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Experiment a1. Experiment
as a Boundary-Value Problem

A fluid flow experiment is an attempt to iso-
late a part of the world and measure flow and
thermodynamic properties. A fluid is defined as
a material that deforms continuously if a shear
stress is applied. An internal flow situation has
walls bounding the flow, but an inflow and out-
flow position must be controlled. An external flow
problem has a uniform flow far from the body of
interest. In both situations the state of flow at the
boundary is controlled. In the mathematical rep-
resentation of the flow, the flow conditions on
the boundary are specified. This is the nature of
the governing physics. If the boundary conditions
depend on time the flow situation in the entire
region must be specified at the initial time.

In what follows the major physical laws are
outlined. In most cases tensor calculus in sym-
bolic form is employed. Scalars are lightface type,
vectors are boldface type, and tensors are bold-
face capitals. However, in cases where confusion
is possible with tensor multiplications, index no-
tation is employed. Scalars are then without an
index, vectors have one index and tensors have
two or more indices.
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1.1 Thermodynamic Equations

The properties of a continuum are defined by an imag-
inary experiment where a region of volume V with
characteristic length L is imagined to contain molecules.
At a given position the volume is reduced around that
position as indicated by the limit process L → 0. A typ-
ical molecule, denoted by the subscript i, has a mass mi
and an instantaneous velocity vi . The density is the sum
of mass over all molecules in the region divided by the

volume as the limit is taken. Although L → 0 is indi-
cated, it cannot become so small that fluctuations occur
because only a few molecules are present.

ρ = lim
L→0

∑
mi

V
. (1.1)

The mass-averaged velocity is a vector average of
the molecular velocities and mass. This is appropriate to
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4 Part A Experiments in Fluid Mechanics

measure the momentum:

v = lim
L→0

∑
mivi

∑
mi

. (1.2)

If the substance has several chemical species, n(k)

moles in the region, a molar averaged velocity for each
species k is

V (k) = lim
L→0

∑
v

(k)
i

n(k)
. (1.3)

Such a velocity is useful in diffusion problems. The
internal energy (per unit mass) due to random transla-
tional motions of the molecules is

e = lim
L→0

∑ 1
2 mi (vi −v) · (vi −v)

∑
mi

. (1.4)

The total internal energy includes other molecular
motions such as vibrations, and configuration energies.
The properties above are well defined whether or not the
substance is in thermodynamic equilibrium.

1.1.1 Thermodynamics

It is assumed that the bulk motion of the substance
does not affect the thermodynamic state. All thermo-
dynamic variables of a simple compressible substance
are described by a fundamental law that gives the en-
tropy s = s(ρ, e) or in another form e = e(s, ρ). Each
substance has its own entropy function, however, all
functions obey the fundamental differential equation of
thermodynamics.

e = e(s, ρ) (1.5)

de = T ds − pd(ρ−1) , (1.6)

the thermodynamic pressure is defined by

p(s, ρ) ≡ ∂e

∂(ρ−1)

∣
∣
∣
∣
s

, (1.7)

and the temperature is given by

T (s, ρ) ≡ ∂e

∂s

∣
∣
∣
∣
ρ

. (1.8)

Other thermodynamic properties follow from their
definitions, for example the enthalpy h = e+ p/ρ.

Two equations of state are equivalent to the funda-
mental law of a substance. The first equation of state is
of the form

p = p(ρ, T ) (1.9)

or

ρ = ρ(p, T ) . (1.10)

It is equivalent to specify the compressibility coefficient
functions:

α(p, T ) ≡ 1

ρ

∂ρ

∂p

∣
∣
∣
∣
T

, (1.11)

β(p, T ) ≡ − 1

ρ

∂ρ

∂T

∣
∣
∣
∣

p
. (1.12)

Integration of these functions will reproduce ρ =
ρ(p, T ).

The second equation of state is that for energy:

e = e(ρ, T ) . (1.13)

The important derivative function here is the specific
heat (per unit mass) at constant volume:

cv(ρ, T ) ≡ ∂e

∂T

∣
∣
∣
∣
ρ

. (1.14)

The other function ∂e/∂ρ|T is related to the state
equation ρ = ρ(p, T ) by thermodynamic theory. In
summary, the functions p = p(ρ, T ) and cv = cv(ρ, T )
describe the thermodynamics of a substance.

Often the enthalpy h = e+ p/ρ is used in preference
to the internal energy. The important derivative func-
tion here is the specific heat (per unit mass) at constant
pressure:

cp(p, T ) ≡ ∂h

∂T

∣
∣
∣
∣

p
. (1.15)

The other function ∂h/∂p|T is related to the state
equation ρ = ρ(p, T ) by thermodynamic theory. Alter-
natively, the functions p = p(ρ, T ) and cp = cp(p, T )
describe the thermodynamics of a substance.

There are special approximations of importance: the
perfect gas, ideal gas, and incompressible fluid. For
a perfect gas the state equations are:

p = ρRT , (1.16)

e = cv(ρ, T )T . (1.17)

Alternatively, h = cp(ρ, T )T . A further restriction to
an ideal gas gives simpler forms,

e = cv(T )T (1.18)

h = cv(T )T + p/ρ (1.19)

cp(T ) = cv(T )+ R (1.20)

where R is the specific gas constant.
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Experiment as a Boundary-Value Problem 1.2 Kinematic Equations 5

An incompressible fluid has thermodynamic vari-
ables that are independent of the density. The
fundamental equation is

s = s(e) , (1.21)

de = T ds . (1.22)

As before, the temperature is defined by

T ≡ ∂e

∂s

∣
∣
∣
∣
ρ

. (1.23)

Pressure is a mechanical variable that is indepen-
dent of the thermodynamic state. The first equation of
state does not exist, and the second equation of state
is

e = e(T ) = cv(T )T . (1.24)

The enthalpy is a mixture of thermodynamic and
mechanical properties, h = e+ p/ρ.

1.2 Kinematic Equations

A fluid particle is an imaginary collection of fluid that
locally follows the fluid velocity. Due to random mo-
lecular motions a fluid particle does not consist of the
same molecules for all time. There are two mathemat-
ical viewpoints with different independent space and
time variables. The dependent variables, the thermody-
namic properties and characteristics of the continuum
motion (velocity vorticity, strain rate, etc.) are instanta-
neous concepts and are the same from either viewpoint.
The Lagrangian view can be thought of as a history of
a certain fluid particle. Independent variables in the La-
grangian viewpoint are the initial position of the particle
and the time, x0 and t̂. The particle position vector r is

r = r̃(x0, t̂ ) , (1.25)

It follows from this that the particle velocity is

v = ∂r̃

∂ t̂
. (1.26)

and that the particle acceleration is

a = ∂v

∂ t̂
. (1.27)

Alternately, the Eulerian viewpoint is based on
a fixed position in space and time. The independent vari-
ables are x and t. In this viewpoint the particle position
is

r = r(x, t) = x . (1.28)

Equating r and time provides the connection be-
tween the two viewpoints.

x = r̃(x0, t̂ ) , (1.29)

t = t̂ . (1.30)

For a given particle x0, the particle path, with time
as a parameter, is

xp = r̃(x0, t) . (1.31)

Choosing a different initial particle x0 gives a differ-
ent particle path.

Next, consider a line of particles given by an equation
x0 = x0(a) where a is a parameter that varies over some
range, say0 ≤ a ≤ 1, where a = 0 is the beginning of the
line and a = 1 is the end of the line. For given time t,
a streak line of particles originally at x0 are at

xstr = r̃
(
x0(a), t

)
. (1.32)

A line of marked particles would move through the
flow according to (1.31).

Another important concept is that of a streamline.
For given time t, a streamline is everywhere tangent to
the velocity

v × dxstm = 0 ,

or

dx

u
= dy

v
= dz

w
. (1.33)

The second version above refers to a coordinate
system x, y, z with velocity components u, v,w.

Any dependent property f can be expressed in Eu-
lerian variables f = fE(x, t) or in Lagrangian variables
f = fL(x0, t̂). A Lagrangian time rate of change, the
rate of change following a fluid particle, is given by

∂ fL

∂ t̂
. (1.34)

The particle velocity and acceleration are

vi = ∂r̃

∂ t̂
= dxi

dt
, (1.35)

ai = ∂vi

∂ t̂
. (1.36)

By using the chain rules of differentiation of a com-
posite function one finds that the Eulerian representation
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6 Part A Experiments in Fluid Mechanics

of a Lagrangian time derivative is

∂ fL

∂ t̂
= ∂ fE

∂t
+v ·∇ fE . (1.37)

The right-hand side is called the Stokes derivative,
the substantial derivative, or the material derivative.

d fE

dt
≡ ∂ fE

∂t
+vi

∂ fE

∂xi
.

This offers a physical interpretation for this combination
of terms.

In addition to the translational velocity, every point
in the fluid has a vorticity. Given a fluid particle P at
x, the solid-like rotation of a near neighbor at P′ is the
angular velocity ω(x)/2. By definition

ω = ∇ ×v . (1.38)

The rate of strain at P is defined as

Sij = 1

2
(∂iv j +∂ jvi ); S = 1

2

[
(∇v)+ (∇v)T ]

.

(1.39)

Consider two particles P at x and a near neighbor
at P′ at a distance ds in direction of a unit vector n
from P. The strain velocity per unit distance is the strain
vector d.

dvstrain

ds
= d = n · S . (1.40)

A small material region has a volumetric rate of
expansion

lim
L→0

1

VMR

dVMR

dt
= ∇ ·v . (1.41)

This is of course zero for an incompressible flow.

1.3 Balance Laws and Local Governing Equations

1.3.1 Continuity

The law for conservation of mass yields the continu-
ity equation, referring to the fact that the underlying
assumption of a continuum is required.

1

ρ

dρ

dt
+∇ ·v = 0 . (1.42)

The fractional rate of change of density following
a fluid particle and the rate of expansion of the material
region form a balance. Another viewpoint, from a fixed
point in space, gives a balance of the local rate of change
of density and the divergence of the flux of fluid into the
point:

∂ρ

∂t
+∇ · (ρv) = 0 . (1.43)

The continuity equation is used to derive a relation
between the substantial derivative of any fluid prop-
erty fE and the local and convective derivatives of fE
observed at a fixed Eulerian location.

ρ

(
∂ fE

∂t
+v ·∇ fE

)

= ∂ (ρ fE)

∂t
+∇ · (ρv fE) .

(1.44)

1.3.2 Linear Momentum
and Related Equations

The linear momentum per unit mass, v, responds to sur-
face and volumetric forces. The surface stress R on an

area with outward normal n is the force per unit area
of the outside substance upon the inside substance. The
variation of this stress with surface direction is given
by n and the variation with location is given by a stress
tensor T(x, t):

R = n · T . (1.45)

The stress is divided into a viscous tensor and pres-
sure by subtracting the thermodynamic pressure.

T = −pδ+τ . (1.46)

The trace of the stress tensor forms a mechanical
pressure force:

pm = −1

3
tr(T) = −1

3

∑

i

Tii . (1.47)

The Stokes assumption equates these pressures, p =
pm.

The gravity force per unit volume is ρg where g is
a constant scalar magnitude g times a unit vector in the
gravity direction. If Z is the height above a horizontal
reference plane,

Fg = −ρg∇Z . (1.48)

Two equivalent forms of the momentum are from
the perspective of a fixed point in space or from the
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Experiment as a Boundary-Value Problem 1.3 Balance Laws and Local Governing Equations 7

perspective of a material particle

∂(ρv)

∂t
+∇ · (ρv2) = −∇ p+∇ ·τ +ρg ,

ρ
dv

dt
= −∇ p+∇ ·τ +ρg . (1.49)

An equation governing the mechanical energy or ki-
netic energy per unit mass is obtained by the dot product
of velocity and the momentum equation.

∂
(
ρ 1

2v2
)

∂t
+∇ · (ρv 1

2v2)

= −v ·∇ p+ρ v · g +v · (∇ ·τ) . (1.50)

An equation governing the moment of momentum,
r ×v, is obtained by r cross the momentum equation:

∂(ρεijkr jvk)

∂t
+∂p[ρvp(εijkr jvk)]

= −εijkr j∂k p+ρεijkr j gk + εijkr j∂pτpk , (1.51)

where any origin is permitted for r.
The vorticity ω = ∇ ×v is governed by a equation

formed by ∇× the momentum equation. The equation is

dω

dt
= −ω∇ ·v+ω ·∇v+ 1

ρ2
∇ρ ×∇ p

− 1

ρ2
∇ρ ×∇ ·τ + 1

ρ
∇ ×∇ ·τ ; (1.52)

a derivation of this equation may be found in [1.1, 2].

1.3.3 Angular Momentum

Conservation of angular momentum is a distinct physical
law from linear momentum. The net internal angular mo-
mentum per unit mass is ã. This occurs if the molecules
were spinning in a preferred direction. Angular mo-
mentum crossing an imaginary surface by molecular
transport (diffusion) would produce a surface couple
n jΩ ji . One could also propose an external physical pro-
cess ρGi that would impart angular momentum directly
to the individual particles. Conservation of total angular
momentum, r ×v+ ã, leads to the equation

∂(ρεijkr jvk +ρãi )

∂t
+∂p[ρvp(εijkr jvk + ãi )]

= −εijkr j∂k p+ρεijkr j gk

+∂p(εijkr jτpk)+ρGi +∂ jΩ jk . (1.53)

Subtracting the moment of the momentum equa-
tion derived earlier yields a relation governing internal
angular momentum

∂(ρãi )

∂t
+∂p(ρvpãi ) = εijkτ jk +ρGi +∂ jΩ jk .

(1.54)

It is usually assumed that the molecular angular mo-
mentum is randomly distributed so that ã = 0 and G and
Ω are zero. Then εijkτ jk = 0 and τ must be symmet-
ric. Symmetry of τ will be assumed in the balance of
Sect. 1.1.

1.3.4 Energy

The conservation law for total energy leads to

∂

∂t

[

ρ
(
e+ 1

2
v2)

]

+∇ ·
[

ρ
(
e+ 1

2
v2)

]

= −∇ ·q −∇ · (vp)+ρv · g +∇ · (τ ·v) . (1.55)

Here the heat flux vector q accounts for the transport
of energy by microscopic mechanisms.

Subtracting the kinetic energy equation yields the
thermal energy

∂

∂t
ρe+∇ · (ρve) = −∇ ·q − p∇ ·v+Φ . (1.56)

The symbol Φ ≡ τ : ∇v = τij∂ jvi represents the vis-
cous dissipation that creates thermal energy from kinetic
energy.

The thermal energy equation with temperature as the
dependent variable is derived using general thermody-
namic relations. It is

ρcp(T, p)
dT

dt
= −∇ ·q +Φ+βT

dp

dt
. (1.57)

1.3.5 Entropy

The fundamental equation expressing the second law of
thermodynamics is

ρ
ds

dt
= −∇ · q

T
− 1

T 2 q ·∇T + 1

T
Φ . (1.58)

The terms −∇ · q
T − 1

T 2 q ·∇T = − 1
T ∇ ·q are writ-

ten as two terms to separate the reversible (−∇ · q
T ) and

irreversible (− 1
T 2 q · ∇T ) effects of heat transfer.

The viscous term is irreversible.
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8 Part A Experiments in Fluid Mechanics

1.4 Balance Laws and Global Governing Equations

1.4.1 Regions

Global laws are integrals of the local laws over a chosen
region or, on the other hand, may be postulated as basic
truths from the start. An arbitrary region, designated as
AR, has a specified velocity w at each point on the sur-
face. For a material region, MR, the surface velocity is
the local fluid velocity, w = v. A fixed region, FR, is one
with w = 0 everywhere. It is sometimes useful to con-
sider a region with a surface velocity that is constant in
space w = W(t). Such a region has a constant volume
and is designated VR. The fluid velocity relative to the
VR is

u = v− W . (1.59)

A region enclosing a rocket and following it through
space is a volume region, VR. The velocity of the rocket
is W(t) and the rocket engine discharges gases from the
region.

Elementary thermodynamic texts do not have a uni-
form notation for regions. The arbitrary region (AR)
defined above might be called an open system, a de-
formable control volume, a control volume, or some
combination of these terms. The fixed region (FR)
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Fig. 1.1 AR, arbitrary region with w prescribed; MR, ma-
terial region with w equal the local fluid velocity v; FR,
fixed region with w equal zero; VR, volume region with w

equal to a constant in space W(t)

defined above might be called an open system, or sim-
ply a control volume. The material region might be
called a system, a constant mass system, or a closed
system.

1.4.2 Leibnitz and Gauss Theorems

For a region with arbitrary surface velocity w, the Leib-
nitz theorem is

dIij

dt
= d

dt

∫

VAR

fij (xk, t)dV

=
∫

AR

∂ fij (xk, t)

∂t
dV +

∫

AR

nmwm fij (xk, t)dS ,

(1.60)

and the Gauss theorem is∫

VAR

∂i f jk(xl, t)dV =
∫

AR

ni f jk(xk, t)dS . (1.61)

A global law is derived by letting fij in the Leibnitz
theorem be the quantity of interest in the local equation,
substituting the local equation for ∂ fij/∂t and convert-
ing as many volume integrals as possible into surface
integrals by the Gauss theorem.

1.4.3 Volume

The volume of the region changes with time according
to

dVAR

dt
=

∫

AR

n ·wdS . (1.62)

Here n ·w is the normal velocity of the surface of
the control region.

1.4.4 Mass

Conservation of mass for an arbitrary region is
dMAR

dt
= d

dt

∫

AR

ρdV = −
∫

AR

n · (v−w) ρdS . (1.63)

Here all velocities are absolute velocities with re-
spect to an inertial frame. For a material region, MR,
v = w, and (1.63) becomes dMMR

dt = d
dt

∫
MR ρdV = 0.

For a volume region, VR, with fluid velocity u with
respect to the moving region;

dMVR

dt
= −

∫

VR

n ·uρdS . (1.64)
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Experiment as a Boundary-Value Problem 1.4 Balance Laws and Global Governing Equations 9

In the rocket example the mass changes because
of the relative velocity of the gases leaving the rocket
motor.

1.4.5 Linear Momentum

For an arbitrary region

d

dt

∫

AR

(ρv)dV = −
∫

AR

ρn · (v−w) vdS

+
∫

ARsolid

n · T dS +
∫

ARfluid

n ·τ dS

−
∫

ARfluid

npdS +
∫

ARfluid

ρFg dV .

(1.65)

Moving volume region

d

dt

∫

VR

(ρu)dV + MVR
dW
dt

= −
∫

VR

ρ(n ·u)udS +
∫

VRsolid

n · T dS

+
∫

VRfluid

n · t dS −
∫

VRfluid

npdS +
∫

VRfluid

ρFg dV .

(1.66)

Recall that he fluid velocity relative to the VR is
u = v− W.

1.4.6 Total Energy

For the global energy equations the surface integrals are
split into regions where the surface cuts a solid and where
it cuts a fluid. Shaft work arises from solid surfaces
that are cut by the control surface. Work of a rotating
shaft, which involves the tangential velocity, vt , or trans-
lating shaft, which involves the normal velocity, vn , is
described by this term.

ẆShaft =
∫

Solid surfaces

(n · T) ·vdS

=
∫

Solid surfaces

(n · T) · (vn +vt)dS

= ẆShaft normal + ẆShaft rotary . (1.67)

In fluid regions the stress tensor is decomposed into
pressure and viscous parts,

Tij = −pδij + τij . (1.68)

The total energy equation is

d

dt

∫

AR

ρ

(

e+ 1

2
v2 + gZ

)

dV

= −
∫

AR

ρn · (v−w)

(

e+ 1

2
v2 + gZ

)

dS

+ ẆShaft normal + ẆShaft rotary

+
∫

Fluid surfaces

(n ·τ) ·vdS

−
∫

Fluid surfaces

pn ·vdS −
∫

AR

n ·q dS . (1.69)

This equation can be expressed in many forms.
A popular form is to introduce the concepts of mov-
ing boundary work and flow work for the pressure work
term.

−
∫

Fluid surfaces

ρn ·v
(

p

ρ

)

dS

= −
∫

Fluid surfaces

ρn · (v−w)

(
p

ρ

)

dS

−
∫

Fluid surfaces

ρn ·w
(

p

ρ

)

dS

= ẆFlow work + ẆBoundary work . (1.70)

Inserting these concepts into (1.69) allows the flow
work to be incorporated into the convective term and the
enthalpy, h = e+ p/ρ to be identified.

d

dt

∫

AR

ρ

(

e+ 1

2
v2 + gZ

)

dV

= −
∫

AR

ρn · (v−w)

(

h + 1

2
v2 + gZ

)

dS

+ ẆShaft normal + ẆShaft rotary

+ ẆBoundary +
∫

Fluid surfaces

(n ·τ) ·vdS

−
∫

AR

n ·q dS . (1.71)
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10 Part A Experiments in Fluid Mechanics

1.4.7 Thermal Energy

The global thermal energy equation may be found by
integrating the local thermal energy equation

d

dt

∫

AR

ρedV

= −
∫

AR

ρni (vi −wi )edS

+
∫

AR

τij∂iv j dV −
∫

AR

niqi dS

+
∫

AR

p∂ivi dV . (1.72)

1.4.8 Mechanical Energy

Subtracting the thermal energy from the total energy
yields the final general form for the compressible flow in
an arbitrary region. Here the total head (1/2v2 + gZ +
p/ρ) appears. Note that some disciplines reserve the
term head for items with the dimension of length, i.e.,
(1/2gv2 + Z + p/gρ)

d

dt

∫

AR

ρ

(
1

2
v2 + gZ

)

dV

= −
∫

AR

ρn · (v−w)

(
1

2
v2 + gZ + p

ρ

)

dS

+ ẆShaft normal + ẆShaft rotary + ẆBoundary

+
∫

Fluid surfaces

(n ·τ) ·vdS

+
∫

AR

Φ dV −
∫

AR

p∇ ·vdV (1.73)

The term representing viscous dissipation is usually
replaced by defining a head loss hl .

ṁghl ≡
∫

FR

τij∂iv j dV

=
∫

FR

Φ dV for symmetric τ . (1.74)

1.4.9 Entropy

An exact expression of the second law of thermodynam-
ics is

d

dt

∫

AR

ρs dV

= −
∫

AR

ρni (vi −wi )s dS −
∫

AR

1

T
niqi dS

−
∫

AR

1

T 2
qi∂i T dV +

∫

AR

1

T
τij S ji dV . (1.75)

Here the last two terms are irreversible effects and
always positive; neglecting them leads to an inequality
well known in thermodynamics.

1.5 Constitutive Equations

Many practically important fluids obey constitutive rela-
tions for a Newtonian fluid with Fourier heat conduction.
The Newtonian relationship for the stress rate of strain
contains two viscosity coefficients

τij = λ∂kvkδij +2µSij (1.76)

Inserting the Stokes assumption, λ = −2µ/3, yields

τij = −2

3
µ∂kvkδij +2µSij . (1.77)

The Fourier conduction law is

qi = −κ∂i T (1.78)

For completeness Fick´s diffusion law for a binary mix-
ture relates the diffusion flux and the concentration
gradient with the binary diffusion coefficient as the
proportionality constant.

jA = ρA(vA −v) = −ρDAB∇xA . (1.79)
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Experiment as a Boundary-Value Problem 1.7 Discontinuities in Density 11

1.6 Navier–Stokes Equations

The Navier–Stokes equations for a compressible flow
may be considered as the continuity equation together
with the momentum and energy equations for a Newto-
nian fluid:

ρ

[(
∂v

∂t
+v ·∇v

)]

= −∇ p+ρg −∇
(

2

3
µ∇v

)

+2∇(µS) ,

S ≡ 1

2
∇v+ 1

2
(∇v)T ,

ρcp(T, p)
dT

dt
= −κ∇2T +Φ +βT

dp

dt
.

(1.80)

1.6.1 Incompressible Flows

For incompressible flows the density is approximately
constant and transport coefficients are approximately
constant. These are consistent assumptions at low Mach

numbers (a characteristic velocity divided by the speed
of sound) with adiabatic walls or isothermal walls with
small temperature differences. The equations take the
form

∇v = 0 , (1.81)

∂v

∂t
+v ·∇v = − 1

ρ
∇ p+ g +ν∇ ·∇v ,

∇ ·∇v = ∇2v , (1.82)

dω

dt
= −ω ·∇v+ν∇2v . (1.83)

Two related equations govern the enstrophy and the
pressure:

d

dt

(
1

2
ω2

)

= ωiω j S ji +ν∂ j∂ j

(
1

2
ω2

)

−ν∂ jωi∂ jωi , (1.84)

1

ρ
∇2 p = v ·∇2v+ω ·ω−∇2

(
1

2
v2

)

. (1.85)

1.7 Discontinuities in Density

1.7.1 Normal Surface Discontinuity

Consider a surface discontinuity in the fluid. This might
be thought of as a region with a finite thickness in
the limit as the thickness approaches zero. The sur-
face moves with velocity W. Figure 1.2 is a typical
example that depicts a shock wave caused by a blunt
body moving at supersonic speed with respect to the
surrounding fluid. Fluid on one side is called fluid A and
that on the other fluid B. The unit normal vector nA
points from the discontinuity into fluid A, and nB points
from the discontinuity into fluid B. Assume that there is
no mass, momentum or energy within the discontinuity
and that the tangential velocity component is unchanged,
vAt = vBt. The mass flow across the discontinuity is
conserved.

ρAnA · (vA − W)+ρBnB · (vB − W) = 0 . (1.86)

The normal vectors may be replaced, nA = −nB = n.
The tangential momentum equation yields a balance of
shear forces.

(nA ·τA)t + (nB · τB)t = 0 . (1.87)

�

��

�

��

�

�

Fig. 1.2 Discontinuity across a shock wave. The tangential
velocity is unchanged. The normal velocity is decreased

Let the normal component of the fluid velocity be
nA ·vA = vAn . The normal direction momentum equa-
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12 Part A Experiments in Fluid Mechanics

tion is

[ρA ·nA(vA − W)vAn + pA −nA · (nA ·τA)]
+nB · [ρBnB · (vB − W)vBn + pB −nB · (nB ·τB)]
= 0 . (1.88)

If et is the total (kinetic plus internal) energy, con-
servation of energy requires that

[ρA etAnA · (vA − W)vAn + pAvAn

−nA · (τA ·vA)+nA ·qA]
+ [ρB etBnB · (vB − W)vBn + pBvBn

−nB · (τB ·vB)+nB ·qB] = 0 . (1.89)

Because the discontinuity surface contains no mass,
the curvature and the time dependence of W have no
effect on the local validity of the equations above.

1.7.2 Fluid–Solid Boundary

The central issue here is the condition on the tangential
velocity. In many situations the viscous no-slip condition
is adequate. However, some situations require a more-
refined approach. The analysis above covers the case of
a porous or vaporizing wall without slip. Let us be the
slip velocity of the fluid along the wall. Slip is often
expressed as a slip length, defined as

β = us

du/dy|0
= us

γ̇
, (1.90)

γ̇ ≡ du/dy|0 . (1.91)

Because the interactions of gasses with solids and
liquids with solids are different, these fluids must be
dealt with separately.

In gases an important parameter is the Knudsen num-
ber, which compares the mean free path length λ with
the flow length scale h:

Kn = λ

h
=

√
γ π

2

M

Re
. (1.92)

The relation with the Mach and Reynolds numbers is
often useful. A first-order equation (derived from kinetic
theory) for the slip is Maxwell’s equation.

us = 2−σv

σv

Knhγ̇ . (1.93)

Here σv is the tangential momentum accommoda-
tion coefficient. The Knudsen number becomes large
for a large object in a rarefied gas, or a very small object
at atmospheric pressure.

Slip in liquids is only observed at small scales.
The slip length is on the order on 100 nm (0.1 µm)
Experimental results have been correlated as a power
law

β = Aγ̇ B ,

us = Aγ̇ B+1 . (1.94)

The constant B is about 1/2. Unfortunately, the
dimensions in the constants in the expressions above
interact. Changing B changes the dimensions of A.
More-detailed comments are in Chap. 19.

1.7.3 Interfaces with Surface Tension

Interfaces with two thermodynamic phases or immisci-
ble substances may require that we postulate a surface
tension property. Surface tension, force per length, is the
two-dimensional world analogue to pressure. However,
it is taken as a thermodynamic property of the substances
and the temperature. The curvature of the surface is im-
portant. Let R1 and R2 be the principle radii of curvature
of the surface. The curvature is

2H = −
(

1

R1
+ 1

R2

)

. (1.95)

Conservation of mass leads to the same equation
as for normal discontinuities. The momentum equation
contains two surface tension effects. One effect is from
the curvature of the surface and another from a possible
variation of the surface tension along the surface.

ρn · (vA −w)vA −ρn · (vB −w)vB

= [n ·τA −npA]− [n ·τB −npB]−∇(s)σ −σn2H .

(1.96)

Surfaces without mass crossing the interface have
simplified expressions. In addition to the unit vector n
normal to the surface, let the vectors b and t be orthog-
onal unit vectors within the surface. The momentum
equations in these three directions are

n-direction : 0 = (τnnA −τnnB)−[pA − pB]
−2σH , (1.97)

n-direction : 0 = (τntA −τntB)− dσ

dt
, (1.98)

b-direction : 0 = (τnbA −τnbB)− dσ

db
. (1.99)

Contact lines, where two surfaces meet, require spe-
cial treatment and if the contact line moves slip is
required.
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1.8 Constitutive Equations and Nonlinear Rheology of Polymer Melts

Constitutive equations describing the nonlinear rheolog-
ical behavior of polymer melts have been a subject of
focus due to their importance in designing and opti-
mizing polymer processing as well as their analytical
role in providing a logical picture of the molecular
structure of the polymer. They are also needed to ob-
tain closed system of the continuity and momentum
equations describing flow of such materials. Consti-
tutive equations can be classified according to their
scale of work (continuum mechanics or microstructural),
their method of formulation (integral or differential), or
according to their approach towards time-deformation
separability (separable or nonseparable) [1.3]. Most of
the current theoretical work in rheology is devoted to
the development of precise constitutive equations with
parameters that are in some way or other obtainable
through the microstructural properties of polymer melts
and solutions as well as other non-Newtonian fluids.
The present chapter presents an overview of the con-
stitutive equations derived from continuum mechanics,
and their evolution to the development of microstructural
integro-differential equations.

Among the microstructural constitutive equations
for polymer solutions and melts, the tube model
has proven to be successful in predicting the linear
rheological behavior of linear polymer melts and solu-
tions, but is incapable of predicting the strain hardening
behavior observed both in linear and in long-chain
branched melts [1.4]. The continuum-based models, on
the other hand, are merely phenomenological definitions
of the solution or melt behavior and provide little or no
information on the structure of the polymer molecule.
It is the goal of this chapter to set the boundaries of
the most recent microstructural constitutive equations
and discuss the potentials of tackling the yet unsolved
problems in nonlinear rheology of polymer melts.

Most recent developments which are based on modi-
fications of the tube model have resulted in considerable
progress in nonlinear viscoelastic theories and can pre-
dict strain hardening in linear polydisperse polymer
melts with reasonable quantitative precision [1.5, 6].
However, a significant discrepancy arises when com-
paring the strain hardening of linear polydisperse melts
to that of long-chain branched polymer melts since
the latter show a considerably steeper onset of strain
hardening [1.7, 8]. Reversing double-step strain mea-
surements reveal another difference in melt behaviors
since long-chain branched melts exhibit totally re-
versible behavior of the Kay-Bernstein–Kearsley–Zapas

(K-BKZ) type up to considerable large deformations,
whereas polydisperse linear polymers show early irre-
versible deformations [1.9].

In the present chapter we will discuss the main
features of the evolution from the classical constitu-
tive equations based on continuum mechanics to the
microstructural theories which were developed in re-
cent years. It is emphasized that in the present chapter,
the rheological constitutive equations for concentrated
polymer solutions and melts are in focus. In addition,
in Sect. 1.2 and Sect. 1.3 of the handbook a number of
rheological constitutive equations for slurries, gels, sus-
pensions and emulsions is introduced and discussed in
detail.

1.8.1 Classical Theories

The General Viscous Fluid
The main concern of many practical computational prob-
lems, e.g., in polymer processing is to find a suitably
formulated method to calculate the flow rate. In this
case and under certain circumstances the elasticity ef-
fects (and consequently the normal stress behavior in
simple shear flow) may be neglected. Assuming incom-
pressibility, and that the stress tensor σ only depends on
the instantaneous condition of the rate of deformation
tensor D (and not on its time derivatives), and assuming
that the extra stress tensor τ = σ + pI and D be coaxial
(i. e., they have the same directions of principal axes),
the state of stress can be described by:

σ = −pI +2η (IID, IIID) D , (1.100)

where IID and IIID are the second and third invariants
of the rate of deformation tensor. (The first invariant ID
is zero due to the assumption of incompressibility.)

Clearly, (1.100) reduces to the Newtonian fluid pro-
vided η = η0 is independent of the invariants of D:

σ = −pI +2η0 D . (1.101)

For simple shear flows, the third invariant IIID vanishes
identically. It is commonly assumed that IIID is not very
important in other flows, and hence it is customary to
omit the dependence on IIID, leading to the standard
form of the general viscous fluid:

σ = −pI +2η (IID) D . (1.102)

The later equation allows a three-dimensional represen-
tation of scalar deformation-rate-dependent flow laws.
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A popular form of such flow laws has been proposed by
Ostwald and de Waele [1.3]:

η = mII (n−1)/2
D , (1.103)

hence:

σ = −pI +2mII (n−1)/2
D D , (1.104)

where m is a temperature-dependent parameter and n
determines whether the fluid is shear thinning (n < 1)
or shear thickening (n > 1). However, like most phe-
nomenological constitutive equations, (1.104) is only
valid for a certain range of shear rates and fails at small
shear rates. Experimental observations suggest that the
viscosity finally reaches a (Newtonian) plateau at lower
shear rates whereas (1.104) predicts infinite values for
n<1. Other models to compensate for this shortcoming
such as Carreau–Yasuda model [1.3],

η−η∞
η0 −η∞

= 1

(1+λa |IID|) n−1
a

(1.105)

are in use, but their application needs a choice of extra
parameters that yield no insight into the microstructural
aspects of the fluid.

The Rubber-Like Liquid Theory
Based on early observations of rubber elasticity,
Lodge [1.10] proposed a polymer melt to be a network
of temporary junctions or entanglements that are created

1. at a constant rate independent of deformation or
deformation rate;

2. in an isotropic state even under deformation.

This, along with the assumption of affine deforma-
tion led to the rubber-like liquid constitutive equation
for the stress tensor σ in the form

σ = −pI +
t∫

−∞

[
m(t − t′)C−1

t (t′)
]

dt′ , (1.106)

where p denotes the isotropic pressure contribution,
C−1

t (t′) is the relative Finger strain tensor and I is the
unit tensor. The memory function m(t − t′), which for
simplicity is often expressed by a discrete relaxation
spectrum (gi, λi ) [1.9],

m(t − t′) =
N∑

i=1

gi

λi
e−(t−t′)/λi , (1.107)

is the time derivative of the relaxation modulus G(t)

m(t − t′) = ∂G(t − t′)
∂t′

. (1.108)

The discrete relaxation modes gi and λi are free
parameters of the theory, and have to be determined
by suitable linear viscoelastic experiments. Based on
the concept of reptation [1.4], considerable progress
has been made in recent years in relating G(t) to
molar mass, molar mass distribution, and topology (lin-
ear or branched) of polymer melts, but its numerical
precision depends on numerous model assumptions, es-
pecially in the case of randomly long-chain branched
melts [1.11, 12]. This makes the experimental determi-
nation from dynamic mechanical analysis still the most
reliable method to obtain m(t − t′) Chap. 9.

Later it was shown that the rubber-like liquid equa-
tion fails at large deformations [1.13], and severely
overpredicts the stresses of polymer melts. This will
be discussed in the following section when introducing
the evolution of the K-BKZ-type constitutive equations.

K-BKZ and Related Equations
A large group of rheological equations of state for non-
linear viscoelastic behavior can be deduced as special
cases of the K-BKZ equation [1.14].

The generalized relation between stress and finite
strain for rubber elasticity is:

σ = f (B) = −pI + g1(I, II)B+ g2(I, II)B ,

(1.109)

where B = Bn(t) is the Green deformation tensor de-
scribing the deformation from the natural, stress-free
state t′ = n to the deformation state at time t, and the
relation to the relative Finger strain tensor is given by

Bn(t) = C−1
t (n) . (1.110)

The functions g1 and g2 are material functions of the
first and second invariant of B or (C−1),

I = IB = tr(B) (1.111)

and

II = II B = 1

2

[
I2

B − tr(B2)
]
. (1.112)

The values of invariants of the Green (and Finger) tensor
for shear, uniaxial, equibiaxial and planar deformations
are summarized in Table 1.1.

If the stress can be derived from an energy potential
W(I, II), the rubber is called hyperelastic. In the case
of time-dependent viscoelastic materials, this concept
can be generalized to an energy potential w(I, II, t − t′),
which depends not only on the invariants I and II of
the relative Finger tensor C−1

t (t′), but also on the time
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difference t − t′. The strain energy W is then given by

W =
t∫

−∞
[w(I, II, t − t′)]dt′ . (1.113)

From W , the K-BKZ equation is then derived
as [1.14]:

σ = −pI +
t∫

−∞

(

2
∂w

∂I
C−1 −2

∂w

∂II
C

)

dt′ , (1.114)

C = Ct(t′) is called the relative Cauchy tensor. By choos-
ing a suitable potential w, (1.114) can be adapted to
describe the time-dependent deformation behavior of
a general viscoelastic material. Separating the effects of
time and deformation will lead to a separable K-BKZ
equation of the form:

σ = −pI +
t∫

−∞
m(t − t′)

(
h1C−1 +h2C

)
dt′ .

(1.115)

If the functions h1(I, II) and h2(I, II) are not ex-
pressible as derivatives of a potential, (1.115) is called
a separable Rivlin–Saywers equation [1.3], although the
term K-KBZ equation is often (wrongly) also used in
this case. The rubber-like liquid theory of Lodge men-
tioned in the previous section is recovered from (1.115)
with h1 and h2 being equal to 1 and 0, respectively, and
w is given by

w(I, II, t − t′) = m(t − t′) (I −3) . (1.116)

The main problem is now reduced to obtaining a rea-
sonable expression for w for real polymer melts in a wide
range of deformations and deformation rates, a task that
remained largely elusive.

However, nonlinear shear and extensional stress
growth experiments on many polymer melts for suf-
ficiently large deformations proved time-deformation
separability to be valid [1.3]. This, along with neglecting

Table 1.1 First and second invariants of the Green or Finger
tensor in terms of the shear strain γ and Hencky strain ε

Type of flow I II

Simple shear 3+γ 2 3+γ 2

Uniaxial e2ε+ 2e−ε 2eε+ e−2ε

Equibiaxial e−2ε+ 2eε 2e−ε+ e2ε

Planar 1+e−2ε+ e2ε 1+e2ε+ e−2ε

the relative Cauchy tensor by setting h2 = 0 in (1.109)
led to the so-called Wagner I equation [1.3, 15–17]:

σ = −pI +
t∫

−∞
m(t − t′)h(I, II)C−1 dt′ , (1.117)

where h(I, II) ≤ 1 is called the damping function, which
expresses the survival probability of network strands
regarding nonlinear deformations [1.16, 17]. A first ap-
proximation proposed for the damping function was:

h(IIB) = e−√
II−3 , (1.118)

which, for unidirectional shear flows, will lead to the
simplified form:

h(γ ) = e−nγ . (1.119)

Using the fitting exponent n = 0.143 for low-density
polyethylene (LDPE) melts, (1.119) performs quite well
for shear deformations as large as γ = 13. For larger de-
formations a combination of two exponential functions
of the form

h(γ ) = a e−n1γ + (1−a)e−n2γ , (1.120)

was suggested, which extended the predictable defor-
mation range up to γ = 30 [1.15].

However, comparison to experimental evidence has
shown that recoverable deformations, e.g.in reversing
shear or elastic recoil experiments [1.18–20], are over-
predicted by the Wagner I equation. In order to overcome
this defect, the damping function was replaced by a func-
tional H(t, t′) of the deformation (the so-called Wagner
II equation [1.3]),

σ = −pI +
t∫

−∞
m(t − t′)H(t, t′)C−1 dt′ . (1.121)

The functional was chosen in such a way that it
always behaves as a decreasing function [1.18, 21],

H(t, t′) = min [h(I, II)] . (1.122)

Using this functional and a linear combination of the
strain invariants,

L = αI + (1−α) II , (1.123)

and a damping function h(L) of the form

h(L) = a e−n1
√

L−3 + (1−a)e−n2
√

L−3 , (1.124)

reasonable quantitative agreement between theory and
experiment for the nonlinear behavior both in shear and
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uniaxial extensional flow of many industrial (polydis-
perse) polymer melts could be obtained by the use of
four nonlinear material parameters. Later Papanasta-
siou et al. proposed a damping function of the following
sigmoidal form [1.22]

h(I, II) = α

(α−3)+β I + (1−β) II
. (1.125)

The Wagner I and II equations have the disadvan-
tage of neglecting the second normal stress difference
in shear flow, which in reality is small and negative, but
nonzero. This is related to the fact that the experimen-
tally derived strain functions summarized so far cannot
be generalized to other types of deformations, even if
they perform well in predicting the melt behavior under
a certain flow regime. Samarkus et al. have exemplified
this problem by showing that the coefficients of Wagner
II equation obtained by shearing experiments could not
predict planar extensional behavior [1.23].

For the Doi–Edwards model [1.4], to be discussed
in detail in Sect. 1.8.3 of this chapter, a simple analytical
approximation for the corresponding potential w (the
so-called Currie approximation [1.24]) was found,

w ≈ 5

2
ln

(
J −1

7

)

, (1.126)

with a generalized invariant J

J = I +2

√

II + 13

4
. (1.127)

This leads to

h1 = 5

J −1
, h2 = −2h1

J − I
, (1.128)

thereby predicting a negative second normal stress dif-
ference in shear flow. However, as the Doi–Edwards
model does not account for chain stretching (Sect. 1.8.3),
the predictive power of (1.128) concerning the rheology
of industrially important polydisperse polymer melts is
limited.

Finally, Wagner and Demarmels proposed an ansatz
for the two strain functions h1 and h2 which represents
a special form of a Rivlin–Sawyers equation describing
a wide range of deformation types [1.25]. Starting with
the ratio β of second (N2) to first (N1) normal stress
differences from a shear experiment,

β = N1

N2
= h2

h1 −h2
, (1.129)

which coincides with the corresponding relation for the
normal stresses in planar experiments and was assumed

to be strain-independent, they proposed

h1 = (1+β) h (I, II) ,

h2 = β h (I, II) ,

h (I, II) =
[
1+a

√
(I −3) (II −3)

]−1
, (1.130)

which resulted in good agreement with experimental
data in uniaxial, biaxial and planar deformations of
a polydisperse isobutene melt.

Despite their qualitative success in describing the
polymer melt behavior, constitutive equations based on
classical continuum mechanics lack insight into the re-
lation between rheology and the structure of polymers
and cannot be used as predictive tools. This calls for
a better understanding of the microstructure of polymer
melts, subject of the following section, to develop more
realistic, yet feasible models.

1.8.2 Convected Derivatives
and Differential Equations

A major part of the differential constitutive equa-
tions consists of generalizations of the Maxwell model
and possesses the character of continuum formulations
based merely on phenomenological observations. The
Maxwell model was initially utilized to describe the be-
havior of viscoelastic materials in the linear deformation
range by considering a viscoelastic material to behave
as a linear combination of a spring with spring constant
g and a dashpot with constant viscosity η0. The scalar
stress σ in the material then obeys the linear first-order
differential equation:

σ +λσ̇ = η0γ̇ , (1.131)

where γ̇ is the scalar shear rate, and λ = η0/g is the
relaxation time. (1.131) can be generalized to the three-
dimensional case and to large deformations,

σ +λ
∇
σ = 2η0 D , (1.132)

by introduction of the upper convected derivative of the

stress tensor
∇
σ as

∇
σ = σ̇ − (∇v)T ·σ −σ · (∇v) . (1.133)

This description solves the problem of frame in-
variance by introducing a frame of reference that is
convected and deformed with material lines.

The upper convective Maxwell model (1.132), is
the one-mode differential equivalent of Lodge’s (1.106)
with an exponentially fading memory. Both integral and
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differential versions of Lodge’s equation were success-
ful in providing a qualitative prediction of the primary
normal stress difference in shear and strain hardening in
extension. Replacing the upper convective derivative in
(1.126) by the lower convected form,

∆
σ = σ̇− (∇v) ·σ −σ · (∇v)T , (1.134)

the lower convective Maxwell model is obtained. In the
integral version, this is equivalent to replacing the Finger
strain tensor by the Cauchy tensor C as the deforma-
tion measure in (1.106) with the exponentially fading
memory. The lower convective Maxwell model predicts
a negative second normal stress difference of the same
magnitude as the first normal stress difference in shear
and no strain hardening in extension, which is not in
agreement with experiment. It also has no molecular
basis. Equation (1.133) and (1.134) are not the only
frame-invariant time derivatives. Oldroyd recognized
that infinitely many could be constructed, and he pro-
posed generalizations of the convected Maxwell models
by allowing for higher-order terms to appear, e.g., in the
form of the eight-constant Oldroyd equation, later fol-
lowed by Giesekus and others. For details the reader
is referred to [1.3]. However, experience with these
purely continuum-mechanics-based equations teaches
that frame invariance itself is not restrictive enough to
keep the number of terms manageable, and that some
molecular insight is needed.

1.8.3 Microstructural Theories

Theories from Continuum Mechanics
and Their Microscopic Equivalents

In microscopic terms, stress in polymeric systems origi-
nates from orientation and extension of entropic springs,
which can be thought of as e.g.representing molecular
strands between entanglements. An isotropic distribu-
tion of molecular strands normalized with respect to their
equilibrium length can be described by an isotropic dis-
tribution of unit vectors u. Assuming affine deformation,
the inverse relative deformation gradient F−1 transforms
a unit vector u into a deformed vector u′,

u′ = F−1 ·u . (1.135)

The Finger strain tensor can then be expressed as

C−1 = 3〈u′u′〉 (1.136)

where 〈. . .〉 denotes an integral over an isotropic distri-
bution of unit vectors before deformation,

〈. . .〉 = 1

4π

∫

. . . dΩ , (1.137)

where dΩ is an infinitesimal solid angle, and the integra-
tion is over the surface of a unit sphere. This is depicted
schematically in Fig. 1.3.

A similar scheme can be used to find a microscopic
representation of the Cauchy strain tensor C: If n rep-
resents an isotropic distribution of unit surfaces, and if
these are assumed to be deformed affinely, the deforma-
tion gradient F transforms a unit surface vector n into
the deformed surface vector n′,

n′ = n · F . (1.138)

The Cauchy strain tensor C can then be expressed as

C = 3〈n′n′〉 . (1.139)

Considering further that the invariants I and II are
equivalent to

I = 3〈u′2〉 , (1.140)

II = 3〈n′2〉 , (1.141)

where u′ and n′ represent the lengths of the vectors u′
and n′ respectively,

u′ = √
u′ ·u′ ,

n′ = √
n′ ·n′ , (1.142)

the separable Rivlin–Sawyers (1.115) can be expressed
in microscopic terms as:

σ = −pI +
t∫

−∞
m(t − t′)

[
H1

(〈u′2〉, 〈n′2〉)〈u′u′〉

+H2
(〈u′2〉, 〈n′2〉

)
〈n′n′〉]dt′ (1.143)

where the strain functions H1 and H2 converge to H1 +
H2 = 3 in the linear viscoelastic limit [1.9].

However, while (1.143) expresses the strain measure
in terms of the primitive quantities u and n, it is by
no means guaranteed that this is the most appropriate
representation of the strain measure when taking into

�
��

Fig. 1.3 Affine deformation of unit vectors: graphic repre-
sentation of the Finger strain tensor
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account topological constraints of the macromolecular
chains.

The Tube Model of Doi and Edwards (DE)
The kinetic theory of Doi and Edwards [1.4] models
intermolecular interaction for concentrated systems of
monodisperse linear polymer chains by the tube concept:
the mesh of constraints caused by surrounding chains
confines the molecular chain laterally to a tube-like
region. Relaxation occurs by two mechanisms: chain re-
traction by equilibration along the tube contour, which is
supposed to be a fast process governed by the Rouse time
τR of the chain with τR proportional to the square of the
molar mass, and chain diffusion by reptation out of the
tube with a reptation or disengagement time τd propor-
tional to the third power of the molar mass. As for high
values of the molar mass, chain retraction is fast com-
pared to chain diffusion, this model explains naturally
the experimentally observed time-deformation separa-
bility of the nonlinear relaxation modulus for times
greater than the equilibration time.

Assuming that the diameter of the tube is not
changed by deformation, or equivalently that the tension
in the deformed polymer chain is equal to its equilibrium
value, Doi and Edwards derived [by use of the inde-
pendent alignment assumption (IAA)] a single integral
constitutive equation of the form [1.4]:

σ = −pI +
t∫

−∞
m(t − t′)SIA

DE

(
t, t′

)
dt′ . (1.144)

Here, SIA
DE denotes the strain measure of the Doi–

Edwards (DE) model with the independent alignment
assumption,

SIA
DE = 15

3

〈
u′u′

u′2

〉

= 5S , (1.145)

where S = S(t, t′) is the relative second-rank orientation
tensor, and u′ denotes deformed unit vectors according to
(1.135). The DE model with the independent alignment
assumption assumes that stress is created by an affine
rotation of tube segments.

�
�� ��

��
Fig. 1.4 The DE theory with indepen-
dent alignment assumption (IAA):
the stress tensor is the result of
a mere change in chain orientation,
sometimes called an affine rotation

A rigorous derivation for stress relaxation after a step
deformation leads to a somewhat different strain mea-
sure,

SDE = 15

4

1

〈u′〉
〈

u′u′

u′

〉

(1.146)

and to a nonlinear integro-differential equation for the
stress tensor in general flows. However, the strain meas-
ure SDE is often used simplistically instead of SIA

DE in the
single integral (1.144).

SIA
DE and SDE produce different predictions for the

second normal stress difference (with SIA
DE being in bet-

ter agreement with available experimental data), and
consequently also different predictions in biaxial defor-
mations, whereas their difference seems to be negligible
for the case of uniaxial extension [1.26].

For monodisperse polymer melts and solutions, the
Doi–Edwards strain measures seem to give an acceptable
description of material behavior in step-shear exper-
iments for times greater than the equilibration time.
For fast deformations (as defined below) and for poly-
disperse linear and branched polymer melts, on the
other hand, although time-deformation separability of-
ten works over most or even the entire (experimentally
attainable) time range, the measured stresses in shear and
extensional flows are often much higher than predicted
by the Doi–Edwards strain measure [1.3, 13, 27, 28].

Models with Pre-averaged Chain Stretch
The DE Theory with Chain Stretch. The DE theory,
despite its deficiency in predicting chain stretch, estab-
lished the theoretical foundation for further studies on
nonlinear deformations of polymer melts.

The DE constitutive equation in shear is applicable
only to deformation rates γ̇ that are smaller than the
reciprocal Rouse time τR of the chain, i. e., for flows
with Deborah numbers De = γ̇ τR < 1. The first attempt
to generalize the DE equation for faster flows was by
applying a pre-averaged stretch ratio into the DE con-
stitutive equation when DE > 1 [1.4, 29]. Assuming the
equilibrium chain length to be L̄ and its value at time t
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to be L(t), the stress tensor is given by

σ = −pI + G0
N

L̄2

〈 L(t)∫

0

dsL(t) (uu)

〉

, (1.147)

where u = u(s, t) describes the orientation at time t of
a chain segment at position s along the chain, and the
average is taken over all chains of the system. For fast
deformations, this can be approximated by

σ = −pI + G0
N

L̄2

〈 L(t)∫

0

dsL(t) (uu)

〉

≈ −pI + G0
N

(
L(t)

L̄

)2
〈

1

L(t)

L(t)∫

0

ds (uu)

〉

= −pI + G0
N

(
L(t)

L̄

)2

S̄(t) , (1.148)

where S̄ represents the orientation tensor of the ensemble
of chains. Equation (1.148) turns into an exact relation
for step-strain deformations.

Equation (1.148) is then approximated by a single
integral equation with the stretch ratio λ = (L(t)/L̄) left
outside the integration,

σ(t) = −pI +λ2(t)

t∫

−∞
m(t − t′)SDE(t, t′)dt′

= −pI + 15

4
λ2(t)G0

N S̄(t) . (1.149)

We call this the DE equation with pre-averaged chain
stretch. It created the need to develop a proper evolution
equation for λ(t). This was proposed for the first time
by Pearson et al. [1.29] by noticing that the rate of chain
stretch can be obtained by assuming a balance between
the frictional force on the chain, and the spring force
created in the chain by stretching,

ξ

(

κ : S̄L − dL

dt

)

= 3kBT

L̄2
(L − L̄) , (1.150)

where ξ is the friction coefficient, and the first term
on the left hand side of (1.150) represents an affine
deformation; κ = ∇v is the velocity-gradient tensor, kB
Boltzmann’s constant and T temperature. By dividing
by the equilibrium length L̄ and introducing the Rouse
time, τR = kM2, this leads to an evolution equation for

the stretch λ(t) of the form:

dλ

dt
= κ : S̄λ− 1

τR
(λ−1) . (1.151)

Noticing the fact that the chain cannot undergo in-
finite elongation, another restriction was later added to
(1.151) by assuming an upper level of chain stretch,
λmax. This led to modifying the right hand side of
(1.151) in a fashion that would accommodate this re-
quirement [1.30]:

dλ

dt
= κ : S̄λ− 1

τR
(λ−1) c(λ) , (1.152)

with

c(λ) = λmax

λmax −λ
. (1.153)

The newly introduced parameter λmax determines
the finite stretching limit of the chain and is reported
by Fang et al. to be between 3 and 6 depending on the
polymer system considered [1.31]. The latter work also
introduces an alternative for c(λ) in (1.153) by assuming
a new c(λ) that is derived from an entropy expression,

c(λ) = 3Zλ2
max(λ+1)

λ
(
λ2

max −λ2
) , (1.154)

where Z is the number of entanglement segments per
chain. This led to somewhat better agreement with ex-
perimental data for shear experiments, but it offers only
qualitative agreement with experimental results for start-
up and steady-state values of extensional viscosities.

The Pom-Pom Model. The concept of a pre-averaged
chain stretch was further used by McLeish and Lar-
son [1.32] to account for the nonlinear rheology
of a multi-arm model polymer initially proposed by
McLeish [1.33]. The so-called pom-pom model is an
extension of an H-shaped molecule having a backbone
of molecular weight Ma and q arms of molecular weight
Mb at each end (the only branching points on the back-
bone). The backbone is assumed to be stretched by the
deformation until the tension in the backbone equals the
sum of the equilibrium tensions of the dangling arms,
which occurs when λ = q. Figure 1.5 shows schemat-
ically a typical pom-pom molecule and the process of
backbone stretch and branch retraction into the tube of
the backbone for a large enough deformation.

In the simplified version of the model [1.34], the
orientation contribution to the stress from the dangling
arms is neglected so that the dominant contribution arises
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Fig. 1.5 Schematic presentation of a pom-pom molecule

from the orientation and stretch of the backbone only.
The stress tensor is then obtained from (1.149) as:

σ(t) = −pI + 15

4
λ2(t)G0

Nφ2
b S̄(t) , (1.155)

where φb indicates the mass fraction of the backbone.
While the evolution of backbone orientation is assumed
to be dominated by a single orientation relaxation time
τb,

S̄ =
t∫

−∞
τ−1

b e
− t−t′

τb SDE(t, t′)dt′ , (1.156)

backbone stretch depends on a stretch relaxation time τs
and is derived from a similar stretch evolution equation
as given by (1.141) as long as λ < q,

dλ

dt
= λκ : S̄− 1

τs
f (λ) , (1.157)

while otherwise λ = q is assumed. f (λ) was originally
chosen to have a linear form,

f (λ) = λ−1 , (1.158)

which causes the steady-state extensional viscosities to
undergo a sharp maximum as shown for the case ν = 0
in Fig. 1.6 This was in contrast to experimental results
and unrealistic since it suggested a sudden retraction of
the arm only at the moment when λ = q. In fact, relax-
ation of an arm can have a significant effect on the overall
relaxation also before a maximum stretch is reached and
very small retractions of the arms into the tube can ef-
fectively reduce the drag from the arms. To account for
this effect Blackwell et al. [1.35] introduced local branch
point displacement and changed f (λ) to

f (λ) = (λ−1)eν(λ−1) with 0 < ν < 1 . (1.159)

Using this new evolution equation for the backbone
stretch, Blackwell et al. showed that a moderate value of
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Fig. 1.6 Steady
viscosity in uni-
axial tension for
0 < ν < 1 with
pom-pom pa-
rameters: q =
5, Ma = 5Me

and Mb = 15Me

(after [1.35],
with permission)

ν smoothes the steady-state extensional viscosity plot-
ted against the strain rate, as shown in Fig. 1.6, which
is equivalent to a gradual arm retraction instead of an
instant withdrawal.

Although the original pom-pom model was intro-
duced by making use of the DE orientation tensor in its
integral form (1.146), the orientation tensor was soon
approximated by a differential evolution equation [1.32]
which would allow more feasible numerical applica-
tions. The differential pom-pom equation has entirely
overshadowed the original pom-pom idea since its in-
troduction. Although the scope of the present work is
integral constitutive equations, we give a short account
of the differential version here because of its widespread
application in numerical simulations of polymer pro-
cessing [1.36]. However, we emphasize the fact that the
differential approximation departs both quantitatively
and qualitatively a great deal from the original pom-pom
idea by causing enhanced shear thinning and neglecting
the 2nd normal stress difference in shear flow [1.37,38].

The multimode pom-pom model is another preva-
lent development in the theory introduced by Inkson
et al. [1.34] in order to account for the multiple branch-
ing effects which are present in long-chain branched
industrial polymer melts such as LDPE, and which are
treated by the concept of the so-called seniority/priority
effects. According to this model, each branching is as-
sumed as having further branches on it so that it acts as
the backbone of the next branching generation from its
other end [1.39]. This leads to the introduction of multi-
ple relaxation times representative of various branching
levels, and a stress tensor that is summed over the entire
range of relaxation modes. The set of equations of the
multimode differential pom-pom model is therefore

Stress: σ = 3
∑

i

giλ
2
i S̄i , (1.160)
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Orientation: S̄i = Ai

tr(Ai )
∂

∂t
Ai = κ · Ai + Ai ·κT − 1

τb,i
(Ai − I) ,

(1.161)

Stretch:
dλi

dt
= λiκ : S̄i − 1

τs,i
(λi −1)eνi (λi−1)

for λ ≤ qi . (1.162)

Here, for each relaxation mode i, four unknown
parameters are required. These parameters are:

• Backbone orientation time: τb,i ;• Fractional relaxation modulus: gi ;• Number of pom-pom arms: qi ;• Backbone stretch orientation time: τs,i .

While τb,i and gi represent the linear viscoelastic
properties of the polymer melt and are obtained from
linear viscoelastic experiments, qi and τs,i are nonlinear
parameters that are fitted to appropriate nonlinear mater-
ial functions. This means that for any linear viscoelastic
mode, there are two nonlinear parameters.

Figure 1.7 shows results for uniaxial extensional and
transient shear viscosities of LDPE International Union
of Pure and Applied Chemistry (IUPAC) A. The theoreti-
cal curves represent a nine-mode pom-pom as presented
by Inkson et al. [1.34]. Figure 1.8 shows the nonlin-
ear rheological behavior of a densely branched LDPE
modeled with a six-mode pom-pom [1.40].
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Fig. 1.7a,b Results of a nine-mode pom-pom model analysis for a standard IUPAC LDPE A with molecular weight
Mw = 300 000 and molecular weight distribution (MWD) of 17.6 (after [1.34], with permission): (a) Elongational
viscosity; (b) transient shear viscosity

Further modifications of the differential pom-pom
model were proposed by Verbeeten et al. [1.41]. By use
of a nonlinear, Giesekus-type argument they succeeded
in rewriting the pom-pom equation by excluding the
finite extensibility condition and the discontinuity asso-
ciated with it, and introduced a nonzero second normal
stress difference. No need to say, this phenomenolog-
ical description which is also known as the extended
pom-pom (XPP) model, despite its computational de-
sirability [1.42], has totally diverted from the original
microstructural pom-pom idea and offers little insight
into the polymer structure.

Models with Varying Tube Diameter
The original picture of the tube model proved to be
a promising and flexible tool for prediction of the rheo-
logical behavior of polymer melts. However, as shown
in the previous section, assuming a pre-averaged tube
stretch will in practice demand numerous simplifying
assumptions and a large number of nonlinear parame-
ters as a consequence of pre-averaging. An alternative to
circumvent pre-averaging is the assumption of a strain-
dependent tube diameter as first suggested by Marrucci
and de Cindio [1.43]. They assumed that the tube is de-
formed affinely during deformation and the tube volume
remains constant, both in contrast to the classical DE
theory, which resulted in a single integral constitutive
equation of the form

σ = −pI + 5

4

t∫

−∞
m(t − t′)

〈
u′u′

u′

〉

dt′ , (1.163)
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Fig. 1.8a,b Results of a six-mode pom-pom model for an LDPE with Mw = 235 500 and MWD of 17.1 (after [1.40], with
permission from Macromolecules 35:10091. Copyright 2002, American Chemical Society): (a) elongational viscosity;
(b) transient shear viscosity
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Fig. 1.9 MSF theory: stress is the result of both orientation and isotropic stretch of tube segments by a factor f

which produced better predictions for the extensional
behavior of a poly(methyl methacrylate) (PMMA) melt.
It was based on their work that Wagner et al. [1.44–47]
adopted the concept of varying tube diameter to show
that the work of the stress tensor can be correlated to the
change of free energy at the molecular scale [1.7].

The Molecular Stress Function (MSF) Model for Linear
Melts. In the molecular stress function (MSF) model
of Wagner and coworkers [1.7, 44–52], tube stretch
is caused by the squeeze of the surrounding polymer
chains, leading to a reduction of the tube diameter a from
its equilibrium value a0. Taking into account that the tube
diameter a represents the mean field of the surrounding
chains and its associated strain energy, it is assumed that
the tube diameter is independent of the orientation of
tube segments. This is depicted schematically in Fig. 1.9.

The stress is then given by

σ(t) = −pI +
t∫

−∞
m(t − t′) f 2SIA

DE(t, t′)dt′ , (1.164)

where the molecular stress function f is the inverse of
the relative tube diameter,

f (t, t′) = a0/a(t, t′) . (1.165)

In contrast to (1.149), the tube stretch in (1.164) does not
only depend on the observation time t, but also on the
strain history, i. e., for time-dependent strain histories,
the tube stretch varies along the tube. The dependence
on t and t′ is dropped in the following.

Note that while SIA
DE is related directly to the de-

formation history via (1.145), no a priori dynamics of
the internal variable f is prescribed in the MSF model.
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Rather, f 2 is assumed to be directly related to the strain
energy stored in the polymeric system, and is deter-
mined as solution of an evolution equation derived from
an energy balance argument [1.7].

Based on prior work of de Gennes [1.53], and Mar-
rucci et al. [1.54,55], the molecular stress function f for
linear melts is related to a strain-energy function wMSF
of the form

wMSF

3kBT
= ( f 2 −1) . (1.166)

Neglecting dissipative constraint release, i. e., con-
sidering the hyperelastic limit, the power input of the
stress tensor into the polymer system is equal to the in-
crease of the strain energy by tube deformation [1.7].
f 2 is found as solution of the evolution equation (with
velocity gradient κ and plateau modulus G0

N )

1

3kBT

dwMSF

dt
= κ : σ

5Go
N

= f 2 (κ : S) (1.167)
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Fig. 1.10 Uniaxial (µu), equibiaxial (µe), and planar (µp1, µp2) viscosities of a high-density polyethylene (HDPE)
at T = 150 ◦C. Viscosities are normalized with respect to the zero-shear viscosity. Comparison of experimental data
(symbols) to predictions of DE and LMSF (zero-parameter) models (after [1.7])

to be

f 2 = e〈ln u′〉0 , (1.168)

i. e., f 2 is an exponential of the orientational free energy
3kBT

〈
ln u′〉

0. d
dt indicates the material time derivative.

Note that by use of (1.168), the strain energy function
of (1.166) can be expressed as

wMSF

3kBT
= 〈

ln u′〉
0 + f 2 − ln f 2 −1 , (1.169)

i. e., as the sum of the orientational free energy and the
stretch energy. The part of the strain energy due to chain
stretch has the desired properties, namely a minimum at
equilibrium ( f 2 = 1) and a quadratic dependence on f
in the vicinity of equilibrium.

Predictions of the MSF model are in excellent agree-
ment with the onset of strain-hardening in uniaxial,
equibiaxial and planar extension of polydisperse linear
polymer melts (the so-called LMSF model), as exempli-
fied in Fig. 1.10 and Fig. 1.11 [1.7].
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Fig. 1.11 Uniaxial (µu) and equibiaxial (µe) viscosities of a polystyrene (PS) melt. Viscosities are normalized with
respect to the zero-shear viscosity. Comparison of experimental data (symbols) to the predictions of the DE and LMSF
(zero-parameter) models.
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Fig. 1.12 Uniaxial (µu), equibiaxial (µe), and planar (µp1, µp2) viscosities of a HDPE melt. Viscosities are normalized
with respect to the zero-shear viscosity. Comparison of experiment to predictions of the MSF model with dissipative
constraint release. f 2

max = 49 [1.7]

Now dissipative constraint release (CR) is intro-
duced as a dissipative process [1.7], which modifies
the energy balance of tube deformation, and leads to
a strain-dependent evolution equation for the molecular

stress function of the form

d f 2

dt
= f 2

[

(κ : S)− 1

f 2 −1
CR

]

. (1.170)
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Constraint release is considered to be the consequence
of different convection mechanisms for tube orientation
and tube-cross section, and for constant-strain-rate flows
can be expressed as

CR = a1( f 2 −1)2
√

D2 : S

+a2( f 2 −1)2
√|W · D : S| (1.171)

with D and W being the rate of deformation and rate
of rotation tensor, respectively. The nonlinear mater-
ial parameters verify a1 ≥ 0 and a2 ≥ 0. Note that in
extensional flows, constraint release depends only on
the parameter a1, while in simple shear flow, both the
parameters a1 and a2 are of relevance. The evolution
equation for the molecular stress function of linear melts
in extensional flows is given by

d f 2

dt
= ε̇ f 2[S11 +mS22 − (1+m)S33 −a1( f 2 −1)

×
√

S11 +m2S22 + (1+m)2S33
]

(1.172)

where the parameter m (−1/2 ≤ m ≤ 1) describes the
type of extensional flow, and ε̇ is the largest extension
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Fig. 1.13 Shear viscosity η and first normal stress function Ψ1 of a HDPE melt. Comparison of experimental data
(symbols) to predictions of the MSF model with dissipative constraint release. f 2

max = 49 and a2 = 2.3. For details see
(after [1.7])
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Fig. 1.14 Tube segment of a long-
chain branched polymer molecule
before and after deformation: one
chain segment is stretched, while
side-chain segments are compressed
[1.49, 50]

rate. Sii are the components of the orientation tensor S.
At large strains, a maximum f 2 = f 2

max is reached and
d f 2/dt = 0. Hence, the parameter a1 can be expressed
in terms of f 2

max as

a1 = 1

f 2
max −1

; (1.173)

f 2
max governs the steady-state value of the viscosity in

extensional flows, and corresponds to the maximum of
storable elastic energy. It is the only nonlinear mater-
ial parameter of the theory for describing polymer melt
rheology of linear polymers in irrotational flows. The
level of agreement between experiments in different ex-
tensional deformation modes and theory for a linear
polyethylene (PE) melt is demonstrated in Fig. 1.12.

The evolution equation of the molecular stress func-
tion for shear flow is given by

d f 2

dt
= γ̇ f 2

[

S12 − 1

2

f 2 −1

f 2
max −1

√
S11 + S22

− a2

2

(
f 2 −1

)√|S11 − S22|
]

(1.174)
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and comparison of the predictions to experimental data
of the start-up of steady shear flow for the same linear
PE melt is shown in Fig. 1.13.

Note that although dissipative constraint release is
a rate process, integration of (1.172) and (1.174) leads
to a molecular stress function f which is deformation
dependent [1.7].

The MSF Model for Long-Chain Branched Melts. The
simplest model of a tube section of a long-chain
branched macromolecule containing β entanglements
consists of one chain segment representing one en-
tanglement oriented in the direction of the tube (the
backbone of the macromolecule), and one or more side
chains representing β −1 entanglements (Fig. 1.14).
Note that a side chain can contain more than one
chain segment, depending on the length of the side
chain relative to the entanglement length. Thus, ac-
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Fig. 1.15 Uniaxial viscosity ηu of a long-chain branched PP
melt [1.7]. Comparison of experimental data (symbols) to
predictions of the MSF model with β = 2 (QMSF model)
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Fig. 1.16a,b Elongational viscosity data (symbols) of LDPE melts and predictions by MSF model [1.49]. Parameters
indicate elongation rate in units of s−1. (a) LDPE produced by tubular process (tubular o): β = 2 and f 2

max = 30;
(b) LDPE produced by an autoclave process (autoclave O): β = 4 and f 2

max = 80

cording to this model, chain segments fall into two
distinct categories: either they belong to the back-
bone and are stretched by deformation, or they do not
belong to the backbone and are compressed by defor-
mation [1.49].

When the tube is stretched, one segment is extended,
while β −1 are compressed, leading to a total strain
energy of

wMSF

3kBT
= 1

β
( f 2 −1)+ (β −1)

β

(

1− 1

f 2

)

. (1.175)

Note that in the vicinity of f 2 = 1, this strain energy
function is well behaved, as (1.175) (with β = 1) reduces
to (1.166).

The parameter β has values β ≥ 1, with β = 1 for
linear melts. For β = 2 (the so-called QMSF model),
excellent agreement with experimental data of a long-
chain branched (radiation-crosslinked) polypropylene
(PP) melt is found (Fig. 1.15). Note that the increase in
elongational viscosity is steeper for long-chain branched
melts than for linear melts.

Introducing again constraint release as a nonlinear
dissipative process, which modifies the energy balance
of tube deformation, leads to a strain-dependent evolu-
tion equation for the molecular stress function of the
form

d f 2

dt
= β f 2

1+ β−1
f 4

[

(κ : S)− 1

f 2 −1
CR

]

. (1.176)

The evolution equation for the molecular stress func-
tion in constant-strain-rate extensional flows is then
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given by

d f 2

dt
= ε̇

β f 2

1+ β−1
f 4

[

S11 +mS22 − (1+m)S33

− f 2 −1

f 2
max −1

√
S11 +m2S22 + (1+m)2S33

]

(1.177)

and in constant-shear-rate flow by

d f 2

dt
= γ̇

β f 2

1+ β−1
f 4

[

S12 − 1

2

f 2 −1

f 2
max −1

√
S11 + S22

− a2

2
( f 2 −1)

√|S11 − S22|
]

. (1.178)

The enhanced slope of elongational viscosity of long-
chain branched polymer melts in comparison to linear
melts is caused by the fact that a significant percentage of
the chain segments of a long-chain branched molecule
is compressed by elongational flow (the side chains),
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Fig. 1.17 Uniaxial (µu), equibiaxial (µe), and planar (µp1, µp2) viscosities of an LDPE melt. Viscosities are normalized
with respect to the zero-shear viscosity. Comparison of experiment to predictions of the MSF model with dissipative
constraint release. f 2

max = 100 (after [1.7])

and only part of the chain segments is stretched (the
backbone). In the multi-chain segmental MSF model
described here, for one chain segment stretched, β −1
chain segments are compressed. While for LDPE melts
produced by the tubular polymerization processes typi-
cally values of β = 2 are found, more highly branched
autoclave LDPE melts show values of β = 3 and even
of β = 4 ( Fig. 1.16) [1.49].

The level of agreement between experiments in dif-
ferent extensional deformation modes and in start-up of
steady shear flow and theory for a tubular LDPE melt
with β = 2 is demonstrated in Fig. 1.17 and Fig. 1.18.

Comparison of MSF Model Predictions to Elongational
and Shear Rheology of Model Branched Polystyrene
Melts. It is difficult if not impossible to derive the param-
eter β from the topology of randomly branched LDPE;
therefore β in (see (1.175)) was treated as a fit parame-
ter (the only one in the hyperelastic limit). However,
from an analysis of the nonlinear rheology of comb
shaped model polystyrene melts investigated by Hep-
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perle and Münstedt [1.50, 56], it was found that indeed
β, as derived from the topology of these model melts by
assuming stretch of the backbone chain and compres-
sion of the side chains, is in quantitative agreement with
experimental evidence seen in uniaxial extension [1.50].
The parameter β can simply be obtained as ratio of the
number average molar mass of the grafted polymer, Mn ,
to the number average molar mass Mn,bb of the back-
bone, which can be expressed in terms of the number
average mass fraction Φn,br of grafted side chains,

β = Mn

Mn,bb
= 1

1−Φn,br
. (1.179)

For linear polymers, naturally β = 1 is obtained from
(1.179).
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Fig. 1.18 Shear viscosity η and first normal stress function Ψ1 of an LDPE melt. Comparison of experimental data
(symbols) to predictions of the MSF model with dissipative constraint release a2 = 0.036. For details see [1.7]
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Fig. 1.19a,b Comparison of elongational viscosity data (symbols) of two branched PS melts to predictions (lines) of MSF
theory. Viscosities are normalized with respect to the zero-shear viscosity; η0(t) indicates the start-up zero-shear viscosity
[1.50,56] . (a) PS 80-0.6G-22: Φn,br = 0.14, β = 1.2; dashed line: f 2

max → ∞, solid line: f 2
max = 25; (b) PS 70-3.2G-22:

Φn,br = 0.5, β = 2.0; dashed line: f 2
max → ∞, solid line: f 2

max = 80

As exemplified in Fig. 1.19, agreement between pre-
dicted and observed slopes of the elongational viscosity
after inception of strain hardening is excellent for all
model branched polystyrene melts investigated. Within
the experimentally accessible window of elongation
rates, time–strain separability of the measured elong-
ational viscosities is observed. Also, as far as a maximum
strain-hardening could be determined, the data are com-
patible with the implicit assumption of the MSF model
that the material parameter f 2

max is the same for all re-
laxation times of the terminal zone of the relaxation
spectrum.

The shear damping function of model branched PS
melts was measured by nonlinear shear relaxation ex-
periments [1.50, 56]. Although the shear strain range
investigated was limited to γ < 5, this is the impor-
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tant shear strain range determining the shear stress in
steady shear-rate flows. As is well known, branching also
has significant influence on the shear strain behavior,
although the effect is usually much smaller than in exten-
sional flows [1.50, 56]: melts with high side-chain mass
fractions show substantially less shear damping than
melts with low side-chain mass fractions, and for shear
strains up to 5, their shear damping functions are close
to the hyperelastic or K-BKZ limit, i. e., the dissipa-
tive effect of constraint release is very small Fig. 1.20a.
This agrees with earlier investigations of Wagner and
Ehrecke [1.9] demonstrating that an LDPE melt shows
reversible (or K-BKZ) behavior in double-step shear
strain experiments in contrast to a (linear) polyisobutene
melt, which showed irreversible behavior. With decreas-
ing side chain mass fraction, the shear damping behavior
of the model branched polystyrene melts approaches
the behavior of linear polystyrene, and the influence
of the parameter a2 describing the additional dissipa-
tive constraint release due to rotational flow becomes
important (Fig. 1.20b).

1.8.4 Conclusions

A survey of the most recent and most often used consti-
tutive equations in nonlinear rheology shows the amount
of progress made in the recent decades. It has shown that
phenomenological constitutive integral equations can
function as a rational basis of microstructural theories,
but their relation to polymer structure remained elusive.
Constitutive equations based on the tube model with pre-
averaged chain stretch have been predominantly utilized
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Fig. 1.20a,b Comparison of shear damping function data (symbols) of two PS melts to the predictions of the MSF theory
[1.50,56]; the upper dash-dotted line is the prediction assuming no constraint release (i. e., f 2

max → ∞, a2 = 0); the lower
dashed line indicates the predictions of the Doi–Edwards IAA theory, i. e., f 2

max ≡ 1 [1.50]. (a) Branched PS 70-3.2G-22:
the full line is the prediction of the MSF model with the parameters β = 2, f 2

max = 80 and a2 = 0; (b) linear PS-r-95: the
full line is the prediction of the MSF model with the parameters β = 1, f 2

max = 6 and a2 = 0.4

by use of a differential approximation for the orienta-
tion tensors, and have been considered as appropriate
for modeling of complex flows. The main problem of
equations with pre-averaged chain stretch is the need to
use a large number of nonlinear parameters, thereby los-
ing any insight into the relation to polymer topology,
and sometimes rendering the models too tedious even
for a computer simulation.

Integral models with varying tube diameter have
shown more flexibility in predicting polymer melt be-
havior in typical rheological flows, and have proven to
be capable of describing the rheological behavior of
a wide variety of polymers. The microstructural MSF
model, which is based on the variable tube diameter idea,
has been the latest among such constitutive equations
with excellent predictive capabilities for modeling the
nonlinear extensional and shear behavior of both linear
and long-chain branched industrially important poly-
mers. The concept of a strain-dependent tube diameter,
which decreases with increasing deformation, explains
consistently the strain hardening of linear as well as
of long-chain branched polymer melts [1.7,49,50]. The
steeper slope of the elongational viscosity after inception
of strain hardening for branched melts in comparison to
linear melts is due to the fact that in branched melts only
a fraction (the backbone) of chain segments is stretched,
while side chains are compressed [1.49,50]. Long-chain
branched polymer melts show reversible or K-BKZ be-
havior in double-step shear strain experiments, because
dissipative constraint release occurs only at higher shear
strains, in contrast to linear melts, where dissipation
starts already at smaller shear strains [1.50].
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Challenges in nonlinear rheology remaining are, to
mention just a few, the relations between macromolec-
ular architecture of homopolymers and the nonlinear

parameters f 2
max and a2 of the MSF theory, as well as

modeling the nonlinear rheology of blends of linear and
long-chain branched polymers.
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