate led to a liquid-like behavior characterized by an
instantaneous increase of the shear stress without any
delay.

In Fig. 9.89, the shear compliance J(t) of sus-
pensions of (PMMA) hard spheres in a Newtonian
continuous phase is shown. One can distinguish between
two ranges. At shear stresses below the yield stress (in
this case σy = 48.5 Pa) no creep could be observed. Ex-
ceeding the yield stress leads to a significant creep. It
should be noted that this transition from solid- (elas-
tic) to liquid-like behavior occurs in a small range of
48 Pa < σ0 < 50 Pa.

Schmidt and Münstedt [9.299] presented similar
results for suspensions of monodisperse hydrophilic
glass spheres in a Newtonian continuous phase. At low
shear stresses a viscoelastic behavior has been observed
in creep, whereas at high shear stresses the suspen-
sions showed liquid-like behavior. Due to the problems
described in the part dealing with the normal stress dif-
ferences, transient experiments seem to be a suitable tool
to investigate the viscoelastic properties of suspensions.

Most of the authors cited above investigated sus-
pensions of spheres in various continuous phases. If
the particles are nonspherical (e.g., ellipsoids, rods), ad-
ditionally to the aforementioned influence parameters,
the axis ratio must be taken into account to under-
stand the flow behavior of such suspensions. For details
on this subject it is referred to the monographs of
Macosko [9.188] or Larson [9.186], to the contribu-
tions of Utracki [9.300], and to the review article of
Petrie [9.301] on the rheology of fibre suspensions.

Elongational flows. The kinematics of elongational
flows (cf. Sect. 9.1.3) is quite different from the kine-
matics of viscometric flows (cf. Sect. 9.1.1). Due to
the exponential path–time relation, the distance between
neighboring particles increases more rapidly than in vis-
cometric flows. Hence, the collision probability between
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the particles is lower than in shear flows. Furthermore,
particle migration, as described for shear flows, does not
occur due to the kinematics.

However, experimental results obtained for suspen-
sions in elongational flows are very rare in literature.
A review of elongational rheometers applicable to spe-
cial disperse and other materials has been given by
Greener and Evans [9.303].

The main problem of elongational measurements
with filament stretching rheometers is that the prepa-
ration of a stable sample for measurements is very
difficult. Often, rods with cylindrical or rectangular
cross-sectional area are used, which must be stable un-
der gravity or in a buoyancy-neutral environment. Other
devices (four-roller apparatus, opposite nozzle device)
have been used for suspensions with viscosities lower
than that of filled polymer melts.

Greener and Evans [9.302] investigated suspensions
of aluminium powder dispersed in a polyisobutylene
(PIB) matrix. Using a fibre filament stretching device
they measured the elongational viscosity at constant
strain rates. Qualitatively, they observed a similar be-
havior of the elongational viscosity in dependence of
the extensional rate and the solid volume concentra-
tion as found for the shear properties. The Trouton ratio
(the ratio of the elongational to shear viscosity at the
same elongational and shear rates), was found to be ap-
proximately 3 in the low shear and strain rate range as
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Fig. 9.89a,b Elongational behavior of suspensions of Al powder in PIB, (a) dependence of the uniaxial elongational
viscosity ηe on the extensional strain rate ε̇ at various solid volume concentrations, (b) dependence of the relative
extensional viscosity on the solid volume concentration at various extensional strain rates (after Greener and Evans [9.302]
with permission from the Society of Rheology)

is exactly the case for incompressible Newtonian liq-
uids. It is interesting to note that this observation is
true up to solid volume concentrations of ϕ = 0.42. The
uniaxial elongational viscosity ηe as a function of the
strain rate ε̇ and the relative uniaxial elongational vis-
cosity ηr,e = ηe/ηe,c as a function of the solid volume
concentration are shown in Fig. 9.90. The behavior dif-
fers from that obtained for unfilled or filled polymers.
Contrary to polymers where the elongational viscos-
ity rises from a plateau at low strain rates through
a pronounced maximum and then decreases at higher
strain rates, the elongational viscosity of the suspension
shown here decreases monotonously with increasing
strain rates.

In a more-quantitative manner, Le Meins et al. [9.304]
observed for suspensions of colloidal polystyrene
spheres in polyisobuthylene (PIB) a deviation of the
relative elongational viscosity from the behavior, which
can be described by the Krieger–Dougherty equation
(9.244). For larger particles and at low solid volume
concentrations good agreement has been found, whereas
for smaller particles and at higher solid volume con-
centrations deviations occurred. The deviations were
smaller for the relative elongational viscosity than for
the relative shear viscosity. These observations have
been explained by dominating hydrodynamic effects
occurring with larger particles, whereas with colloidal
particles the interparticle interactions become relevant.
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Furthermore, a reduction in strain hardening could be
observed for various elongational rates if rigid spherical
polystyrene particles are added to the viscoelastic poly-
mer matrix. The particles cannot follow the externally
applied elongational field and, hence, a partial conver-
sion form elongational to shear flow within the polymer
matrix occurs.

O’Brien and Mackay [9.306] obtained for suspen-
sions of kaolin suspensions elongational viscosities with
elongation thinning and elongation thickening ranges
depending on the particles size. Additionally, they ob-
served particle-size-dependent Trouton ratios of the
order of 50–100.

Husband et al. [9.305] measured the tensile creep
behavior of suspensions containing noncolloidal lime-
stone (CaCO3) particles dispersed in a polyisobuthylene
(PIB) matrix over long time periods. At low stresses they
obtained a solid-like behavior indicated by an equilib-
rium tensile strain. At higher stresses a flow process, i. e.,
a liquid-like behavior, has been observed characterized
by continuously increasing strain rates. The results of
the tensile creep experiments are portrayed in Fig. 9.91.
The tensile creep coefficient is defined as

η+
E,c[t, σE(t)] = σE(t)

ε̇−[t, σE(t)] (9.264)

where ε̇−[t, σE(t)] is the tensile creep rate decay func-
tion, σE(t) = F/A(t) is the tensile stress, F is the force,
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Fig. 9.90 Tensile creep rate coefficient in dependence on the tensile
strain ε for a suspension with ϕ = 0.47; the dashed lines near the
ordinate indicate the range of the limiting viscosity ηE,0 at zero
extension rate (after Husband et al. [9.305] with permission by the
Society of Rheology)

and A(t) is the time-dependent cross-sectional area of the
sample. For tensile stresses σE < 540 Pa constant tensile
strains, i. e., vanishing tensile strain rates, are reached.
The tensile strains depend on the tensile stress. The
vanishing tensile strain rates correspond to an increase
of the tensile creep rate coefficient. This is attributed
to a viscoelastic solid-like behavior. For higher tensile
stresses a tensile creep rate coefficient independent of
both the tensile strain and the tensile stress has been
found as a characteristic of a viscoelastic liquid-like
behavior. The critical tensile stress, indicating the tran-
sition between both ranges, can be interpreted as a static
yield stress. The observations concerning the yield tran-
sition obtained by Husband et al. [9.305] in elongational
flow correspond qualitatively to the results obtained by
Heymann et al. [9.276] in viscometric flows.

Complex Flows. Due to the tensorial character of the
constitutive equations (Sect. 1.5 and Sect. 1.8) the shear
and elongational experiments are not sufficient to de-
scribe the material completely in every flow situation.

One of the most popular complex flow situations is
squeeze flow, which combines shear and elongational
flow kinematics. A defined volume of the sample is
placed in a gap between two (usually circular) parallel
plates. One of the plates is kept fixed and the other plate
moves towards the fixed one either at a given velocity or
driven by a given force. Depending on the experimen-
tal mode, the normal force, velocity, or the separation
between the plates is measured. Two modes are possi-
ble: the constant-area and constant-volume techniques.
Details of the modeling of the squeeze flow process
have been described by Gibson et al. [9.307] and Ma-
cosko [9.188].

The kinematics of the flow field is highly complex
because of two velocity components, one in radial direc-
tion (u(r, z)) and the other in axial direction (w(r, z)),
where r and z are the radial and axial coordinates. In
contrast to viscometric flows, where only one velocity
gradient occurs, in the squeeze flow up to four veloc-
ity gradients (∂u/∂z, ∂u/∂r, ∂w/∂z, ∂w/∂r) complicate
the situation, especially for non-Newtonian materials
where the rheological behavior of the material is a pri-
ori unknown. Therefore, it is impossible to obtain
rheologically exactly defined material functions for non-
Newtonian liquids from squeeze flow experiments.

Beyond the aforementioned difficulties, the bound-
ary conditions have an essential influence on the
kinematics of squeeze flow. If the no-slip condition at
the walls holds, the flow is dominated by shear effects.
The existence of wall slip leads to the dominance of
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elongational effects. If it is not clear whether or not the
material slips at the walls, it is not possible to obtain
reliable results from the measurements.

Despite these disadvantages, squeeze flow of dis-
perse materials is subject of many investigations. The
determination of the squeeze force as a function of the
gap height and estimation of the yield stress is mainly
the aim of these studies.

An important problem in the investigation of sus-
pensions in squeeze flows is demixing of the sample,
i. e., filtration of the continuous phase through the par-
ticle skeleton. Delhaye et al. [9.308] found for a highly
concentrated suspension of spheres in a Newtonian fluid
a significant change of the radial concentration distribu-
tion in an initially homogeneously distributed sample
during the experiment. Similar effects of binder mi-
gration were shown by Poitou and Racineux [9.309].
Due to the inhomogeneity of the sample, the measured
squeeze force is not representative for the experiment.
Other authors (e.g., Chan and Baird [9.310], Sherwood
and Durban [9.311]) calculated the squeeze force as
a function of the gap width for various viscoplastic
models (Herschel-Bulkley, Bingham) whose parameters
were obtained from definite viscometric flows. They
found a reasonable agreement between the numerical
simulation and the experimental data. Some contribu-
tions, dealing only with the analytical or numerical
simulation of the squeeze process, are available, which
consider wall slip and various models for the flow behav-
ior [9.312–314]. However, a relation to experiments has
not been established and no relevant material parameters
(viscosity, yield stress) have been given. Summarizing
the results available in the literature, it must be stated
that the squeeze flow is not the first choice as an ex-
periment for the measurement of rheologically relevant
material functions.

9.3.3 Emulsions

Emulsions are disperse systems containing one liquid
dispersed in another liquid. Both liquids are immisci-
ble or, at least, partially immiscible. Usually, drop sizes
are in a range between 10 nm and 10 µm. Emulsions
with drop sizes between 10 nm and 100 nm are called
microemulsions. Emulsions with drop sizes between
100 nm and 1 µm are known as miniemulsions [9.196].
Some fundamental principles of emulsion rheology have
been summarized by Sherman [9.315], Barnes [9.316],
Tadros [9.317], and Pal [9.318].

Generally, two fundamental types of emulsions can
be distinguished: water in oil (W/O) and oil in water

(O/W) emulsions. The classification depends on the kind
of the dispersed (liquid 1) and continuous (liquid 2)
phase. In the case of a nonaqueous continuous phase
this classification is not very clear. But, in a more-general
manner, an O/W emulsion is characterized by a viscosity
of the disperse phase higher than that of the continuous
phase, or vice versa for W/O emulsions. A further addi-
tion of a liquid 1, dispersed in a liquid 2, up to a critical
volume concentration ϕ1,PI leads to a change of the type
of emulsion, called phase inversion. In Fig. 9.91 the in-
fluence of the disperse phase 1 on the relative viscosity
of emulsions is depicted. Similar to suspensions, the
relative viscosity increases with increasing volume con-
centration of the disperse phase 1 until the maximum
packing fraction is reached. At this point, a phase inver-
sion takes place, leading to a decrease of the viscosity
with increasing volume concentration of the, from now
on, continuous phase 1. The continuous phase 2 below
ϕ1,PI is now the disperse phase. Phase inversion is a typ-
ical phenomenon in emulsions that does not appear in
suspensions.

In the previous sections, the rheological behavior of
suspensions has been extensively described. Most of the
basics described for suspensions hold also for emulsions.
However, compared to suspensions, differences occur
because the disperse phase consist of a second liquid
with a finite viscosity and surface tension. The drops
of the disperse phase can be deformed or broken-up
due to shear or elongational flow. The interfacial tension
influences the interactions between the two phases. Fur-
thermore, the drop size distribution may change due to
coalescence, Ostwald ripening, creaming, flocculation,
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Fig. 9.91 Influence of volume concentration of phase 1 on
the relative viscosity of emulsions prior and after phase
inversion
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or drop break-up. Additionally, the continuous phase
contains surface-active agents (surfactants) that may
cause increased viscosity and even non-Newtonian be-
havior of the continuous phase and influence the overall
rheology of the emulsion.

In the following, only properties of emulsions that
deviate from those of suspensions will be illustrated.

Dimensional Analysis. In addition to the dimensionless
groups in suspension rheology (Sect. 9.3.1), emulsions
involve the capillary number

Ca = ηcγ̇a0

σI
(9.265)
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Fig. 9.92a,b Aqueous solution of Tween 85 r©at a temperature of
20 ◦C: (a) Loss tangent as a function of angular frequency and vol-
ume concentration (after Teipel et al. [9.319] with permission by
Elsevier), (b) characteristic relaxation times τ as a function of the
volume concentration of surfactant. The lines are drawn to guide the
eye. The surfactant concentration is denoted by cs

as the ratio of viscous to capillary forces (σI is the
interfacial tension) and the viscosity ratio

Vr = ηd

ηc
. (9.266)

As the characteristic droplet length in (9.265) the initial
droplet radius a0 is given. In contrast to suspensions, the
initial droplet radius can change at higher shear or elon-
gational rates. Larger droplets with a weak surfactant
layer can deform during shear, which is often coupled
with an orientation of the droplets in the flow direc-
tion as shown in Fig. 9.94. Droplet deformation and/or
break-up lead to the formation of new interfacial areas.
For non-Newtonian continuous phases the definition of
the capillary number according to (9.265) is not unique
because the viscosity ηc is itself a function of the shear
rate.

If one neglects van der Waals, electrostatic, electro-
steric, and steric interactions and assumes a gap width
large enough compared to the initial droplet size, the
relative viscosity of emulsions can then be formulated
as [9.320, 321] (cf. Table 9.10)

ηr = f

(

ϕ, Vr, ξ, ρr, tr,
δ

a0
, Ga, Ca, Pe, ReP

)

.

(9.267)

The relation can be further simplified for emulsions con-
taining a nonvarying monodisperse phase (ξ = const.)
of buoyant droplets (ρr → 1) with thin surface layer
thickness (δ/a0 � 1) and with vanishingly small droplet
Reynolds number (Rep → 0) under steady-state condi-
tions (tr → ∞) to give the relation

ηr = f (ϕ, Vr, Ca, Pe) . (9.268)

The deviations in (9.268) from the analogous relation
for suspensions (9.231) stems from the appearance of
the viscosity ratio Vr and the capillary number Ca, which
occur only in emulsions.

For high viscosity ratios (Vr 	 1) and high inter-
facial tensions (Ca → 0), emulsions with small droplets
behave like suspensions (Sect. 9.3.2) as demonstrated by
Teipel and Aksel [9.321]. On the other hand, for highly
dilute emulsions with high interfacial tensions G. I. Tay-
lor derived a relation for ηr = f (ϕ, Vr) which for ϕ → 0
tends to the Einstein result (9.237).

Properties of the Continuous Phase, Micellar Rheol-
ogy. The continuous phase of emulsions often consists
of low-molecular-weight liquids showing a Newtonian
behavior. To stabilize the emulsions emulsifying agents
(emulsifiers or surfactants) must be added, which lead
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to a modification of the rheological properties of the
continuous phase. Surfactants are low-molecular-weight
materials with amphiphilic properties (Chap. 3.2). Due
to their amphiphilic character the surfactants can adsorb
at interfaces, which results in a decrease of the interfacial
or surface tension. Above a certain surfactant con-
centration the surfactant molecules undergo reversible
aggregation to form micelles (Chap. 3.2).

A typical example has been given by Teipel
et al. [9.319] who systematically investigated aque-
ous solutions of a nonionic surfactant polyoxyethylene
sorbitan trioleate (Tween 85 r©) at various volume con-
centrations of surfactant. They demonstrated that with
increasing surfactant concentration an increasing shear
thinning effect in the viscosity function could be ob-
served. This concentration-dependent non-Newtonian
viscosity behavior is coupled with an increase of the
elasticity of the micellar solutions. The oscillatory data
show that, in the range of surfactant concentrations
of 100–110 ml/l, a transition from a weakly elastic
(sol-like) to a highly elastic (gel-like) response occurs.
This transition, shown in Fig. 9.92a, is characterized
by crossing the value of the loss tangent tan θ = 1
(Sect. 9.1.1). Correspondingly, the transition from sol-
to gel-like behavior can also be seen in Fig. 9.92b
by the characteristic relaxation time obtained from
the inverse angular frequency at tan θ = 1, which in-
creases dramatically over more than two orders of
magnitude. The grade of elasticity indirectly shows the
change of the internal structure of the micelles in the
solution.

The rheological properties of the micellar solutions
strongly depend on the conditions of preparation. In
Fig. 9.93 the viscosity functions obtained under various
fabrication (ϑF) and measurement (ϑM) temperatures are
depicted.

Obviously, both the fabrication temperature and
the measurement temperature influence the viscosity
function. The low-shear viscosity increases over approx-
imately one day if measured at a temperature than the
fabrication temperature. In the high-shear-rate region the
influence of the temperature preloading vanishes due to
the dominance of hydrodynamic forces. These effects
are caused by a structure formation process both during
and after the fabrication process.

Other important properties of the continuous phase
are the polarity and pH value. Both affect the charge of
the droplets and the repulsive forces. Further information
on the physicochemical properties of micellar solutions
can be found, e.g., in the textbooks of Larson [9.186] or
Morrison and Ross [9.195].

Properties of the Disperse Phase. In contrast to suspen-
sions, the droplets of the disperse phase of emulsions
have a finite viscosity. Hence, the viscosity ratio (9.266)
must be taken into consideration. During shear (or elon-
gation) the droplets can be deformed and/or broken up,
as shown in Fig. 9.94. Rumscheidt and Mason [9.323]
analyzed the droplet deformation and break-up mecha-
nism, varying the viscosity ratio and shear rate. At low
viscosity ratios Fig. 9.94a and for shear rates above a crit-
ical value, formation of a sigmoidal droplet shape and
creation of small satellite droplets has been observed. At
viscosity ratios of the order of 1 two identical droplets
with smaller satellite droplets could be found, result-
ing from an elongation and an increasing contraction of
the initial droplet (Fig. 9.94b). Alternatively, a droplet is
stretched due to shear and a subsequent droplet break-
up occurred (Fig. 9.94c). At higher viscosity ratios only
droplet deformation and orientation without break-up
have been observed (Fig. 9.94d). Generally, a droplet
orientation was found at higher shear rates. However, it
should be noted that the results described above have
been found for single droplets without the influence of
neighboring droplets.

The deformability of the droplets depends both
on the viscosity ratio and the capillary number. Tay-
lor [9.324] derived a theoretical function

f1(Vr) = 1+19Vr/16

1+ Vr
(9.269)

in simple shear, taking into account the viscosity ratio
according to (9.266). The function f1(Vr) can vary in the
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Fig. 9.93 Time dependence of the micellar solutions (Tween 85 r©in
water) at different fabrication (ϑF) and measurement (ϑM) tempera-
tures (after Teipel et al. [9.322] with permission by Elsevier)
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range 1–1.88. The droplet deformation D, dependent on
the viscosity ratio, is then given by

D = Ar −1

Ar +1
= f1(Vr)Ca (9.270)

where Ar is the main axis ratio of ellipsoidal drops
(major to minor axis length).

The effect of droplet break-up is then characterized
by a critical capillary number Cacr. Droplet break-up oc-
curs if the capillary number exceeds a critical value, i. e.,
Ca > Cacr. Grace [9.325] reported some experimental
findings of critical capillary numbers as a function of
the viscosity ratio of the two phases for Newtonian liq-
uids. The interpolating curve in Fig. 9.95 separates the
region below where droplet break-up occurs from the
region above where no droplet break-up takes place.
The horizontal part of the curve represents tip-streaming
break-up where small droplets are shed off from the tips
of a larger sigmoidally shaped mother drop, as shown
in Fig. 9.94a. It should be noted that Grace [9.325] used
the dynamic surface tension to calculate the capillary
number.

For a planar elongational flow, Grace [9.325] found
that the critical capillary numbers were even smaller
compared to those for shear flows at the same viscos-
ity ratio. Furthermore, he found that it is possible to
induce droplet break-up in elongational flows for vis-
cosity ratios up to 1000. Hence, the elongational flow
mechanism is more efficient for the fabrication of emul-
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Fig. 9.94a–d Deformation and orientation of a single
droplet in shear flow for increasing shear rates, indicated
by the increasing numbers, at various viscosity ratios (af-
ter Rumscheidt and Mason [9.323] with permission by
Elsevier)

sions, even at higher viscosity ratios where shear flows
fail.

Some reports have been published in the lit-
erature dealing with the problem of single droplet
deformation and break-up in shear and elongational
flows. Tsakalos et al. [9.326] investigated experi-
mentally the deformation and break-up mechanism
of a Newtonian droplet in a viscoelastic continuous
phase in steady shear flow. The initially spherical
droplets deform to threads during shear. They found
for large capillary numbers that the deformation of
threads, above a certain strain larger than 20, follows
a pseudoaffine deformation for Ca/Cacrit > 2.5. An-
other mechanism of droplet break-up is end pinching
(the ends of a stretched drop pinch off from the cen-
tral filament due to drop relaxation after an abrupt
change of the flow conditions). Capillary instabili-
ties only develop when the thread diameter reaches
a critical value. Cristini et al. [9.327] investigated
the break-up phenomenon in impulsively started shear
flow. They stated that the mechanism of break-up
of Newtonian droplets in a Newtonian continuous
phase (formation of threads with capillary break-up
or end pinching) depends only on the average ini-
tial particle size. The mechanism of end pinching of
Newtonian droplets in a Newtonian continuous phase
during large oscillatory shear could be confirmed by
Wannaborworn and Mackley [9.328] both experimen-
tally and by numerical simulation. Furthermore, the
critical capillary number was found to be higher for os-
cillatory shear than for steady shear, i. e., the droplets
are more stable in oscillatory shear flows. At low
strains, i. e., in the case of small-amplitude oscillatory
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Fig. 9.95 Influence of the viscosity ratio on the critical cap-
illary number obtained in shear flows (after Grace [9.325]
with permission by Taylor & Francis)
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shear (SAOS), Cavallo et al. [9.329] found a har-
monic time behavior of the axis of the deformed
droplets at lower strains, i. e., the response of the
drop was sinusoidal, but shifted in phase with re-
spect to the applied stress. At higher strains overtones
with multiple frequencies of the basic frequency oc-
curred. End-pinching effects have not been found in
LAOS experiments. Mighri et al. [9.330] investigated
emulsions with both phases consisting of constant-
viscosity elastic (Boger) liquids in uniaxial elongational
flow. They found that, for a given continuous phase,
the drop deformation decreases as its elasticity in-
creases, whereas for a given drop liquid, the drop
deformation increases with increasing elasticity of the
continuous phase. An overview on the dynamics of
drop deformation and break-up has been given by
Stone [9.331].

Loewenberg and Hinch [9.332] studied numerically
the collision behavior of two deformable drops in shear
flow. Their calculations indicate that drop interactions
do not induce significantly subcritical capillary num-
ber break-up. In dilute emulsions, the critical Capillary
number is a weak function of volume fraction be-
cause deformable drops can easily squeeze past each
other.

As mentioned above, the continuous phase contains
surfactants as stabilizers for the emulsion. The surfac-
tants form a surfactant layer around the droplets. The
formation of this interfacial layer modifying the droplet–
droplet interactions is a kinetic process depending on
the temperature, concentration of surfactants, the diffu-
sion and adsorption properties of the surfactants. The
adsorption kinetics of nonionic surfactants has been
investigated by Teipel and Aksel [9.333].

If the surfactant layer is only weakly elastic it can
transmit flow-induced shear stresses into the droplets
and the liquid inside of the droplet can rotate, simi-
lar to the movement of a crawler. Additionally, droplet
deformation occurs as shown in Fig. 9.94. With decreas-
ing droplet radius and perfect surfactant coverage the
emulsions show suspension-like behavior.

As in the case of suspensions, the viscosity of an
emulsion increases with decreasing droplet size at a fixed
volume concentration.

Interfacial Rheology. The mechanical properties of the
interface between the continuous and disperse phases
influence both the rheological properties and the stabil-
ity of the emulsions. The surfactants added to facilitate
the fabrication of emulsions and to stabilize them ad-
sorb at the interface between the two phases, forming

a thin film of surfactant molecules. At higher surfactant
concentrations, the surfactant surface forms a com-
pact interface with rheological properties that can differ
greatly from those of the bulk phases. This can lead to
viscoelastic or viscoplastic properties of the interface
even though the bulk phases are Newtonian. To inves-
tigate the rheological properties of surfactant layers or
films adsorbed at the interface, special rheological de-
vices are needed. Reviews on some basic principles of
interfacial rheology have been given by Tadros [9.317]
and Warburton [9.334].

Generally, interfaces between two liquid phases con-
tain monolayers of adsorbed surfactants. These layers
show resistance of the surface against change of shape
in shear, change of area in dilatation, and change of
curvature in bending [9.334].

One of the most important mechanical properties of
interfaces is the interfacial shear viscosity ηI. In contrast
to the bulk viscosity η, the interfacial shear viscosity
ηI has units of Pas · m (surface Pas). Hence, it repre-
sents not the viscosity in the volume, but the viscosity
in a plane, namely in the interface. The measurement of
the interfacial shear viscosity requires special devices
such as torsional pendulum or rotational viscometers
with special measurement geometries. Three examples
are shown in Fig. 9.96a–c. The theory of the measure-
ments of the interfacial shear viscosity with a torsional
pendulum viscometer has been given by Criddle [9.335].

The shear device is suspended by a torsional wire
and positioned at the interface. If the pendulum oscil-
lates, the damping of the oscillation and the period due to
the viscous drag of the interface is measured. A main dis-
advantage of the torsional pendulum viscometer is that
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Fig. 9.96a–d Geometries used for the measurement of interfacial
shear viscosity: (a) disk viscometer, (b) knife-edge disk viscometer,
(c) ring viscometer, (d) concentric ring viscometer
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the shear rate varies in the course of one period, which
makes the measurement of non-Newtonian properties of
the interface impossible. In this case, the concentric-ring
viscometer, schematically shown in Fig. 9.96d, should
be preferred. One ring rotates at a given angular veloc-
ity and the torsional momentum is measured at the other
stationary ring. If the distance between the rings is small,
the shear rate is approximately constant as in the case of
the concentric cylinder viscometer (Sect. 9.1.2). In this
case the non-Newtonian properties of the interface layer
can be measured with more confidence.

There are other methods such as the deep-channel
surface viscometer [9.317] where small particles are
used as tracers to measure the surface velocities. Petkov
et al. [9.336] developed a method to calculate the inter-
facial shear viscosity from the drag coefficient of a small
sphere moving through an interfacial film.

To measure the dilatational surface properties three
methods are used [9.317]: application of surface waves
to the interface; rotation, translation or deformation of
bubbles and droplets; and the maximum bubble pressure
method. From these methods some information on the
mechanical properties of the interface, but also on the
kinetics of the surfactant adsorption at the interface, can
be obtained.

Influence of Drop Volume Concentration. The defor-
mation of the droplet surface and hence the transmission
of surface tractions, causes internal circulations in the
droplet, which results in a modification of the Einstein’s
viscosity relation (9.237)

ηr = 1+ (5/2) f2(Vr)ϕ . (9.271)

The correction factor f2(Vr) has been derived by Tay-
lor [9.324] as

f2(Vr) = ηd + (2/5)ηc

ηd +ηc
= Vr + (2/5)

Vr +1
(9.272)

for the case of infinitely diluted emulsions of two immis-
cible Newtonian liquids. The droplets of the dispersed
phase are assumed to be perfectly spherical due to their
smallness and the surface-tension effect. In the limit
Vr → ∞ (solid particles in a Newtonian liquid) with
f2(Vr) = 1, Einstein’s equation for suspensions is ob-
tained. The other limit Vr → 0 describes the case of
bubbles in a Newtonian liquid, leading to f2(Vr) = 2/5.
For finite viscosity ratios the viscosity of a compara-
ble emulsion according to (9.271) and (9.272) is smaller
than that of a suspension at the same volume concentra-
tion.

As in the case of suspensions, equations of the
power-series type fail for higher volume concentra-
tions. For this, the models summarized in Table 9.14
for suspensions of arbitrary particle shapes and shape
distributions should be used because their applicability
is not restricted to solid spherical particles of uni-
form size. Pal [9.337] combined Taylor’s approach
with the equations of Mooney [9.231] and Krieger and
Dougherty [9.230]. Thus, he obtained two viscosity
equations for volume concentrations up to 0.635:

Model 1 (Mooney type):

ηr

(
2ηr +5Vr

2+5Vr

) 3
2 = exp

(
2.5ϕ

1−ϕ/ϕmax

)

,

(9.273)

Model 2 (Krieger/Dougherty type):

ηr

(
2ηr +5Vr

2+5Vr

) 3
2 =

(

1− ϕ

ϕmax

)−2.5ϕmax

.

(9.274)

Pal [9.337] fitted both models on the basis of several
experimental data and found good agreement. As shown
for suspensions, the maximum packing fraction ϕmax is
a fit parameter that depends (in this case) additionally
on the type of model.

An empirical equation for the viscosity–volume con-
centration relation of non-Newtonian emulsions with
volume concentration below a maximum packing frac-
tion has been derived by Pal and Rhodes [9.338]

ηr(γ̇ ) = (1− K0KF(γ̇ )ϕ)−A (9.275)

with

A = 6(ηd −ηc)/[10(ηd +ηc)]
+ (19ηd +16ηc)/[10(ηd +ηc)] (9.276)

as shown by Lee et al. [9.339]. For Vr 	 1 the
value A = 2.5 is valid. The factor K0 accounts for
the effect of hydration, i. e., the association of sig-
nificant amounts of the continuous-phase liquid with
the droplets, which is constant for a given emul-
sion. Due to the immobilization of the continuous
phase, the effective dispersed-phase volume concen-
tration increases compared to the true concentration.
Furthermore, a shear-rate-dependent flocculation factor
KF(γ̇ ), describing the morphology of the emulsion, has
been introduced. The product of both factors can be
interpreted as the inverse of a shear-dependent maxi-
mum packing fraction, resulting in an equation similar
to the Maron/Pierce equation (9.244), however with an
exponent of 2.5.
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Due to the deformability of the particles the max-
imum packing fraction can reach values greater than
those for corresponding monodisperse spherical rigid
particles and the viscosity increases significantly com-
pared to suspensions. At this stage, the occurrence of
yield stresses is possible. The dependence of the vis-
cosity on the shear rate can then be described with the
models discussed in Sect. 9.3.2. A further addition of
disperse-phase liquid leads to a sudden decrease of the
viscosity due to the phase inversion process (Fig. 9.91).

Beyond nonlinearity, emulsions show also viscoelas-
tic flow behavior. For this reason, models for the
complex modulus G∗ and complex viscosity (Sect. 9.1),
respectively, have been developed. For moderately
concentrated emulsions of monodisperse deformable
droplets in a viscoelastic continuous phase with con-
stant interfacial tension, Palierne [9.340] has shown that
the complex modulus in the linear viscoelastic region is
given by

G∗ = G∗
c

(
1+3ϕH/2

1−ϕH

)

, (9.277)

where

H =
2
[(

G∗
d−G∗

c

)(

19G∗
d−16G∗

c

)+(4σI/a)
(

5G∗
d+2G∗

c

)]

(

2G∗
d −3G∗

c

)(

19G∗
d −16G∗

c

)+(40σI/a)
(

G∗
d+G∗

c

) .

(9.278)

The Palierne model underpredicts the shear modulus
at higher volume concentrations of the disperse phase.
It fails at volume concentrations in the vicinity of the
maximum packing fraction. For vanishing interfacial
tension, the model of Kerner [9.341] can be obtained
from (9.278), which is restricted to high frequencies
where the influence of the interfacial tension can be ne-
glected. Bousmina [9.342] extended the Kerner model
to the low-frequency range by considering the interfa-
cial tension. For the complex modulus of the emulsions
he obtained

G∗ =
G∗

c
2(G∗

d +σI/a)+3G∗
c +3ϕ(G∗

d +σI/a − G∗
c )

2(G∗
d +σI/a)+3G∗

c −2ϕ(G∗
d +σI/a − G∗

c )
.

(9.279)

The prediction of the Bousmina model deviates only
slightly from that of the Palierne model.

Based on the Palierne model for the shear modulus
of emulsions and the models of Mooney [9.231] (9.245)
and Krieger and Dougherty [9.230] (9.244), Pal [9.343]

developed models for the shear modulus of emulsions of
two immiscible viscoelastic liquids taking into account
that the shear modulus diverges at ϕ → ϕmax in a similar
way as done for the viscosity. Pal [9.343] found a rea-
sonable agreement between the model predictions and
experimental data.

Preparation and Stability of Samples. An overview
of various methods commonly used to prepare emul-
sions has been given by Morrison and Ross [9.195].
The most usual mechanical equipment used to fabricate
emulsions are high-shear mixers, colloid mills, homoge-
nizers, and ultrasonic and sonic dispersers, which realize
intensive steady or oscillating high-shear fields to break-
up the droplets or aggregates and mix the phases. Some
examples are shown in Fig. 9.97.

Besides the mechanical processes, some physico-
chemical methods [9.195] exist to produce emulsions
by phase inversion, phase inversion temperature (PIT),
condensation or electric emulsification.

An important requirement to obtain stable emulsions
is that the concentration of the emulsifier is high enough
to be adsorbed at the required concentration at the newly
developed interfaces in order to avoid, or at least retard,
coalescence. If the surfactant at the droplet interface is
inhomogeneously distributed due to shear, temperature
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Fig. 9.97a–d Mechanical devices for making emulsions: (a) Rotor-
stator disperser, (b) colloid mill, (c) single-stage homogenizer,
(d) sonolator (after Morrison and Ross [9.195] with permission by
Wiley)
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effects or depletion, effects such as coalescence, Ostwald
ripening, creaming or flocculation can destabilize the
emulsion.

Coalescence is caused by the collision of two or
more droplets, leading to depletion of surfactant at the
interface. The collisions result in the formation of larger
droplets and take place when the volume concentra-
tion of the disperse phase is high. Coalescence involves
breaking of the interfacial film and is therefore irre-
versible. Various factors (solubility and concentration
of the surfactant, pH value, salt concentration, phase-
volume ratio, temperature, and properties of the film)
affect the coalescence of emulsions.

Ostwald ripening only occurs in polydisperse emul-
sions. Collisions between two droplets may lead to one
bigger droplet and one smaller droplet. Due to the ma-
terial transition, small droplets become smaller and, in
the extreme case, become solubilized in the continuous
medium. Ostwald ripening requires a high solubility of
the disperse in the continuous phase.

Due to the density differences between the two
phases, a demixing process may occur. This process is
called creaming [9.344] and may often be coupled with
flocculation and a subsequent coalescence. The rate of
creaming can be lowered by reducing the droplet size
(with retention of the same interface loading of sur-
factant), lowering the density difference between the
phases, or increasing the viscosity of the medium. In
addition, the creaming rate is dependent on the vol-
ume fraction of the dispersed phase, and is usually
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Fig. 9.98 Relative viscosity of emulsions and suspensions
of monodisperse spherical particles as a function of the
dimensionless shear rate (Péclet number) at identical vol-
ume concentrations of the disperse phase (after Teipel and
Aksel [9.321] with permission by Wiley-VCH)

slow in concentrated emulsions. Creaming is domi-
nant at medium volume concentrations of 0.1–0.5 and
droplet sizes of 2–5 µm. Complete demixing of the
liquid phases caused by a combination of all other
processes is called breaking. Further information on
emulsion stability can be found in the contribution of
Walstra [9.345].

Viscometric Flows.
Shear Viscosity. Emulsions containing small droplets
can behave like suspensions. The suspension-like behav-
ior of emulsions in shear flow has been experimentally
demonstrated by Teipel and Aksel [9.321] for O/W
emulsions and suspensions with the same volume con-
centrations of the dispersed phase, the same droplet and
particle sizes, and the same viscosity for both continuous
phases. The lower points in Fig. 9.98 exhibit Newto-
nian behavior ηr = f (ϕ), while the upper points show
slight shear-thinning behavior ηr = f (ϕ, Pe). The vis-
cosity functions of suspensions and emulsions are nearly
identical in both cases, which shows that the droplets
can be regarded as rigid particles under the given shear
conditions.

If the influence of droplet deformation and hence
the modification of the droplet size distribution due to
droplet break-up become relevant, the viscous behavior
of emulsions is expected to be quite different. Con-
sequently, the droplet size plays an important role in
emulsions. Furthermore, additional viscoelastic effects
may occur due to drop-shape relaxation mechanisms.

The influence of the droplet size, droplet deforma-
tion, and volume concentration of the dispersed phase
on the rheological properties of the emulsions has
been investigated by Teipel [9.346] and Teipel [9.319].
He confirmed the well-known effect that the viscos-
ity of monodisperse emulsions with smaller droplets
(a = 0.5 µm) is significantly higher than that of emul-
sions with larger droplets (a = 10 µm). At lower volume
concentrations (40%) this effect has been observed over
the whole shear-rate range investigated. However, at
higher volume concentrations (up to 65%) the viscosi-
ties of the 0.5–10 µm emulsions coincide surprisingly
at higher shear rates. This observation can be explained
only by modification of the morphology of the 10 µm
emulsion. Due to shear, the larger droplets deform and
orientate in the flow direction. The effective hydrody-
namic radius of the deformed and orientated droplets
decreases and the viscosity tends to that of the 0.5 µm
emulsion.

Pal [9.320] found that the relative viscosities of
two polydisperse oil-in-water emulsions with Vr 	 1
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and mean droplet diameters of 6.5 µm(fine) and 32 µm
(coarse), as well as 9.1 µm (fine) and 65 µm (coarse),
scale with the particle Reynolds number based on the
initial droplet radius. From an estimate of the Cap-
illary numbers, he concluded that the deformation of
the droplets due to shear is negligible. Only under this
restriction are the results of Pal [9.320] applicable.

The influence of the volume concentration of the
disperse phase and the viscosity ratio on the relative vis-
cosity has been investigated by Pal [9.337]. In Fig. 9.99
some experimental data obtained by several authors for
various emulsions ([9.337] for details) are summarized,
showing the influence of the viscosity ratio for a given
volume concentration. The limiting values of a constant
viscosity at very low (bubbly liquid) and very high vis-
cosity ratios (suspensions) are reached. Furthermore, the
prediction of Pal’s model 2 for the relative viscosity of
emulsions (9.276) at a given volume concentration and
a maximum packing fraction of 0.63 is depicted, which
sufficiently describes the experimental trends.

Li and Pozrikidis [9.347] studied numerically the
influence of insoluble surfactants on the rheology of
dilute emulsions in Stokes flow. For the numerical cal-
culations they assumed a viscosity ratio of Vr = 1 and
a linear dependence of the interfacial tension on the lo-
cal surfactant concentration. As an important result they
discovered a decrease of the reduced interfacial stress
σ12/ηcγ̇ with increasing capillary number, i. e., with
decreasing interfacial tension. Hence, it can be con-
cluded that, under otherwise identical conditions, the
viscosity of emulsions with higher interfacial tensions
is higher than for lower interfacial tensions due to the
drop deformation, i. e., the emulsions behave like sus-
pensions at higher interfacial tensions. This numerical
result confirms the experimental results of Teipel and
Aksel [9.321] for emulsions with Vr ≈ 60. Details con-
cerning the surface and interfacial tension can be found
in Chap. 3.2.

Hollingsworth and Johns [9.348] studied the steady-
state shear properties of various emulsion systems using
the technique of rheo-nuclear magnetic resonance (rheo-
NMR) coupled with a torque transducer. From direct
measurements of the velocity maps they were able to
determine the parameter of the Herschel–Bulkley model.
Moreover, with the rheo-NMR technique it is possible
to detect wall slip at both walls of the Couette cell used
for the experiments.

Normal Stress Differences. Recently, Montesi et al.
[9.349] investigated the shear behavior of a moder-
ately concentrated, attractive emulsion of water droplets
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Fig. 9.99 Relative viscosity of emulsions as a function of
the viscosity ratio at a given volume concentration (after
Pal [9.337] with permission by the Society of Rheology)

dispersed in a lubricating oil (Vr = 0.01). They found
a sharp transition from a positive to a negative first nor-
mal stress difference in a range where the shear viscosity
is still constant. This observation has been explained by
the formation of dough-rolling aggregates, leading to
larger normal stresses in shear gradient direction com-
pared to the normal stress in flow direction. Because
this effect has also been found in other complex ma-
terials such as nanotube suspensions [9.286] it suggests
some underlying rheological principle.

Li and Pozrikidis [9.347] calculated an increase of
the first normal stress difference with increasing capil-
lary number in shear flows, i. e., an increase of the elastic
properties with decreasing interfacial tension or increas-
ing deformation of the droplets. The negative second
normal stress difference was found to increase in mag-
nitude, reach a maximum and then start to decline with
increasing capillary number. The minimum of the nega-
tive second normal stress difference occurred at capillary
number Ca = 0.4 for all the investigated conditions.

Storage and Loss Moduli. Due to the large number of
factors that influence emulsions and hence the range of
types of the rheological behavior of emulsions, it is not
possible to give generally valid curves for the storage
and loss moduli. The behavior at various frequencies
depends not only on the rheological properties of both
phases, the composition of the emulsion, the droplet
sizes, and the size distribution, but also on the properties
of the interface between the two phases. Qualitatively,
Barnes [9.316] pointed out some curves for the typ-
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Fig. 9.100 Structural relaxation time as a function of the
volume concentration for two monodisperse O/W emul-
sions with different droplet radii (based on results of
Teipel [9.346]). The dotted and broken lines are drawn to
guide the eye

ical behavior of emulsions in oscillatory shear flows.
For low and medium concentrations the loss tangent
as (ratio of the loss and storage modulus) is greater
than one, indicating the dominance of the viscous com-
ponent, whereas at higher concentrations the elastic
component dominates. The influence of relevant pa-
rameters such as the viscosity ratio, interfacial tension
or droplet sizes, and a possible solid–liquid transition
have not been considered in the qualitative explanation.
The statements given by Barnes have been experimen-
tally confirmed by Bower et al. [9.350] for concentrated
oil-in-water emulsions or by Kulicke et al. [9.351] for
hydroxylpropylmethylcellulose-stabilized emulsions.

For flocculated W/O emulsions with a given sur-
factant concentration, Pal [9.352] showed that at low
frequencies the elasticity of the emulsion is the domi-
nating effect, whereas at higher frequencies the emulsion
behaves as a viscous liquid. The crossover frequency ωC

or the characteristic structural relaxation time λC = ω−1
C ,

which characterizes the transition from the elastic to the
viscous regime, depends on the volume concentration
of the disperse phase at a given surfactant concentra-
tion. Contrary to the results of Pal, Moates et al. [9.353]
observed for weakly flocculated concentrated emul-
sions dominating viscous properties at low and high
frequencies and dominating elastic effects at medium
frequencies, which indicates a double crossover in the
curves of the storage and loss moduli.

Pal [9.352] found a decrease of the structural re-
laxation time with increasing volume concentration. In
contrast to Pal, Teipel [9.346] observed an opposite effect
in a monodisperse O/W emulsion with a droplet radius
of 0.5 µm, i. e., a significant increase of the relaxation
time over three decades with increasing volume concen-
tration (ϕ = 0.5–0.65). For an emulsion with droplets of
a = 10 µm a slight decrease of the relaxation time has
been found, confirming the trend observed by Pal. The
results are shown in Fig. 9.100.

Elongational Flows. Investigations of the elongational
properties of emulsions are very few in the literature.
Anklam et al. [9.354] used the opposed nozzle config-
uration to investigate the elongational behavior of W/O
emulsions. They showed that for highly diluted emul-
sions the extensional viscosity decreases with increasing
elongational rate similar to the shear behavior whereby
the limiting Trouton ratio (for Newtonian liquids) of 3
seems to be reached. For higher volume concentrations
an influence of the nozzle diameter and nozzle separation
has been observed, which may be caused by the increas-
ing impact of the yield stress. The effect of elongational
thinning has also been found by Plucinski et al. [9.355]
for a food emulsion.

As a final statement, one can conclude that emul-
sion rheology and partially suspension rheology are not
completely understood and that research work in these
fields is continuing.

9.4 Entrance Correction and Extrudate Swell

This section is dedicated to two effects that appear
during flow in pressure-driven rheometers and also
in plastic processing. The first is the entrance effect
during flow from the reservoir into the capillary; it
results in so-called Bagley plots. The second is so-
called extrudate swell or die swell, which occurs as
an increase of the diameter of the polymer extrudate
with respect to the diameter of the capillary. This

phenomenon is due to the elasticity of the polymer
melt.

9.4.1 Correction for Entrance Effect:
Bagley Correction

In the foregoing we neglected the effect of the entrance of
the fluid into the capillary. The flow rate in the capillary
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Fig. 9.101 Bagley correction plots for two flow rates: Q2 >

Q1

is much higher than in the reservoir. This causes an
increase of the kinetic energy, so that part of the imposed
pressure ∆P in the reservoir above the capillary is used
to accelerate the flowing mass in the capillary entrance
region, so that

∆P = ∆Pcapillary +∆Pentrance . (9.280)

For the determination of the shear stress at the wall we
made use of the assumption of fully developed flow and
neglected the entrance effect in ∂σ11/∂z and ∂∆P/∂z.
The consequence of neglecting the entrance effect is
an apparent lengthening of the capillary. For constant-
volume flow rate the shear stress at the wall has to be
corrected by increasing the length of the capillary by
a term ne R, where ne is dimensionless. The end correc-
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Fig. 9.102 Bagley plot for a polyethylene melt with melt
flow index of 2.9 at 190 ◦C for shear rates of 40–250 s−1,
as presented by Bagley himself [9.356]
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Fig. 9.103 Schematic representation of three macromolecules dur-
ing flow in a capillary rheometer

tion ne seems to be constant for a given radius of the
capillary. The shear stress at the wall is now expressed
as

σw = − R∆P

2(L +ne R)
(9.281)

or

∆P = −2σw

(
L

R
+ne

)

. (9.282)

This entrance correction is called the Bagley correction.
The value of the end correction ne may be determined by
measuring ∆P at constant-volume flow rate Q as a func-
tion of L/R, where preferably R is to be constant. This
is shown in Fig. 9.101 for two values of the volumetric
flow rate Q.

An example of a Bagley plot is shown in Fig. 9.102
for polyethylene with a melt flow index (MFI) of 2.9 at
190 ◦C for shear rates of 40–250 s−1, as measured by
Bagley himself [9.356]. It clearly shows straight lines
and increasing values of ne with increasing shear rate or
increasing volume flow rate.
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Fig. 9.104 Extrudate swell ratio as a function of L/D0

for high-density polyethylene at 180 ◦C for shear rates, as
indicated. After [9.357]
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Fig. 9.105 Extrudate swell ratio and viscosity, both as
functions of the shear rate for a polystyrene melt of
Mw = 2.2 × 105 and Mw/Mn = 3.1, where Mw and Mn

are the weight and number-averaged molecular weights,
respectively. After [9.3]

9.4.2 Extrudate Swell or Die Swell

When a polymer melt leaves the die of a capillary
rheometer (or, e.g., an extruder or injection mould-
ing machine) its diameter increases, as was shown
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Fig. 9.106 Extrudate swell ratio of the same polystyrene
melt as in Fig. 9.105, plotted versus shear rate for temper-
atures of (circles) 160 ◦C; (triangles) 180 ◦C and (squares)
200 ◦C; L/D0 ratios varied from 27 to 56. After [9.3]
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Fig. 9.107 Extrudate swell ratio of the same polystyrene
melt as in Fig. 9.105, now plotted versus shear stress for
temperatures of (circles) 160 ◦C; (triangles) 180 ◦C and
(squares) 200 ◦C; L/D0 ratios varied from 27 to 56. Af-
ter [9.3]

schematically in Fig. 9.36. This swelling behavior is
the consequence of the elastic properties of polymer
melts. Let us consider a thought experiment in which
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Fig. 9.108 Extrudate swell ratio as a function of shear
stress at the wall for various polystyrene melts. Filled
symbols: broad (Mw/Mn = 3.1) molecular-weight distri-
bution polystyrene mentioned in Figs. 9.105–9.107. Open
symbols: narrow (Mw/Mn < 1.1) molecular-weight distri-
bution polystyrene, with Mw = 1.6 × 105 (After [9.3])
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a crosslinked rubber is driven through a capillary. When
the rubber leaves the capillary it will swell again, try-
ing to recover its original dimensions due to elasticity.
A polymer melt will swell almost like the rubber. How-
ever, upon leaving the die the original dimensions of the
reservoir will not be reached, because of stress relax-
ation, primarily due to the coil–stretch–coil transition
of macromolecules (see Fig. 9.103) and their reptation
(disentanglement and subsequent re-entanglement). Die
swell, or the swell ratio B, being a function of many
parameters, is defined as ratio of the diameters of the
extrudate and the capillary:

B ≡ D/D0 = B(γ̇w, T, t, L/D0, M, MWD) ,

(9.283)

where D0 is the diameter of the capillary with circular
cross section, D is the diameter of the extrudate at a rela-
tively large distance from the outlet, T the is temperature,
L/D0 the length-to-diameter ratio of the capillary, M
is the molecular weight of the polymer, and MWD its
molecular-weight distribution (polydispersity). B can
reach values of 2–4.

Many of the effects of the various parameters can
be attributed to stress relaxation. In general die swell
is larger when the residence time in the capillary t
is shorter and when the polymer relaxation times are
longer. Several of these effects are demonstrated in
Figs. 9.104–9.108. In Fig. 9.104 the extrudate swell ra-
tio is plotted versus L/D0 for various values of the shear
rate [9.357]. This shows that, at larger L/D0 ratios, there
is more time for relaxation and accordingly the swell
ratio decreases. The same holds for the shear rate as
the parameter: increasing the shear rate means shorter
residence times and thus less time for relaxation; ac-
cordingly the swell ratio increases with increasing shear
rate. In Fig. 9.105 the extrudate swell ratio and viscosity
of a polystyrene melt are shown as a function of shear
rate. This clearly shows again that die swell increases
with shear rate, in this case even in the range where
the viscosity decreases, and hence where the long relax-
ation times that are responsible for high die swell ratios
are already felt. One could imagine that die swell ratios
would even be higher if the viscosity would not be shear
thinning.

In Fig. 9.106 die swell is shown as a function of shear
rate for temperatures of 160 ◦C, 180 ◦C, and 200 ◦C for
the same polystyrene melt as presented in Fig. 9.105.

The L/D0 ratios are high, so that die swell is almost
independent of this ratio. It is not surprising that the
die swell ratio decreases with increasing temperature,
because the relaxation times are strongly decreasing
functions of temperature. If one plots the extrudate
swell ratio versus some function of relaxation times one
could expect a common curve. This is demonstrated in
Fig. 9.107, where the extrudate swell ratio is now shown
as a function of the shear stress, which is equal to shear
rate × viscosity, and the viscosity is strongly dependent
on the relaxation times. The points measured at the three
different temperatures follow the same line over more
than two decades of shear stress. Apparently, in this case
the die swell ratio scales well with viscosity.

Finally in Fig. 9.108 die swell data are shown as
a function of shear stress at the wall for various
polystyrene melts. The filled and open symbols refer to
polystyrenes with broad and narrow molecular-weight
distributions, respectively. The narrow polymer was
measured under different conditions. The broad poly-
mer exhibits much higher extrudate swell ratios than the
narrow polymer. The weight-averaged molecular weight
of the broad polymer is approximately two times higher
than that of the narrow polymer, which means that the
viscosity is 10 times higher (the viscosity increases as
M

3.4
w ). Apparently, the viscosity is not the only param-

eter that is responsible for the die swell phenomenon.
Elasticity of the melt, as expressed by Ge or Je or ψ1,
also seems to be of great importance [9.3].

9.4.3 Conclusions

In this Section measurements relevant to two phenomena
that are observed in pressure-driven rheometers (and
also in plastic processing such as extrusion or injection
moulding) are discussed:

1. Entrance correction, due to accelerating forces dur-
ing the flow from the reservoir into the capillary.
This results in an apparent increase of the length of
the capillary, which can be measured with the aid of
a Bagley correction plot.

2. Extrudate swell, which occurs when the polymer
leaves the capillary, and also due to elasticity of the
polymer melt. This phenomenon depends on many
parameters and in principle can be qualitatively re-
lated to the relaxation times. The exact description
is not available yet.
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9.5 Birefringence in Non-Newtonian Flows

The optical properties of transparent media, repre-
senting the interaction of the electric vector of the
electromagnetic wave with electrons in the material
are briefly reviewed. A distinction is drawn between
optically isotropic and anisotropic media, and the
molecular origin of optical anisotropy is discussed.
Methods for measurement and imaging birefringence
are discussed and compared, including Sénarmont,
polarization modulation, and two-color birefringence
techniques. Experimental issues discussed include
choice of light source, windows, photodetectors, opti-
cal components, and the geometry of flow cells. Finally
the origin of birefringence for the important class of
flexible coil polymers is discussed, with interpretation
of birefringence in terms of molecular strain, and in
terms of bond polarizability, and micro- and macroform
birefringence.

Light propagates through transparent media via a se-
ries of interactions with electrons, mediated by the bonds
between atoms. Birefringence refers to a physical sys-
tem that transmits light but is optically anisotropic, i.e.,
the light propagates differently in different directions;
generally (but not always) this manifests itself as a di-
rectional variation of the refractive index (Chap. 3.7). In
general this is due to the interaction between the elec-
tric vector of the light and the bond polarizabilities of
the medium.

Many substances are isotropic, that is they have the
same physical properties in all directions. This includes
most fluids, most amorphous materials, and cubic crystal
structures. Of specific importance here is that the bonds
that mediate the passage of light either possess such sym-
metry or such randomness that the light propagates in the
same way in all directions. Indeed normal, stress-free,
single-phase fluids are intrinsically optically isotropic,
even when they contain, as solutions or suspensions,
molecules or particles that are themselves anisotropic.
This is due to the randomization of the orientational
order of the molecules or particles.

The exception, at rest, is the liquid-crystalline fluid,
where above a specific concentration of anisotropic
molecules, spontaneous order will emerge in the form
of the liquid-crystalline phase. This ordering is long-
range and cooperative, typically extending over many
microns. In nematic phases this corresponds to ori-
entational order, but in smectic liquid crystals it is
both orientational and positional, and in cholesteric
materials it possesses a longer-length-scale twisting
structure, arising generally from the packing constraints

of helical molecules. Such systems also include the
important classes of surfactant and lipid mesophases,
where anisotropic structures have specific biological
functions, for instance in cell walls.

Non-Newtonian fluids that are isotropic at rest are
of special interest here. In general the non-Newtonian
flow characteristics arise from an internal structure
which changes with applied flow. This may arise from
orientation of suspended particles or colloidal struc-
tures (Sect. 9.2), where the particles possess an intrinsic
optical anisotropy. Of particular importance is the non-
Newtonian flow of flexible polymer melts and solutions
(Sect. 9.1). At rest the polymer chains are locally
anisotropic (in general most of the covalent bonds lie
along the chain direction), but the chains exist as drunk-
ard’s walk random coils, either interpenetrating in melts
and concentrated solutions or isolated in dilute solutions.
On the scale of the wavelength of light such coils are
physically and optically isotropic.

When such polymeric fluids exhibit non-Newtonian
behavior it is due to a flow-induced order being imposed
upon the molecules. Typically, beyond some flow-rate
characteristic of the system relaxation time, the random
coils become orientated preferentially, or, exceptionally,
stretched by the flow field. This, coupled with the associ-
ated relaxation processes as entropy drives the coil back
to its equilibrium conformation, creates the anisotropic
stresses and normal forces characteristic of such fluids.

As discussed below, birefringence is a relatively
straightforward phenomenon to measure. For 200 years
birefringence has been used as a window into molecu-
lar processes. It has been used in conjunction with flow
since 1873 when Maxwell discovered birefringence in

Fig. 9.109 Birefringent spherulites growing from a melt of
biological thermoplastic poly(hydroxybutyrate)
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flowing Canada balsam resin [9.358]. Many birefringent
techniques can give fast, noninvasive information related
to the microstructure and origin of non-Newtonian flow
stresses. Further, normally a birefringent microscope
image is available, giving information on the spatial
variation of stresses and orientational order created in
the flow field.

There is a problem, however. This is analogous
to the phase problem is X-ray scattering: there is not
a unique relationship between birefringence and in-
duced microstructure. The same birefringence can arise
from more than one molecular or phase structure, so
that birefringence analysis needs to contain a model
and a conjectured mode of the deformation of that
model, so that calculated birefringence can be com-
pared with observed birefringence. Sometimes, then,
the correspondence is so compelling that the structure is
clearly right. This was famously the case with spherulitic
growth structures in crystallization of semicrystalline
polymers [9.359] (Fig. 9.109). However, sometimes the
interpretation can be contentious so that unambiguous,
structures can only be assigned through a combination
of birefringence studies with other techniques such as
light, X-ray, or Neutron scattering.

9.5.1 The Molecular Origin of Birefringence

As discussed above, the essence of an optically
anisotropic material is that its electron bonds possess
directional variation. Now light propagates through the
interaction of the electric E vector with electrons in the
bonds, resulting in photon re-emission. The speed of this
propagating wave is determined by the difference in the
frequency of the wave and the characteristic frequency
of the electrons. The nature of this difference deter-
mines the speed of propagation and hence the refractive
index, n, for the wave (Chap. 3.7). It clearly follows
that light with differing orientations of the E vector will
exhibit differing refractive indices and propagation de-
lays in the material. Specifically there will generally
be an E vector direction exhibiting a maximum refrac-
tive index and another a minimum. A material or fluid
of this type that displays spontaneous or flow-induced
variation of refractive index is said to be birefringent.
Dependent upon the polarization and direction of the
incoming light, components of the light will propagate
at different rates, recombining on emergence from the
medium to give the phase and chromic effects familiar
in microscope birefringent images.

In general there will be one or more directions
through such a medium where the bonds (or compo-

nents of bonds) perpendicular to that direction exhibit
the same interaction with the E vector, which is itself
perpendicular to the direction of propagation. In this spe-
cial direction, the refractive index will not be a function
of the direction of polarization and the medium will not
exhibit birefringence. This is termed the optic axis. For
a given direction of propagation of light there will be
a direction in the fluid in which the refractive index (n1)
is a maximum (the principal axis of the birefringence)
and an orthogonal direction in which the refractive index
is a minimum (n2). For this direction the birefringence is
∆n = (n1 −n2). Light polarized in each of these direc-
tions will propagate at different speeds (c/n) and emerge
out of phase. The retardation phase shift (δ) results in
interference when the waves recombine.

The birefringence, ∆n, and δ are related by

∆n = λδ

2πd
, (9.284)

where d is the path length through the birefringent
medium, and λ is the incident wavelength.

The birefringence axes are of course related to the
internal molecular structure through the intrinsic bire-
fringence of the structural entities (from the sum of bond
polarizabilities) and the average orientation of the en-
tities (molecules, etc). The average orientation of the
entities is characterized as the director. This will often,
but not always, coincide with the principal axis of the
birefringence. The molecular direction can correspond
to the maximum birefringence (positive birefringence)
or the minimum (negative birefringence). In a few cases
(e.g., polyacrylamide) the bond polarizabilities almost
exactly cancel, resulting in a non-birefringent entity.

Here we should formally mention that, if the elec-
tromagnetic frequency is comparable to one of the
characteristic frequencies of the anisotropic electron vi-
brations, this radiation will be heavily absorbed, so that
one polarization or direction may be suppressed. This
phenomenon is called dichroism. For many materials and
fluids such frequencies are in the infrared and the tech-
nique of infrared dichroism spectroscopy can indicate
stress and orientational order associated with specific
bond types. Beyond this, dichroic materials are the basis
for the polarizer filters ubiquitously used in sun glasses
and the optical systems described below.

9.5.2 Techniques
for Birefringence Measurement

The polarizing microscope is shown schematically in
Fig. 9.110a (the lenses have been omitted for clarity). It
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Fig. 9.110a,b The optical trains of (a) a polarizing micro-
scope, (b) a Senarmont compensator

consists of a source, which can be monochromatic or
white light, light from which passes through a polarizer
to pick out a unique polarization direction, then through
the medium of interest and an optional compensator and
finally through an analyzer, generally orientated orthog-
onal to the polarizer. Such an instrument is generally
semiquantitative; optically isotropic media will be seen
as dark, since there is no rotation of the polarization
direction and the light is stopped by the analyzer. The de-
gree of retardation of the waves determines the perceived
brightness when the emerging waves recombine. A full
analysis of the propagation of polarized light through
anisotropic media can be approached through Jones and
Mueller matrix calculations [9.360], the intensity of the
transmitted light is

Is = I0 sin2 2θ sin2(δ/2) , (9.285)

where Is is the intensity of transmitted light, I0 is the in-
tensity of the input beam, and θ is the angle between the
incident polarization direction and the direction of the
principal axis of the birefringence (maximum refractive
index n1), δ is the average retardation angle.

If θ is set to 45◦ the transmitted intensity becomes
simply [9.361]:

Is = I0 sin2(δ/2) or for small δ : (9.286)

Is = I0δ
2

4
. (9.287)

For polychromatic or white light, generally colors
are seen due to different interference for different

wavelengths; this can be semiquantitatively interpreted
through the Michel-Lévy chart. The compensator con-
sists of a well-defined adjustable crystal, typically of
calcite or quartz. More-precise measurements can be
obtained by adjusting the compensator to provide an ex-
actly equal and opposite retardation in the optical train,
at which point the birefringence can be read from the
compensator calibration.

Equation (9.287) demonstrates that the quadratic de-
pendence of intensity on retardation and problems will
arise from subtraction of scattered and stray light at low
intensities due to the nonlinear dependence of δ upon
Is. A particular problem with flow birefringence is stray
birefringence due to the variable stresses in the windows.
These can dominate the signal, especially for solution
studies, where the birefringence may be very small.
For more-quantitative assessment, higher speed, greater
linearity, and greater sensitivity many other techniques
have been invented.

Figure 9.110b illustrates the Sénarmont compensator
technique [9.362]. Now a quarter-wave plate (introduc-
ing up to an additional λ/4 retardation dependent upon
rotation, but normally aligned with its high-refractive-
index direction parallel to the low refractive index of the
analyzer with the polarizers crossed) is included in the
optical train. The analyzer is then uncrossed a little (by
an angle φ). This can be used to compensate for stray
window birefringence or to compensate out the signal
birefringence as a way of measuring it.

Without flow birefringence, the transmitted intensity
can be written

Is = I0 cos2 ϕ , (9.288)

where φ is the angle between the polarizer and analyzer.
We can see that the same intensity received by the

photodiode can be induced either by a flowing solution
[that is caused by retardation in the sample, (9.287)] or
by uncrossing the polarizers in the absence of the sample
(9.288).

Comparing (9.288) and (9.286) we can estimate the
value of the retardation in a flow knowing the rotation
angle of the analyzer

sin2(δ/2) = cos2 ϕ . (9.289)

From (9.289)

δ = π −2ϕ . (9.290)

This value is used in the calculation of experimental
birefringence via equation (9.285)
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Substituting (9.290) into (9.284) we finally obtain
for ∆n:

∆n = λ arcsin(cos ϕ)

πd
. (9.291)

A more-useful linear detection method [9.363], yield-
ing much improved signal-to-noise ratio, can easily be
adapted from the Sénarmont compensator. This simply
involves uncrossing the polarizers to permit a back-
ground intensity to be transmitted. It is then possible
to express δ as δ = δ1 + S, where δ1 is the constant back-
ground signal introduced by uncrossing the polarizers
and S is the retardation introduced by all other optical
effects. Hence from equation (9.287) we obtain:

Is = I0

4
(δ2

1 +2δ1S + S2) = I0

4
δ2

1 + I0

2
δ1S + I0

4
S2 .

(9.292)

If δ1 is large compared to S, the S2 term may be ne-
glected, leaving a constant intensity plus a term linear
in S. In practice the background intensity signal can be
set to around 10 or more times the intrinsic signal, only
limited by the stability of the light source.

Such systems work well in cases where the orienta-
tional angle θ is known or defined by the flow symmetry
(e.g., in extensional flows). They can be impractical
where the orientational angle is unknown or variable;
this is generally the case in Couette, cone and plate,
Poiseuille and other shear flows (Sect. 9.1.1). In simple
shear flows, generally the principal axis of the birefrin-
gence (the director) will lie at a setting angle to the
velocity and the velocity gradient vector. Techniques
such as polarization modulation (PM) and two-color
flow birefringence (TCFB) are capable of determining
simultaneously this orientational angle and the optical
retardation and birefringence.

PM [9.364] techniques cause a fast oscillation of
the polarization direction, which then samples all re-
fractive indices normal to the direction of propagation,
enabling analysis to determine δ and θ simultaneously.
This is commonly achieved by mechanically rotating
a λ/2 plate (circular polarizer) in the beam line. There
are photoelastic alternatives requiring no moving parts,
such as Pockels or Faraday cells. Phase-sensitive detec-
tion techniques are employed to monitor the intensity
and compare it with the incident beam, enabling correc-
tion for variations of the input intensity and an absolute
determination of δ, without calibration.

The TCFB technique [9.365] is powerful, sensi-
tive and faster than the PM techniques. The technique
employs, typically, the blue (488.8 nm) and green

(514.5 nm) lines of an argon-ion laser with the polar-
ization of the two beams rotated by 45◦ to each other,
to provide the two independent measurement required
to determine δ and θ separately. However, TCFB cannot
determine the sign of the orientation angle or the retar-
dation. Fuller [9.366] has presented a comprehensive
description of the field of optorheometry.

Light Sources
Any precise determination of birefringence requires the
light source to be highly monochromatic. Further, the
achievement of maximum sensitivity in possibly tiny
volumes, requires high focusability of the source. These
conditions point to lasers as the primary source. Most
systems have utilized relatively low-powered HeNe
lasers, of order 10–20 mW having λ of 632.8 nm. Opti-
cal components can be easily and economically obtained
with antireflection coatings optimized for HeNe wave-
lengths, practically eliminating unwanted reflections.

Such lasers are cheap, reliable, and robust. They are
not, however, intrinsically stable and the output intensity
and power will drift considerably as the laser warms up
and with ambient conditions and age of the laser. As
discussed above, stability is an important requirement
to achieve optimum signal-to-noise ratio and sensitivity.
Stabilized HeNe lasers are available, generally operating
on the principle of sensing the laser output and closed-
loop feedback into a heater circuit to maintain either
frequency or intensity stability. The lasers are primarily
intended for metrology, so output powers tend to be at
the low end of the spectrum, around 1 mW.

Increasingly solid-state lasers are available with
power and performance comparable with or exceeding
that of HeNe lasers. These are also intrinsically unstable
with temperature, but can be feedback stabilized rather
more easily than the HeNe with small Peltier heaters and
coolers. They can also be an order of magnitude cheaper
than similar HeNe devices. A possible drawback is that
the effective source size is larger than for HeNe lasers,
so that the minimum size to which the beam may be fo-
cused is limited, as is the specific achievable intensity.
Such lasers can have wavelengths of operation very sim-
ilar to HeNe lasers, enabling quite effective use of HeNe
antireflection optics.

Windows
Clearly high-clarity low-birefringence windows are im-
portant in optorheology. But for solution studies, where
the birefringent signals are commonly very small (as
low as δ = 0.01 nm or λ×10−5), windows are the bane of
optorheology birefringence measurements. Even though
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the windows may be free of stress and birefringence at
rest, during flow they will inevitably contain stresses,
arising from the pressure, the shear forces or the normal
forces, dependent upon the geometry. These stresses will
induce variable birefringence that may swamp the fluid
birefringence. Part of the solution is usually to utilize
thick windows. The retardation will scale with thick-
ness for a particular stress, but the stress will generally
reduce much more rapidly with window thickness. Sim-
ilarly the area of the window should be kept as small as
is feasible.

Photodetectors
Peltier-cooled charge-coupled device (CCD) detectors
now provide excellent performance combined with
speed and convenience. They can have greater than
1 megapixel resolution. Air cooling down to of the or-
der −40 ◦C can reduce thermal (dark-current) noise to
the level of 0.01 electrons per second per pixel. Cou-
pled with photon efficiencies of the order of 50%, long
integration times can be employed to recover even the
weakest signal. Selectable areas of interest enable fast
frame rates. At the same time 12- or 16-bit cameras can
provide a wide dynamic range, which is essential for
experiments that require background subtraction.

Polarizers and Waveplates
The performance of any birefringence experiment will
be restricted by the performance of the polarizers.
Dichroic film polarizers are designed to produce a ratio
of intensity of the unwanted polarization to the wanted
of order 10−5 (the extinction ratio). Higher ratios, up
to 10−6, can be obtained from birefringent compo-
nents such as calcite (Glan–Taylor and Glan–Thompson
prisms). These devices have the further advantages of
high power throughput without damage and high trans-
parency for the wanted polarization (up to 90%).

Temperature stability of wave plates is of prime im-
portance, and is best achieved by the use of zeroth-order
plates, which utilize compensating components to give
exactly λ/4, rather than higher-order but much cheaper
plates which give (4n +1)λ/4, with correspondingly
worse stability.

Flow Cells
All optorheological experiments, with the exception
of thread-line experiments, require the construction of
flow cells to define and constrain the flow and provide
windows through which the optical effects can be ob-
served. These flows can be defined that which approach
idealized flows as closely as possible.

��
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Fig. 9.111a–c Birefringence in a parallel-plate flow cell in
relaxation of oriented thermotropic liquid-crystalline ma-
terial ((a) with polars at 45◦ to flow direction, (c)with polars
at 90◦ to flow direction), together with the accompanying
light scattering pattern (b). The bands correspond to re-
gions of co-operative disorientation, where the variation in
brightness arises from periodic variation of the molecular
director. Such banding is ubiquitous in liquid-crystalline
systems, but is poorly understood

Simple shear flow will be approached through
a parallel-plate or cone-and-plate apparatus (Sect. 9.1.1),
usually with the light beam along the velocity gradient
direction and the plates forming the windows. An al-
ternate arrangement for simple shear is the Couette or
concentric cylinders apparatus. In principle, this permits
optical probes along the velocity or velocity gradient di-
rection, but optical trains are difficult to define compared
to with parallel-plate cells.

Figure 9.111 shows simple shear birefringence in
a thermotropic liquid-crystalline copolymer. The flow
cell is a parallel-plate cell, with polarizing optics and
simultaneous light scattering. The pronounced banding
texture correspond to regions of cooperative disorien-
tation, where the variation in brightness arises from
periodic variation of the molecular director. The local
director can be assessed by rotation with respect to
the crossed polarizer and analyzer; darkness indicates
a director parallel to a principal axis. Such banding is
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ubiquitous in liquid-crystalline systems, but poorly un-
derstood, the banding suggests a zigzag variation in the
director with respect to the shear direction, whilst the
single peak in the light scattering suggests a sinusoidal
variation in director.

Extensional flows can be attained through capillary
entrance flows (Sect. 9.1.2), G. I. Taylor four-roll mill
experiments or cross-slots (pure shear) and opposed jets.
The opposed jets realize a good approximation to ideal
extensional flows. If the jets impinge, then the flow will
correspond to a uniaxial compression, which is equiva-
lent to a biaxial extension. If the jets are sucking, then
the flow is close to ideal uniaxial extension. The four-
roll mill and jets devices permit very high strain rates
coupled with the incorporation of a stagnation point.
The stagnation point has a special significance, since
the strain rate is finite, but the residence time is infi-
nite, so that the fluid strain is unlimited and birefringent
structures build up to close to equilibrium (maximum
extension or orientation). This leads to discrete strands
of birefringence, localized in space. Such a structure is
shown in Fig. 9.112a, where the solution is just 10 ppm
concentration of atactic polystyrene; retardations of less
than λ/1000 can be resolved. Figure 9.112b shows
the birefringent profile across the strand through the
stagnation point.

Fluid mechanics presents a range of benchmark
problems, such as flow around corners and around cylin-
ders and spheres. Appropriate cells can be constructed to
enable an optical probe to analyze birefringent patterns.
In conjunction with velocimetry such approaches can
visualize the stress distributions and their effects on the
flow-field. Figure 9.113 shows the birefringence behind
a falling ball, again the birefringence has a strand-like
appearance, arising from the stagnation point behind the
sphere.

Beyond well-defined flows there are flows of ma-
jor industrial and commercial interest, such as porous
media flow. This is generally modeled by flow through
an assembly of glass spheres (ballotini). Multiple scat-
tering makes the use of optical probes problematic, but
refractive-index matching of the fluid to the glass has
resulted in direct birefringence observations in random
porous media [9.367].

9.5.3 Relation Between Birefringence
and Molecular Strain

The orientation of the segments of a macromolecule de-
pend on the volume and deformation of the macro-
molecule as a unit. Therefore birefringence demonstra-
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Fig. 9.112 (a) Birefringence response from a solution of 10 ppm
10.2 × 106 molecular-weight atactic polystyrene (aPS) in dioctyl ph-
thalate (DOP). The flow corresponds to a pure shear extension along
the vertical channel, coupled with a stagnation point at the cen-
ter. The strain rate is 995 s−1. (b) A birefringence scan across the
birefringent strand through the stagnation point

ted by polymer solutions is a function of the geometrical,
hydrodynamic and optical properties of the dissolved
macromolecules.

If the optical polarizability of the segments is
anisotropic, their preferential orientation within the
coiled molecule will result in an overall optical
anisotropy of the chain (intrinsic anisotropy). Accord-
ing to Peterlin [9.368, 369] the optical anisotropy of
a randomly coiled macromolecule is:

γ1 −γ2 = 3/5(α1 −α2)i(h
2/h2

0)υ(β) ; (9.293)

here: γ1 and γ2 are the principal polarizabilities of
a macromolecule, α1 and α2 are the polarizabilities of
a segment parallel and perpendicular to its length with
subscript i denoting segmental anisotropy, h2 is the mean
square end-to-end distance of a deformed molecule, h2

0
is the mean square end-to-end distance of a molecule at
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Fig. 9.113 Birefringence behind a 10 mm diameter steel ball bear-
ing falling through a 0.7% solution of 10.2 × 106 molecular weight
atactic polystyrene (aPs) in dioctyl phthalate (DOP)

rest (the gyration radius squared), the factor:

υ(β) = 5

3β

(

1− 3β

L−1(β)

)

, (9.294)

where β = h/L is the degree of extension of a molecule,
L is the contour length of a macromolecule, and L−1(β)
is the inverse Langevin function.

The intrinsic optical anisotropy of a chain (9.293)
has been derived from the average optical polarizability
of the ensemble of all conformations compatible with
a fixed end-to-end vector h [9.370]. The factor υ(β)
takes into account the small nonlinearity effect on the
optical anisotropy of the macromolecule as a function
of the mean square end-to-end distance and varies from
1 at β = 0 to 5/3 at β = 1.

Now one has to relate the polarizability of a mol-
ecule and refractive index of an optically anisotropic
medium, and also to obtain the dependence of bire-
fringence on the degree of extension of a molecule
in a hydrodynamic field. The Lorenz–Lorentz formula
relates the average refractive index, n, to the specific
polarizability of a medium P

n2 −1

n2 +2
= 4

3
π P . (9.295)

Upon differentiating, this gives

6n

(n2 +2)2 dn = 4

3
π dP (9.296)

and the increment in polarizability can be related to the
polarizabilities of the subunits through

dP ≈ ∆P = MNA

ρ
(α1 −α2) , (9.297)

where M is the molecular weight and ρ is the density
and NA is Avogadro’s number.

Kuhn and Grün assumed the validity of the above
formula in respect of the separate polarizabilities of the
subunits (α1, α2) and applied the differential equation
(9.296) to the finite difference of polarizabilities (9.293),
since the absolute values of differences (α1 −α2) are
small. Rearranging equation (9.296) we get

∆n

n
= 2πNAρ

9Mn2 (α1 −α2)(n2 +2)2 , (9.298)

The dependence of birefringence on the degree of ex-
tension of macromolecules in flow was obtained by
Peterlin [9.371]. He considered the problem of the dyn-
amics of macromolecules in flow and used for this
purpose two models: the simple dumbbell [9.372] and
the more-realistic necklace model [9.373, 374]. The
difference between solutions of the diffusion equation
obtained by the two models resides more in the values
of numerical coefficients than in the functional depen-
dence.

For a dumbbell model in a predominantly exten-
sional flow, where stretching occurs in the x-direction,
the specific birefringence of a solution (∆n/nc) can be
written as:

∆n

nc
= 6π

5h2
0

{
n2 +2

3n

}2

(α1 −α2)
NA

M
υ(β)

〈

β2
x −β2

y

〉

,

(9.299)

and the corresponding expression for simple shear flow

∆n

nc
= 6π

5h2
0

{
n2 +2

3n

}2

(α1 −α2)
NA

M

×υ(β)

√
〈

β2
x −β2

y

〉2 +4
〈

β2
xβ

2
y

〉2
, (9.300)

where βx and βy are square projections of vector β =
h/L on the x- and y-axes,

β2 = β2
x +β2

y +β2
z (9.301)

with βz being the projection of β on the third axis z, n is
the refractive index of a solution, and c is the concentra-
tion, conventionally in g/cm3. The total polarizability
(α1 −α2) is given by (9.309) below.

The ratio of experimental birefringence (∆n) to
the maximum achievable for fully stretched molecules
(∆n0) is

∆n

∆n0
= 3

5
υ(β)

〈

β2
x −β2

y

〉

. (9.302)

In order to plot the dependence of the dimensionless
birefringence (9.302) on the degree of extension we
make the following approximations. Taking into account
that the deformation occurs mainly in the stretching
direction x we obtain

〈

β2
y

〉= 〈β2
z

〉= 1

3N
, (9.303)

where N is the number of segments in a molecule,
and symmetry of the y- and z-directions is assumed
(axisymmetric stretching).
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From (9.301) and (9.303) it follows that
〈

β2
x −β2

y

〉= β2 −1/N . (9.304)

The function υ(β) = 5/3β[1−3β/L−1(β)] can be ap-
proximated by the dependence [9.375]:

υ(β) ≈
(

1+ β2

3
+ β4

3

)

. (9.305)

Using (9.302) and the approximation (9.305), we finally
obtain for the dependence of dimensionless birefrin-
gence on the degree of extension

∆n

∆n0
= 3

5

(

1+ β2

3
+ β4

3

)(

β2 − 1

N

)

. (9.306)

The dependence (9.306) is shown in Fig. 9.114 for
N = 104, which corresponds to a molecule of atactic
polystyrene with M ≈ 8 × 106 (the 1/N term is negligi-
ble)

An analogous result for the dependence of bire-
fringence on degree of extension has been obtained by
Treloar. His model of the uncoiling process, as well as
Peterlin’s dumbbell, implied that the mean molecular
segmental orientation (denoted by the end-to-end sep-
aration, h) during each stage of uncoiling in the flow
field, is consistent with that of a molecule in a stationary
solution whose ends are fixed at a distance h apart.

Other models of uncoiling, for example, the yo-yo
model of Ryskin [9.376] and the models of Rallison and
Hinch [9.377], Wiest et al. [9.378], Larson [9.379] and
Hinch [9.380], who predicted the formation of kinks
during uncoiling, would lead to birefringence versus
extension curves different from that of Peterlin and
Treloar models. The models of [9.376–380] produce
lower estimated molecular strain values for the same
birefringence during extension in comparison to the Pe-
terlin and Treloar result (9.306), since folded chains give
the same birefringence as extended ones.

9.5.4 Optical Properties of Macromolecules
in Solution: Effects of Macroform
and Microform Birefringence

In the derivation of the intrinsic anisotropy (9.293) the
optical influence of the solvent, which modifies the in-
ternal field and hence the effective optical properties
of the segment as well as those of the whole coil, has
been neglected. If the refractive index of the solvent
ns is different from that of the dissolved polymer, np,
an additional anisotropy of the molecule arises as a re-
sult of optical interaction between separate parts of the

chain [9.381]. Interaction between chain elements far
removed from each other (long-range optical interac-
tion) leads to an anisotropy of the polarizing field within
the molecular coil. This anisotropy is positive in sign
and is directly dependent on the shape of the molecu-
lar coil (macroform anisotropy). The difference between
the two principal polarizabilities of the macromolecule
(in the direction of vector h and perpendicular to it)
corresponds to the macroform effect and is [9.382]:

(α1 −α2)f =
(

n2
p −n2

s

4πnsρNA

)2
M2

Vs
(L2 − L1) ,

(9.307)

where ρ is the density of the polymer, Vs = 0.36 h3 is
the volume of the molecular coil in solution (including
the solvent in the molecule), and L2 − L1 is the optical
shape factor, which is a function of the axial ratio of the
statistical coil. The anisotropy of the polarizing field that
occurs as a result of this is therefore a value averaged
over the whole volume of a molecule.

The neighboring elements (monomers) in the chain
are arranged in a linear order and their interactions
cannot be spherically symmetrical. Such asymmetri-
cal short-range interaction causes local anisotropy of
the polarizing field, which is analogous to the average
field anisotropy due to the geometrical asymmetry of
the entire molecule. Thus an additional anisotropy of
polarizability arises (microform anisotropy), which is
also positive in sign. The principal polarizability dif-
ference corresponding to the microform effect can be
written

(α1 −α2)fs =
(

n2
p −n2

s

4πns

)2
M0s

ρNA
(L2 − L1)s .

(9.308)

Here (L2 − L1)s is the segmental spatial asymme-
try function, M0 is the molecular weight of the
monomer, and s is the number of monomers per seg-
ment.

Therefore the total polarizability difference for the
macromolecule in solution (γ1 −γ2) is the sum of three
components: the segmental anisotropy, the anisotropy
due to the macroscopic shape of the polymer chain
(or macroform), and the microstructure (or microform)
anisotropy

α1 −α2 = (α1 −α2)i + (α1 −α2)f + (α1 −α2)fs .

(9.309)
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Fig. 9.114 Dependence of birefringence on the degree of
extension of a polymer coil

So, the total principal polarizability difference (γ1 −γ2)
can be calculated with the help of (9.293), with (α1 −α2)
replacing (α1 −α2)i .

9.5.5 Example Calculation
of the Theoretical Birefringence
for Stretched Molecules
of Atactic Polystyrene

The maximum achievable birefringence calculated un-
der the assumption that all molecules in solution are
fully stretched follows from (9.298)

∆n = 2π

9

(
n2 +2

n

)2

(α1 −α2)
NAc

Ms
, (9.310)

where (α1 −α2) is determined by (9.309), and Ms = M0s
is the molecular weight of the segment. It is easily
seen that, as a macromolecular coil extends in the flow
and the distances between the peripheral segments in-
crease, so the optical long-range interactions in the
chain will become weaker. This means that the relative

role of the macroform effect is reduced. According to
Tsvetkov [9.383], the macroform effect (α1 −α2)f → 0
for fully stretched molecules. So finally we obtain

∆n0 = 2π

9

(
n2 +2

n

)2
NAc

Ms

× [(α1 −α2)i + (α1 −α2)fs] , (9.311)

where (α1 −α2)fs is determined by (9.308).
For atactic polystyrene in tricresylphosphate (TCP)

we have [9.384]

np = 1.6, ns = 1.55, (L2 − L1) = 5,

Ms = M0s = 822, (α1 −α2)i = 145 × 10−25 cm3 .

(9.312)

The value of intrinsic segmental anisotropy of atac-
tic polystyrene (a-PS) was determined in bromoform,
which has a refractive index very close to that of a-
PS molecule. Substituting these values into (9.310) and
(9.311), we get for maximum achievable for a-PS in
TCP: ∆n = 0.09 c, where c (g/cm3) is the concentra-
tion of the solution. The contribution of the microform
effect to the total anisotropy is about 3% for this system.

9.5.6 Conclusions

Birefringence continues to provide a major insight into
molecular structure; it is noninvasive, can be used in vivo
and is extremely fast. The latter property makes it es-
pecially significant in non-Newtonian fluid mechanics.
Careful experimentation can yield extraordinary sen-
sitivity. Birefringence relies upon small differences in
polarizability, but the subtraction is done at the molecu-
lar level. On the experimental scale, zero birefringence
is the background upon which flow effects are superim-
posed. However, the relationship between birefringence
and structure is ambiguous and models need to be used
with caution to interpret results in terms of molecular
orientation and conformation.
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