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A CFD strategy is proposed that combines delayed detached-eddy simulation (DDES) with an improved
RANS-LES hybrid model aimed at wall modelling in LES (WMLES). The system ensures a different
response depending on whether the simulation does or does not have inflow turbulent content. In the
first case, it reduces to WMLES: most of the turbulence is resolved except near the wall. Empirical
improvements to this model relative to the pure DES equations provide a great increase of the resolved
turbulence activity near the wall and adjust the resolved logarithmic layer to the modelled one, thus
resolving the issue of “log layer mismatch” which is common in DES and other WMLES methods. An
essential new element here is a definition of the subgrid length-scale which depends not only on the grid
spacings, but also on the wall distance. In the case without inflow turbulent content, the proposed model
performs as DDES, i.e., it gives a pure RANS solution for attached flows and a DES-like solution for mas-
sively separated flows. The coordination of the two branches is carried out by a blending function. The
promise of the model is supported by its satisfactory performance in all the three modes it was designed
for, namely, in pure WMLES applications (channel flow in a wide Reynolds-number range and flow over a
hydrofoil with trailing-edge separation), in a natural DDES application (an airfoil in deep stall), and in a
flow where both branches of the model are active in different flow regions (a backward-facing-step flow).
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1. Introduction

Recently, noticeable progress has been reached in building hy-
brid RANS-LES models for both high Reynolds number massively
separated flows and more general cases that also include attached
and mildly separated regions. For the former, probably the most
popular approaches are detached-eddy simulation or DES (Spalart
et al., 1997) hereafter referred to as DES97, and its recent modifi-
cation, delayed DES or DDES (Spalart et al., 2006). A general feature
of these two approaches is that the whole or at least a major part of
the attached boundary layer is treated by RANS, while LES is ap-
plied only in the separated flow regions. In contrast, in a second
group of RANS-LES hybrids, which offers wall-modelling in LES
(WMLES) of high Reynolds number flows, RANS is used only in a
much thinner near-wall region, in which the wall distance is much
smaller than the boundary-layer thickness but is still potentially
very large in wall units (Piomelli and Balaras, 2002). Along with
this, similarly to DES97 and DDES, in the attached flow regions
these models use “RANS grids”, i.e., they employ highly anisotropic
grids with very large (“unlimited” in wall units) grid spacing in the
directions parallel to the wall while, immediately adjacent to the
wall, the wall-normal spacing is about one wall unit. Unfortu-
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nately, most WMLES approaches in the literature are zonal, and in-
clude some “channel-friendly” steps, i.e., elements that are easily
implemented in channel flow but whose applicability in more
complex flows is debatable. Other than that, some proposed solu-
tions use substantial outside information such as fields from wall-
resolved LES or DNS runs (e.g., Davidson and Dahlstrom, 2005) or
synthetic turbulence (e.g., Davidson and Billson, 2006) at the
RANS-LES interface, and/or require averages in the wall-parallel
directions to define intermediate quantities (e.g., Temmerman et
al., 2005) or to avoid negative eddy viscosity and similar difficul-
ties. Although rather successful in some cases, all these and other
similar models are not completely formulated for cases where a
complex geometry is involved.

Other approaches are closer to being generally applicable. The
Limited Numerical Scales approach of Batten et al. (2002) shares
the simplicity and non-zonal nature of DES97, is capable of natural
DES, and was used for WMLES in a channel (Batten et al., 2004). It
did better on a very coarse grid, with weak resolved stress, than in
a more conventional situation with LES dominance of the outer
layer. The WMLES approach of Abe (2005) has many similarities
with the present one both in terms of purpose (although he is also
focused on the normal Reynolds stresses, and does not shy away
from very coarse grids, relative to channel width) and level of com-
plexity. Its capability in natural DES mode is not mentioned in
that paper, but the RANS model appears to have a standard k-¢
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behaviour and therefore should cover the entire boundary layer,
provided the grid is not “ambiguous” as defined in Spalart et al.
(2006).

The work of Schiestel and Dejoan (2005) is similar to ours in the
sense that they also aim at the full range from RANS to LES, but
again do not avoid grid densities we would view as ambiguous
(and would therefore steer to RANS mode), and their derivation
has a more theoretical flavour than ours. The SGS model used in
this work depends on the entire resolved turbulent kinetic energy
and length-scale, thus requiring averaging. This is not typical, and
the importance of the grid spacing when it is very fine relative to
the integral scale (that is, in a high-accuracy LES) is very obscure.
Only one channel case is presented, and is free of log-layer mis-
match per se, but the resolved Karman constant is abnormally
high, near 0.55, possibly due to the large streamwise grid spacing,
0.2 of channel half-width. The wall-normal stretching is also very
rapid in places.

Note that the DES formalism can also be used for WMLES, and
this does not imply any additional complexity and/or impractical,
“channel-friendly”, steps. The first attempt to do this in the devel-
oped channel flow (Nikitin et al., 2000) turned out generally suc-
cessful in the sense that the approach, indeed, enabled LES
predictions at unlimited values of grid spacing parallel to the wall
in wall units. The Reynolds-number dependence of the computing
cost is logarithmic, rather than a power dependence as in wall-re-
solved LES. As could be expected, the simulations produced two
logarithmic layers: the “inner” log-layer, which arises because
the RANS model is constructed to provide it and the “outer” log-
layer, which arises because LES is functioning well once all local
grid-sizes are much smaller than the distance to the wall. Unfortu-
nately, these two log-layers turn out mismatched (having different
intercepts C) resulting in an under-prediction of the skin-friction
by up to 15-20%, an error that is far too large to meet the demands
of the aerospace industry. This flaw in DES is completely inherited
by DDES; neither method has so far been adjusted to deal with the
mismatch because WMLES was not their primary application.

Thus, there is a strong motivation to find a remedy of log-layer
mismatch (LLM) within a non-zonal, DES-like approach. However,
the ambition for the present work is not restricted to this: its
objective is to build a single set of formulas both for natural
(D)DES applications and for WMLES uses, so that different flows
or (more importantly) different regions inside a single simulation
over a complex geometry can each be automatically treated by a
very capable model.

The rest of the paper is organized as follows. In Section 2 we
present the formulation of the proposed model (hereafter it is re-
ferred to as Improved DDES or IDDES). Then, in Section 3, a series
of tests is presented which include pure WMLES applications fol-
lowed by a simulation of the backward-facing-step flow, in which
both WMLES and DDES branches are active in different flow
regions.

2. IDDES formulation

Provided that the DDES model is already available in a code, the
implementation of the IDDES approach presented in this section is
simple. However, in theoretical terms, the difference between the
two models is not that minor. First of all, IDDES includes two
branches, DDES and WMLES, and a set of empirical functions de-
signed to obtain both correct performance from these branches
themselves and their coupling ensuring a favourable response of
the combined model as DDES or WMLES depending on the inflow
(or initial) conditions used in the simulation. In this sense, there
is an intentional non-uniqueness of the solution within given lat-
eral boundary conditions; this feature originated with DDES, and

the finding that a successful gradual shift from RANS to LES is
unlikely.

A separate and essential element of the proposed model is a
new definition of the subgrid length-scale that includes explicit
wall-distance dependence, unlike the usual LES and DES practice,
which involves only the grid-spacings. Below we outline all the
elements of IDDES starting from this new subgrid length-scale,
which enters both of its branches. The presentation assumes a
structured near-orthogonal grid.

2.1. Subgrid length-scale

The issue of the optimal relation between the subgrid length-
scale and grid-spacings is not specific to the model developed in
the present work, but is a general issue of any LES approach not
involving an explicit filtering. It is far from trivial, especially when
the computational grid is significantly anisotropic, which is typical
of the wall-bounded flows we are concerned with here. Almost all
simulations of such flows use a finer spacing in the wall-normal
direction than in the other two directions, and some also use finer
spacing in the lateral direction than in the streamwise direction.
With wall modelling, the wall-parallel spacings even become lar-
ger than the wall distance, thus violating the normal LES standard
that the sub-grid eddies are all results of the energy cascade; this
gives the SGS model much more leverage. Historically, the most
widely employed definition has been the cube root of the cell vol-
ume. While this is a plausibly balanced quantity, it was challenged
in DES literature (Spalart et al., 1997; Spalart, 2000), in which the
maximum of the three cell dimensions was advocated instead
(not based on any wall-proximity arguments). However, neither
definition is successful, if judged by a straightforward application
to wall-resolved LES of wall-bounded flows, with accepted grid-
ding practices: the values of the SGS model constants which work
well in free turbulent flows with cubic cells are then too large. For
instance, the optimal value of the Smagorinsky constant for LES of
channel flow is about 0.1 if the cube root is used, or roughly half its
optimal value for Decaying Isotropic Homogeneous Turbulence
(DIHT). Recall that the accepted criteria are very different, though:
in DIHT it is the spectral slope near the spectral cut-off; in wall
flows, it is the log-law intercept. Also recall the absence of a gap
between energy-containing scales and the grid spacing. Using the
maximum grid spacing, as in (D)DES, the difference between the
optimal SGS model constants for DIHT and channel flow is even
larger. This situation cannot be considered as a satisfactory one,
not only because the two types of flows demand different con-
stants but, more importantly, because any “wall-bounded” flow
becomes a “free” one away from the walls, which means that the
use of any single value of the constant calibrated on this or that
type of flow cannot be correct in a whole flow. This motivates a
search for an alternative and more physically justified definition
of the subgrid length-scale, which would not demand different
SGS model constants for wall-bounded and free turbulent flows.

Since wall-proximity effects, primarily inviscid blocking, are in-
volved, it seems natural to allow such a definition to rely not only
on the cell sizes, but also to explicitly include a wall-distance
dependency, i.e., have the form:

4 :f(hxvh.\’7h27dw)7 (1)

where 4 is the needed subgrid length-scale, h,, h,, and h, are the lo-
cal streamwise, wall-normal, and lateral cell sizes, respectively, and
dy, is the distance to the wall. Note that Abe (2005) also uses the
wall distance, as well as the direction of the wall-normal, which
is a more volatile quantity (but only up to about y* =250).

Let Afree be the limit of the function f(h,, hy, h,,d,) for infinite d.,.
Then, following the DES papers and the argument of statistical isot-
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ropy of the small eddies, it is set equal to the maximum local grid
spacing

Afree = hmax = max{hy, hy7 h,}. (2)

Note however that away from the walls, the grid for an LES
should be fairly isotropic anyway (in other words, a spacing much
below hyax in any direction is wasted), and so the impact of this
specific choice is not crucial. This function is, appropriately, insen-
sitive to the wall-normal direction.

As for the behaviour of A4 in very close vicinity of the wall, it
should not completely follow the drastic decrease of the wall-nor-
mal step typical of this region (especially at high Reynolds number)
and, therefore, should depend on the wall-parallel steps only:

Awall = A(hm hz) (3)

Assuming, finally, that between these two limiting cases 4 is a lin-
ear function of d,, and that at any distance from the wall it varies
within the range hpmin < 4 < hmax, a definition of the subgrid
length-scale satisfying all the above demands is as follows:

A= min{max[cde7 thmam hwn]s hmax}y (4)

where h,,, is the grid step in the wall-normal direction and G, is an
empirical constant, which does not depend on the specific SGS mod-
el. Its value was set equal to 0.15 based on a wall-resolved LES of
channel flow with the Smagorinsky SGS model, as seen shortly (Sec-
tion 3.2), and then the same value of the constant was used with
other SGS models.

Fig. 1 shows two possible types of variation of the subgrid
length-scale A defined by (4), normalized by the maximum grid
step (i.e., the DES value), across a plane channel with half-width
H. The first type (solid line in Fig. 1) takes place if hyy < Cwdw
and, therefore, in accordance with (4), as long as d < hpmax, the
length-scale A4 remains constant equal to Cyhmax. Then, once
dyw > hmax, it grows linearly (4 = Cyd,y) until reaching the value of
hmax and stays constant after that. The second type of A variation
(dashed line in Fig. 1) corresponds to a strong wall-normal step
stretching. This branch is introduced to avoid a violation of the
physical constraint A4 > hy,;, mentioned above. In this case, 4 re-
mains constant and equal to Cyhmax as long as hy;, < Cwhmax. Then,
it grows with a rate higher than C,, until reaching the value of hy,x
and after that, just as in the first case, remains constant. Note that
this scenario is undesirable, but with any rate of wall-normal step
stretching that is acceptable for an accurate LES, it still does not
lead to disaster. For instance, for a wall-normal step varying in
accordance with a geometric series, it takes place only if the series
index k> (1 + Cy), i.e., if k> 1.15, which is close to the maximum k
values (1.2-1.3) that still provide sufficient accuracy in LES. There-
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Fig. 1. Two types of variation of the subgrid length-scale (4) across plane channel
compared to variation of the scale based on cube root of cell volume (dotted line).

fore, with any acceptable rate of growth of the wall-normal step,
the difference between the two branches of (4) is not large.

The primary effect of (4) is to reduce 4, and also to give it a
fairly steep variation, leading to a similar trend in the eddy viscos-
ity (especially with the Smagorinsky model, as opposed to trans-
port-equation models), which is likely to de-stabilize the flow.
This is helpful, as discussed again later. Note that the cube root def-
inition also reduces 4 near the wall, but not linearly (see dotted
line in Fig. 1).

Examples demonstrating the convincing performance of the
subgrid length-scale (4) in the framework of different LES and hy-
brid RANS-LES approaches are presented in Section 3.

2.2. DDES branch of IDDES

This branch is responsible for the DDES-like functionality of
IDDES and should become active only when the inflow conditions
do not have any turbulent content (if a simulation has spatial peri-
odicity, the initial conditions rather than the inflow conditions set
the character of the simulation) and in particular when a grid of
“boundary-layer type” precludes the resolution of the dominant
eddies. Recall that the DDES formulation (Spalart et al., 2006) reads
as

Ippes = Irans — fa max{0, (lrans — lies)} )

Here the delaying function, fy, is defined as f; = 1 — tanh[(8r4)?], and
the quantity ry borrowed from the SA RANS turbulence model (Spal-
art and Allmaras, 1994),
_— V+ Ve

CT ed,  max{[y,(ui/ox;)7) 7, 10710}

(6)

is a marker of the wall region equal to 1 in a log layer and O in a free
shear flow.

In accordance with the general DES concept, in order to create a
seamless hybrid model, the length-scale Ippgs defined by (5) is
substituted into the background RANS model in place of the RANS
length-scale, Irans, explicitly or implicitly involved in any such
model. For instance, for the SA model the length-scale is equal to
the distance to the wall [rans = dw, While the k-« MSST model
(Menter, 1993) has Igans = k'?/(Cuo). In the original DES, the
length-scale depends only on the grid. In DDES and here, it also de-
pends on the solution, via (5) and (6).

As far as the LES length-scale, Iigs, in (5) is concerned, it is de-
fined via the subgrid length-scale 4 (4) as

ligs = Cpes P4, (7)

where Cpgs is the fundamental empirical constant of DES (Shur et
al,, 1999) and ¥ is a low-Reynolds number correction (see Spalart
et al., 2006) introduced in order to compensate the activation of
the low-Reynolds number terms of some background RANS model
in LES mode. Both Cpgs and ¥ depend on the background RANS
model, and the latter is equal to 1 if the RANS model does not in-
clude any low-Reynolds number terms (e.g., the MSST model). For
the SA model this function reads:

1- wa,%fw[ftz + (1 = fa)fia]
fnmax(107'°1 = f;y)

w2 — min |10?,

where all the notations, except for the quantity f;, are the same as
in the SA RANS model and f, = 0.424. This, again, depends on the
solution since the f~functions depend on the eddy-viscosity.
Considering that the quantity rq defined by (6) is close to 1.0 in
the logarithmic part of the turbulent boundary layer (Spalart and
Allmaras, 1994), the delaying function f; in (5) turns out to be close
to zero there. As a result, the definition of length-scale (5), in con-
trast to the original definition used in DES (Spalart et al., 1997),
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Fig. 2. Profiles of functions fz and f.; in plane channel.

ensures DDES performance in its RANS mode in the major part of
any attached boundary layer independently on the wall-parallel
grid-spacings, thus eliminating the known incorrect DES perfor-
mance on “ambiguous” grids (Spalart et al., 2006). At the same
time, outside this region, rq is small, f; is close to 1, and the model
reduces to the original DES97. However, as emphasized by Spalart
et al. (2006) and mentioned in the Introduction, when used as a
wall model in LES, DDES does not have any advantages over the
DES97.

2.3. WMLES branch of IDDES

This branch is intended to be active only when the inflow
conditions used in the simulation are unsteady and impose some
turbulent content' and the grid is fine enough to resolve bound-
ary-layer dominant eddies. It presents a new seamless hybrid
RANS-LES model, which couples RANS and LES approaches via the
introduction of the following blended RANS-LES length-scale:

hwmies = fa(1 + fe)lrans + (1 — fo)lies, 8)

where, similarly to DDES, Igans and [;gs are the RANS and LES length-
scales, respectively.

Let us now consider the two other ingredients of the length-
scale (8), namely, the functions fz and fe.

The empirical blending-function fz depends upon d,,/hmax and is
defined as

fz = min{2 exp(—90%),1.0}, o =0.25 — dw/hmax. 9)

It varies from O to 1 and provides rapid switching of the model from
RANS mode (f = 1.0) to LES mode (fg = 0) within the range of wall-
distance 0.5hmax < dw < hmax (see solid line in Fig. 2). Again, the in-
tent is for the dynamics not to linger between RANS and LES mode.
The second empirical function involved in (8), elevating-func-
tion f, is aimed at preventing the excessive reduction of the RANS
Reynolds stresses which has been observed in the interaction of
the RANS and LES regions in the vicinity of their interface. It is
instrumental in combating log-layer mismatch. The function f.
should be close to zero, and therefore passive, in two cases:

(1) when the grid used in the simulation is sufficient for a wall-
resolved LES (the RANS-LES interface is located very close to the
wall, at y* < 15-20, so that the Reynolds stresses near the inter-
face are negligible);

(2) when the final IDDES model (see Eq. (17) in Section 2.4
below) effectively performs as the background RANS model

1 For flows periodic in the streamwise direction, this turbulent content is imposed
via the initial fields rather than the inflow condition (see Section 3.2).

(otherwise, a non-zero f. would corrupt the correct RANS
behaviour).

The function built to satisfy these two demands but have an ef-
fect when needed reads:

fe=max{(fe1 — 1),0} Vfes. (10)

Here the function f.; is defined as

2exp(—11.0902)
2 exp(—9.002)

if «=>0

. 11
if a<0 (I

fe] (dw/hmax) = {
It provides a “predefined” (i.e., dependent on the grid but not on the
solution) “elevating” device for the RANS component of the WMLES
length-scale (8). As seen in Fig. 2, where f.; is shown by a dashed
line, it coincides with fz when fg < 1, i.e., in the RANS-LES switching
region, but then, with d,, decreasing, grows up to 2.0, and then
gradually falls back to 1.0 at the wall.
The function fe, in (10) reads:

fea = 1.0 — max{f,. fi}. (12)

It controls the intensity of “elevating” of the RANS component of the
model (8) through the following two functions:

fy =tanh[(crg)’], f, = tanh[(c?ra)"], (13)

where the quantities rg; and rg; are the “turbulent” and “laminar”
analogues of r4 (6) defined by the relations

Ve

1/2 ’
szgv‘max{ [Zi,j<a“i/3’<j>2] 10 10}

Tat =

(14)

y
172 )
K2d2,-max [Zu(ﬂui/axj)Z] 10710

and ¢; and ¢, are additional model constants which depend on the
background RANS turbulence model and should be adjusted so that
the function f, is virtually zero when either rg, or ry, is close to 1.0.

Similar to the parameter ry, rq; is close to 1.0 in the logarithmic
part of the boundary layer, while the new parameter, rq, is close to
1.0 in the laminar sublayer. Thus, with properly chosen constants,
inside the boundary layer one of the functions f; or f; in (13) is also
close to 1.0, and therefore, f.; and f. are close to zero which ensures
satisfaction of the demands (1) and (2) formulated above.

Note in conclusion that, in contrast to f.q, feo depends on the
solution via the quantity ) ; j(au,‘/an)z in the denominator of rg;
and rg;. Such distinctions have become familiar starting with DDES.
As for the introduction of the function ¥ into the definition of f.
(10), it is unrelated to the low-Re correction role this function plays
in the LES mode of (D)DES, and is purely empirical. A better func-
tion to enforce the effect of f. when the background RANS model
has the low-Re terms could probably be devised. However, as
shown in the next section, even with this choice, the IDDES perfor-
mance turns out quite satisfactory, so that the search for another
function is not crucial.

ra =

2.4. Blending of DDES and WMLES branches

The DDES length-scale (5) and that of the WMLES-branch (8) do
not blend directly in a way which ensures an automatic choice of
the WMLES or DDES mode by the combined model we want to
build, depending on the type of the simulation (with or without
turbulent content) and the grid used. However this is possible with
a modified version of (5) effectively equivalent to the original one
in DDES (5), namely,

Iopes = falrans + (1 = fa)lis, (15)
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where the blending function fq is defined by

fa=max{(1 - fa),fa} (16)

with fy =1 — tanh[(8rqo)’].

With the use of (15), the required IDDES length-scale combining
the DDES and WMLES scales (15) and (8) is straightforward and
can be implemented as

Iy = fa(1 + fo)lrans + (1 — fa)liss. (17)

Indeed, in the simulations with an inflow turbulent content:
rae < 1; fa is close to 1.0; fq defined by (16) is equal to fs; and so
(17) automatically reduces to Iy, = hwymies (8). Otherwise, as dis-
cussed in Section 2.3, f. becomes zero, and (17) reduces to
Ihyb = Ippes (15). This behaviour of the length-scale (17) is supported
by the numerical tests presented below.

This section reflects the unfortunate trend, from DES97 through
DDES and on to IDDES, of increasing complexity. It is possible a
simpler system with the same performance will be found in the fu-
ture; a detailed publication now, especially since the approach is in
use by at least two other groups (see Piomelli et al. (2007) and
Mockett et al. (2007)), appears a useful step for better proposals
to arise from the community. It is also important to have a com-
plete and durable record of any method.

3. IDDES tests
3.1. Overview

Two examples are first given demonstrating the favourable per-
formance of the subgrid length-scale (4) in the framework of wall-
resolved LES of flow in a plane channel at a low Reynolds number,
and within WMLES of this flow at a high Reynolds number. These
examples are aimed at supporting the claim that this length-scale
alone allows accurate LES of wall-bounded flows with the Smago-
rinsky model, without any adjustment of the subgrid model con-
stant calibrated in DIHT.

A series of tests is then presented aimed at demonstrating the
capabilities of the LES length-scale (4) imbedded into IDDES, i.e.,
into the hybrid RANS-LES length-scale (17). In order to evaluate
IDDES performance in WMLES mode, it is applied to channel flow
in a wide range of Reynolds number and to the flow over a hydro-
foil with a shallow separation over an asymmetric trailing edge
(experiment of Blake (1975)). After that, simulations are performed
of the backward-facing step flow of Vogel and Eaton (1985), which
allows evaluating IDDES in a mixed, DDES-WMLES, mode. One
more test (not shown) confirming that for massively separated
flows IDDES performs quite the same as DES97 and DDES is the
flow past NACA0021 airfoil in deep stall studied experimentally
by Swalwell (2005).

All the test cases were computed with the use of two versions of
IDDES (based on the SA and MSST background RANS models),
which can be readily obtained by substitution of the length-scale
(17) in place of the distance to the wall d,, in the destruction term
of the SA eddy-viscosity transport equation, or in place of the
length Iusst = k'2/(C,) in the dissipation term of the k-transport
equation of the MSST model. The values of the empirical constants
¢; and ¢, involved in the definition of the WMLES length-scale (8)
were adjusted based on preliminary simulations of channel flow.
They are 3.55 and 1.63 for the SA and 5.0 and 1.87 for the MSST
versions, respectively.

The simulations were carried out with the use of the incom-
pressible branch of the NTS code (Strelets, 2001). The code uses
the implicit scheme of Rogers and Kwak (1988). Time-derivatives
are approximated with 2nd order backward differences (three-
layer scheme) with dual time-stepping (infinite default pseudo-

time step) and subiterations. The number of subiterations at each
time step depends on the problem but usually is within the range
from 5 to 20 (this ensures reduction of the maximum residual by
3-4 orders of magnitude). The time implicit scheme is imple-
mented with the use of Gauss-Seidel relaxation by planes. For
the spatial approximation of the inviscid fluxes, the code provides
different options. In this work we use 4th-order centered approxi-
mation for the channel and hydrofoil flows and a weighted, 5th or-
der upwind/4th order centered, scheme with a blending function
dependent on the solution (Strelets, 2001; Travin et al., 2002) for
the stalled airfoil and backward-facing step flows. The viscous
terms in the equations are approximated with the 2nd-order cen-
tered scheme.

3.2. Demonstration of the advantages of the subgrid length-scale (4)

To support the advantage of the proposed subgrid LES length-
scale (4) even in a wall-resolved LES, a simulation was carried
out for a plane channel at Re; = 400 with the use of the Smagorin-
sky SGS model with the wall-damping function of Piomelli et al.
(1988):

Ve = (Csuac4)*{1 — exp[-(y*/25)°]}S, (18)

where S is the magnitude of the strain tensor, A is the subgrid
length-scale defined by (4), and Cspmac is set equal to 0.2, i.e., to
the value established by Shur et al., 1999 based on LES of the DIHT
flow in the NTS code, with the objective of maintaining a —5/3 spec-
tral slope near the cut-off.

The grid is as follows: Ax/H=0.1, Az/H=0.05 (4; =40,
A =20), the near-wall y-step is Ay;/H=2 x 1073 (Ay; = 0.8),
and the stretching factor of the wall-normal step is k= 1.14. The
size of the computational domain is: Ly = 8H, L, = 3H. The time step
is 0.57, in wall units.

Fig. 3 shows that the mean velocity profile obtained in the sim-
ulation agrees very well with the DNS data of Moser et al. (1999).
In contrast to this, with the traditional definition of the subgrid
length-scale 4 via the cube root of the cell volume, the simulation
carried out at Cgyac = 0.2 gives much worse a solution (see dash-
dot curve in Fig. 3). The resolved turbulence is severely damped.
Similar (actually even worse) results were obtained at this value
of the constant with the length-scale defined through the maxi-
mum grid-spacing.

The second example illustrating the advantage of the length-
scale (4) is a WMLES of the high Reynolds number (Re, = 18,000)
channel flow. The simulation uses a DES-like WMLES method,
which couples the Prandtl-van Driest RANS and the Smagorinsky
SGS models:

ve = min{(ky)?, (Csmac4)* {1 — exp[-(y*/25)°]}S. (19)
u ' ' Pk
20 ' /'/ 2
15} -
10} -

—— LES, A defined by (4)

5 == LES, A:\,"ol"3 ]
------ DNS, Moser et al.

D I . +

10° 10° 100y 107

Fig. 3. Comparison of mean velocity profile from Smagorinsky LES of developed
channel flow at Re, = 400 with 4 defined by (4) and as cube root of cell volume with
DNS of Moser et al. (1999).
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Fig. 4. Mean velocity profiles in developed channel flow computed with the use of
DES model (19) and subgrid length-scale defined by (4) at Re; = 1100 and 18,000.

The grid in the wall-parallel directions is the same as that used
in the previous example, normalized with channel width. The
model switches from RANS to LES at y/H = 0.0073, y* = 132, where
the eddy viscosity is about 40 times the molecular viscosity. The
wall-normal grid has the same stretching factor, but the near-wall
step is reduced to keep the value of y7 less than 1.0. As seen in Fig.
4, the computed mean velocity profile at this Reynolds number (so-
lid line in the figure) does not have any LLM and reproduces the log
law fairly well.

Thus the two above examples confirm that the use of the sub-
grid length-scale (4) indeed results in quite accurate wall-resolved
LES and high-Reynolds number DES of channel flow with the value
of the Smagorinsky constant 0.2, compatible with the calibration
on the DIHT flow. However this length-scale alone is still insuffi-
cient for accurate enough prediction of this flow at moderate Rey-
nolds numbers (see the velocity profile at Re; = 1100 shown in Fig.
4 by dash-dot line). Extra empiricism would be needed in (19). As
shown in the next section, this issue is successfully resolved by
IDDES, which provides uniformly accurate prediction of the chan-
nel flow at arbitrary Reynolds number.

3.3. IDDES testing in plane channel flow

This test is, in fact, the key one, since it is aimed at the evalua-
tion of the new model’s performance as applied to attached flows,
i.e., to those, in which neither the original DES97 nor DDES, in their
derivative use as WMLES, is capable of ensuring the level of accu-
racy expected in simple flows nowadays.

The series of simulations performed includes a Re; variation in
the range from 400 up to 18,000. The latter value is large enough
to predict the behaviour at arbitrarily high Reynolds number. The
computational domain and the grid in the wall-parallel directions
used in these simulations are the same as those used for the wall-
resolved Smagorinsky LES at Re, =400 considered in the previous
section. Thus, the series allows an assessment of the WMLES capa-
bility of IDDES on grids with very large (“unlimited”) values of the
wall-parallel grid steps in wall units, Ax* and Az*. The wall-normal
grid is built in a conventional manner. Namely, the near-wall step
is adjusted to the Reynolds number, to provide a value of y; below
1.0. Then, the grid step increases with a stretching factor 1.14. In
accordance with (4), with this wall-normal step distribution, the
first type of variation of the subgrid length-scale 4 across the chan-
nel (the solid line in Fig. 1) takes place.

Below we present results of the simulations obtained with the
use of the MSST version of IDDES; results obtained with the SA ver-
sion are quite similar.

As emphasized in Section 2, the behaviour of IDDES depends on
whether the flow does or does not start with turbulent content. Let
us first consider the first scenario (with turbulent content) which
has been implemented via initialisation of the simulations with

10 F’"‘_'_

08}
06}
04F

02H

0.0 J .
0 0.05 0.1 y/H

Fig. 5. Profiles of the functions fq and (1 —f) in developed channel flow at
different Re; from simulations with MSST version of IDDES and presence of initial
turbulence content.

flow-fields obtained from LES of the DIHT flow with the use of
the subgrid version of the MSST model (Strelets, 2001; Travin et
al., 2002) as described in Spalart et al. (2006). The simulation
recovers from a quite unrealistic initial field.

Fig. 5 shows profiles of the two branches of the blending
function f4 (16), (1 — f4) and fz, computed at different values of
Re; (recall that in all the simulations hy,.x = 0.1 in units of channel
half-width H). One can see that at low and moderate Re,
fz> (1 — far), and therefore, in accordance with (16), the fz-branch
of fq is active automatically providing a reduction of the hybrid
length-scale (17) to the WMLES length-scale (8). At the high value
of Re, = 18,000, both branches of f, are active, the (1 — fy;)-branch
prevailing near the wall and the fz-branch dominating in the outer
part of the RANS region. However, in this case they are close to
each other, and so the specific choice of branch is not important.

As far as the behaviour of the elevating function f, is concerned,
as seen in Fig. 6, in accordance with its design, it deviates from zero
only in the RANS region. The deviation is most pronounced at mod-
erate Re; and thus, the most significant strengthening of the RANS
mode of the WMLES model is ensured exactly at these conditions;
since the maximum value is less than 0.25, this can be considered a
mild correction. This is demonstrated by profiles of the ratio of the
hybrid to the RANS turbulent lengths-scale, lhyb/lrans, at different
Re; also plotted in Fig. 6. Consistently with the behaviour of f,
the ratio is higher than 1.0 in the outer part of the RANS region
(see Fig. 5) and is maximal at Re; = 1100. This means a decreased
level of turbulence dissipation relative to the original MSST RANS
model, which prevents too strong a decrease of the eddy viscosity
in this region and the unwanted rise of the modelled logarithmic

lfij-z,(fa,f\'.S' R M e I
1.2} 10.30
- 10.25
08} {0.20
06} 40.15
0.4} 10.10
0.2} 10.05
0.0k 10.00

Fig. 6. Profiles of the function f. and ratio of length-scales of MSST-based IDDES and
MSST RANS models in developed channel flow at different Re.
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Fig. 7. Profiles of IDDES eddy viscosity normalized by molecular viscosity in
developed channel flow at different Re.

layer. Then, in the LES region, the ratio drops abruptly, reaches a
local minimum, and after that stays nearly constant equal to 0.6
with the present grid. The steep drop of the length-scale is an
important feature of the proposed model, which makes its perfor-
mance quite different from both DES97 and DDES, where it de-
creases more slowly. It results in a similar decrease of the eddy
viscosity (see Fig. 7), which, in turn, helps to unlock the flow insta-
bilities and activate turbulence with no artificial stirring.

The advantages of IDDES are clearly seen in a direct comparison
of the flow visualizations from the simulations with the use of this
model and MSST-based DDES presented in Fig. 8. The figure shows
that IDDES does capture the major known features of the turbu-
lence in the channel reasonably well. In particular, it does not al-
low the formation of smooth nearly one-dimensional eddies and
excessive damping of turbulence at the RANS-LES interface, the
way DES97 (Piomelli and Balaras, 2002) and DDES do. DDES fails,
specifically, near the wall, whereas the two models behave very
similarly near the center of the channel.

MSST-DDES
y=0.0

A quantitative assessment of the performance of MSST-based
IDDES as applied to channel flow can be done based on Fig. 9,
where we present the mean velocity profiles and resolved and
modelled parts of the Reynolds shear stresses at different Re;.
DNS solutions at high Reynolds numbers being unavailable, the
velocity profiles are compared with the Reichardt correlation
(Reichardt, 1951):

Uur= % In(1.0 + 0.4y*)

sl en () (F)en( 1)

which achieves fairly good agreement with the DNS data at lower
Reynolds numbers (e.g. Moser et al., 1999) and satisfies the defect
law, making it a good benchmark. Note that IDDES performs well
not only at the large Re;, which is arguably an easier case for
WMILES (see Piomelli et al. (1988); compare also the velocity pro-
files at Re; = 18,000 and 1100 in Fig. 4 above), but also at moderate
and even low Re; corresponding to wall-resolved LES. This success
will carry over to other wall-bounded flows, provided the wall-par-
allel grid is fine enough; note that the values used here, Ax/H = 0.1,
Az[H = 0.05, are economical.

Finally, Fig. 10 presents a direct comparison of the mean flow
velocity and resolved and modelled parts of the Reynolds shear
stress predicted by the MSST-based version of IDDES with the
MSST-based DDES at Re, = 2400. It shows that IDDES leads to a sig-
nificant increase of the resolved part of the stress, and to a com-
plete elimination of the LLM. The diagonal Reynolds stresses (not
shown) are also considerably improved. The increase in resolved
turbulence, in other words the much deeper reach of LES towards
the wall, is very likely to improve accuracy in non-trivial flows, for
instance with pressure gradients.

To conclude the discussion of simulations of channel flow with
the use of IDDES operating in WMLES mode, recall that all the re-
sults presented above were obtained on grids with the streamwise

MSST-IDDES

Fig. 8. Comparison of XZ-cuts of instantaneous vorticity magnitude from simulation of channel flow with MSST-based IDDES and MSST-based DDES at Re, = 2400.
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Fig. 9. Profiles of mean velocity (a) and resolved and modelled shear stresses (b) from MSST-based IDDES of channel flow at different Re-.

u+ URERRRN LR L |
®  Reichardt's law .a 1
25| === MSSTDDES e 4
— MSST IDDES ’ - 1
0 S = — > + 4
10 10 10 10 y 10

Fig. 10. Comparison of predictions of developed channel flow at Re, = 2400 with MSST-based IDDES and MSST-based DDES.

step, Ax, twice as large as the spanwise step, Az. Although this is
common LES practice motivated by the knowledge of the turbu-
lence structure in the channel and the flow direction, this is not
practical for more complex flows, and so it is of interest to evaluate
the reaction of the model to an alteration of the Ax/Az value. It is
illustrated by Fig. 11, where the results of the simulation with Ax/
Az =2 are compared with those with Ax/Az = 1.0 and 4.0, Az being
kept constant. The value 1.0 is much more likely in engineering
practice, since the direction of the flow, especially very near the
wall, is not known at the grid-design stage. One can see that, as ex-
pected, an increase of Ax results in a growth of the modelled and
decrease of the resolved parts of the shear stresses. Nonetheless,
in the considered range of Ax/Az this does not cause a significant
alteration of the total shear stress and the mean velocity profile.
Therefore, the dependence chosen on Ax and Az individually ap-
pears quite successful.

u
a
20+ 5
15 b
10 | .
e  Reichardt's law
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5 — Ax=2Az ]

— Ax=4Az
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10 10" 10? 10°  y" 10*

Let us now consider the performance of IDDES in the same flow
but with no initial turbulent content. This situation is implemented
by starting the simulations from a steady MSST RANS solution. In
this case, independently of the Reynolds number, the solution re-
turned by IDDES is identical to the initial RANS solution, which is
exactly the behaviour that should be observed in accordance with
the design of IDDES. The results do not depend on the wall-parallel
grid spacing at all. This is seen in Fig. 12, where the velocity profiles
are plotted from the simulations with the use of MSST-based IDDES
and RANS. The figure also shows profiles of the functions f; and f,
which help to understand the reason for this performance. One
can see that at any y* one of the functions (either f; or f;) is equal
to 1.0, which results in the zeroing of f., (see (12)) and, therefore,
of f. as well (see (10)). Thus, in the situation considered (no turbu-
lent content) IDDES actually reduces to a DDES-like model (15) and
behaves exactly as DDES does in this situation, i.e., returns the

modeled

0 0.2 0.4 0.6

08 y/H

Fig. 11. Effect of streamwise grid step on prediction of developed channel flow at Re; = 2400 with MSST-based IDDES.
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Fig. 12. Profiles of the functions f; and f; (13) and mean velocity in plane channel
computed with MSST-based IDDES initialised by MSST-RANS solution.

RANS solution (recall that in DDES this preservation of RANS in the
attached boundary layers was introduced in order to avoid the
inaccuracies that result from the activation of the DES limiter in
grids that are not fine enough to support a quality LES).

3.4. Hydrofoil with trailing edge separation

This is a spanwise homogeneous flow separating from the rear
upper side of the asymmetric trailing edge of a hydrofoil (see Fig.
13). The Reynolds number is 2.2 x 10° based on the chord and
1.01 x 10° based on the thickness, h. The flow is an attractive test
of the newly-developed hybrid approach, since it includes both an
extended attached boundary layer and a shallow separation bub-
ble, i.e., the features which would cause DDES in its WMLES mode
to suffer from LLM, and DES97 to suffer from both LLM and grid-in-
duced separation.

The size of the computational domain is 31h x 80h x 0.5h in the
streamwise, wall normal, and periodic spanwise directions, respec-
tively, and the grid has about 1.5 million nodes with the near-wall
y* value less than 1.0, the streamwise step varying in the range
from 0.02h up to 0.04h (this corresponds to about 10% of the
boundary layer thickness), or from ~100 to ~200 in wall units,
and the spanwise step equal to 0.02h(Az" = ~100). The simulations
are therefore not wall-resolved.

Inflow turbulent content was generated as follows. Parallel to
the simulation of the hydrofoil, a similar simulation of flat plate
boundary layer was running (in this simulation the triggering of
turbulence is performed with the use of the recycling procedure
employed by Spalart et al. (2006) for DNS), and the results of this
simulation are fed into the inflow boundary of the hydrofoil
simulation.

yh Y
€ [ EFI[E

Fig. 13. Schematic of the hydrofoil and mean flow streamlines from IDDES. Letters
denote positions of sections, where experimental data of Blake, 1975 and full-LES of
Wang and Moin (2002) are available (B: x/h=-4.5; C: -3.125; D: -2.125; E:
-1.625; F: —1.125; G: —0.625).

Fig. 14. Instantaneous isosurface of swirl from IDDES of hydrofoil flow.

Results of MSST-based IDDES are presented in Figs. 13-15.

Fig. 13, where the streamlines are presented, illustrates the
mean flow topology with a trailing edge separation bubble, and
Fig. 14 shows the flow visualization in the form of the instanta-
neous isosurface of “swirl” (imaginary part of the conjugate eigen-
values of the velocity gradient tensor - see Perry and Chong
(1987)), which clearly reveals resolved turbulent structures both
in the attached boundary layers at the upper and lower hydrofoil
surfaces and in its wake. This is obtained thanks to the IDDES per-
formance in WMLES mode in the attached boundary layers and in
the separation bubble where the RANS-LES interface is defined by
the fz-branch of f. Finally, Fig. 15 compares results of the present
simulation with: the experimental data; the wall-resolved LES of
Wang and Moin (2002) carried out with the use of the dynamic
SGS model on a C-grid with nearly 7 million nodes; and the hybrid
LES-RANS model of Tessicini et al. (2006) with prescribed RANS-
LES interface (y* =60 in the straight portion of the airfoil) and a
grid close to ours. Neither of these simulations can be considered
as an absolute reference, but they should bound the numerical/
method-related scatter for this arduous problem. Although based
on a comparison of skin friction distributions (not shown) IDDES
predicts separation somewhat late compared to full LES, results
presented in Fig. 15 suggest that, in general, its agreement with
the experimental data and the full LES is fairly good both in the at-
tached and separated parts of the boundary layer and also in the
wake of the hydrofoil (not shown). This is true not only for the
mean streamwise velocity profiles (Fig. 15a) but also for the rms
of its fluctuations (Fig. 15b). Note that IDDES tangibly surpasses
the hybrid model of Tessicini et al., especially in terms of the rms
prediction in the sections F and G, i.e., slightly upstream of and in-
side the separation bubble, which may originate in the favourable
turbulence-energy level it fosters. The last plot in Fig. 15a shows
velocity profiles in the section G predicted by the SA and MSST
RANS models. It reveals that both models are noticeably less accu-
rate than the turbulence-resolving approaches.

3.5. Backward-facing step flow

This flow is a rather severe test for IDDES, since in this case it
must automatically provide three different types of behaviour
depending on the flow region. Namely, it should function as a RANS
model in the attached boundary layers upstream of the step and on
the upper wall of the channel which do not have any “turbulent
content”, as LES in the separation zone, and, finally, as WMLES in
the reattached boundary layer on the step-wall, which inherits
“turbulent content” from the upstream separation zone.

As already mentioned, the specific flow we have considered is
that studied experimentally by Vogel and Eaton (1985). This is a
flow in a plane channel with the step on the lower wall. The Rey-
nolds number based on the step height, H, is equal to 28,000 and
the channel expansion ratio is 5/4. The incoming boundary-layer
thickness is 1.07H and it is turbulent. The length of the computa-
tional domain is 24H, with 4H upstream and 20H downstream of
the step. The grid used in the simulations contains 1.5 million
nodes total and has appropriate clustering near the walls and in
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Fig. 15. Comparison of streamwise velocity and rms of its fluctuations in hydrofoil boundary layer predicted by different simulation approaches. (a) Mean velocity magnitude
from IDDES, LES, and hybrid RANS-LES at different cross-sections and from SA and MSST RANS at section G; (b) rms from IDDES, LES, and hybrid RANS-LES at different cross-
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Fig. 17. Snapshot of vorticity magnitude on the step wall from MSST-based IDDES and DDES of BFS flow.

the vicinity of the step. It is uniform in the spanwise direction (the
span size of the domain is equal to 2 step heights, and the non-
dimensional step Az is equal 1/30).

Results of the simulations fully confirm the expected behaviour
of both SA- and MSST-based versions of IDDES. As an example, in
Fig. 16 we show XY-cuts of the instantaneous fields of the eddy vis-
cosity and hybrid function from the simulation with the use of
MSST-based IDDES. One can see that in the attached boundary
layer approaching the step and in the boundary layer at the upper
wall, the (1 — f4)-branch of the function f4 is active, i.e., the model
is in DDES mode, while at the step-side the fz-branch prevails,
which means that in this region the model works as WMLES (the

behaviour of f4 in the SA-based IDDES is exactly the same). More-
over, a comparison of the instantaneous vorticity fields on the low-
er wall of the channel downstream of the step from the simulation
with the use of IDDES and DDES presented in Fig. 17 reveals notice-
able advantages of IDDES. In the vicinity of this wall IDDES oper-
ates in WMLES mode, and, for this reason, provides a better
resolution of the fine turbulent structures, which is especially
important for the region of recovery of the reattached boundary
layer known to be the most challenging for both RANS and DDES.
This leads to a more accurate prediction of the mean flow charac-
teristics by both SA- and MSST-based versions of IDDES not only
versus the corresponding background RANS models but, more
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Fig. 19. Comparison of mean velocity profiles in recovery region of BFS flow
predicted by RANS, DDES, and IDDES based on SA model with experiment.

importantly, versus the corresponding DDES versions as well. This
is seen in Figs. 18 and 19, where we compare the skin friction dis-
tributions over the step-wall of the channel and mean velocity pro-
files in the recovery region predicted by the SA-based IDDES and
DDES with the experimental data. Quite consistently with the bet-
ter representation of turbulence, the superiority of IDDES over
DDES shows up not only with regard to the prediction of the flow
in the recirculation zone downstream of the step, but also in the re-
gion of flow recovery after reattachment. Although the skin friction
remains somewhat under-predicted past x = 12, this may well be
explained by the insufficient spanwise domain in the simulation
(2H, which is slightly less than the boundary-layer thickness)
and, also, by the fact that the flow is far from having settled again
into a normal zero-pressure-gradient boundary layer, so that a fi-
ner grid may be needed for its more accurate representation. Note
that for the MSST-based IDDES, the improvement of the flow pre-
diction compared to RANS turns out to be less pronounced than for
the SA version, which is not surprising considering the better
behaviour of the MSST RANS than that of the SA RANS for a back-
ward-facing step flow (see, e.g., Shur et al., 1995).

4. Conclusions

A new hybrid model, IDDES, plausibly combining DDES and
WMLES capabilities is proposed. The model is shown to resolve
the issue of mismatch between the modelled log layer and the re-
solved log layer, which has been typical of either DES or DDES use
for WMLES. Along with this, IDDES performs just as DES97 and
DDES in the natural uses of these approaches (external flows with

massive separation) and tangibly surpasses them in the mixed
flows with both attached and separated regions (hydrofoil with a
trailing edge separation, backward-facing step). Two versions of
IDDES, based on the SA and MSST background RANS models, work
equally well. They are simple in implementation, cost-free, and ap-
pear robust based on a fair set of test cases. The experience base
includes the present material, and already independent applica-
tions of an earlier version of IDDES (Travin et al., 2006) by Piomelli
et al. (2007) and by Mockett et al. (2007), who have been generally
satisfied with it. IDDES has not yet been demonstrated for unstruc-
tured grids, but WMLES on unstructured grids is far from common,
if it has even been achieved at all. The behaviour of IDDES also
needs to be verified in grids that are not distributed as smoothly
as the present ones, although the backward-facing step shown here
does contains needlessly fine regions, linked to the structured
character of the grid.

In general, IDDES significantly broadens the application area of
(D)DES by permitting the activation of RANS and LES in different
flow regions, giving an admittedly intricate but well-balanced
and powerful numerical approach to complex turbulent flows at
high Reynolds numbers.
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