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a b s t r a c t

The paper presents a detailed analysis of the flow over smoothly contoured constrictions in a plane chan-
nel. This configuration represents a generic case of a flow separating from a curved surface with well-
defined flow conditions which makes it especially suited as benchmark case for computing separated
flows. The hills constrict the channel by about one third of its height and are spaced at a distance of 9
hill heights. This setup follows the investigation of Fröhlich et al. [Fröhlich J, Mellen CP, Rodi W, Temm-
erman L, Leschziner MA. Highly resolved large-eddy simulation of separated flow in a channel with
streamwise periodic constrictions. J Fluid Mech 2005;526:19–66] and complements it by numerical
and experimental data over a wide range of Reynolds numbers. We present results predicted by direct
numerical simulations (DNS) and highly resolved large-eddy simulations (LES) achieved by two com-
pletely independent codes. Furthermore, these numerical results are supported by new experimental
data from PIV measurements. The configuration in the numerical study uses periodic boundary condi-
tions in streamwise and spanwise direction. In the experimental setup periodicity is achieved by an array
of 10 hills in streamwise direction and a large spanwise extent of the channel. The assumption of peri-
odicity in the experiment is checked by the pressure drop between consecutive hill tops and PIV mea-
surements. The focus of this study is twofold: (i) Numerical and experimental data are presented
which can be referred to as reference data for this widely used standard test case. Physical peculiarities
and new findings of the case under consideration are described and confirmed independently by different
codes and experimental data. Mean velocity and pressure distributions, Reynolds stresses, anisotropy-
invariant maps, and instantaneous quantities are shown. (ii) Extending previous studies the flow over
periodic hills is investigated in the wide range of Reynolds numbers covering 100 6 Re 6 10;595. Starting
at very low Re the evolution and existence of physical phenomena such as a tiny recirculation region at
the hill crest are documented. The limit to steady laminar flow as well as the transition to a fully turbu-
lent flow stage are presented. For 700 6 Re 6 10;595 turbulent statistics are analyzed in detail. Carefully,
undertaken DNS and LES predictions as well as cross-checking between different numerical and experi-
mental results build the framework for physical investigations on the flow behavior. New interesting fea-
tures of the flow were found.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Case definition

The prediction of flow separation from curved surfaces and sub-
sequent reattachment is complicated by several phenomena
including irregular movement of the separation and reattachment
lines in space and time, strong interactions with the outer flow,
transition from a boundary layer type of flow to a separated shear
layer with failure of the law-of-the wall and standard model
assumptions for either attached flows or free shear layers. The
ll rights reserved.

(M. Breuer), n.peller@bv.
improvement of flow prediction by Reynolds-averaged Navier–
Stokes (RANS) simulation or large-eddy simulation (LES) in such
flows is dependent on reliable data of generic test cases including
the main features of the respective flow phenomena. The flow over
periodically arranged hills in a channel as proposed by Mellen et al.
[33] has been used as benchmark test case since it represents well-
defined boundary conditions, can be computed at affordable costs
and nevertheless inherits all the features of a flow separating from
a curved surface and reattaching on a flat plate. The geometry of
the test case is shown in Fig. 1. The dimensions of the domain
are Lx ¼ 9:0h, Ly ¼ 3:036h, and Lz ¼ 4:5h, where h denotes the hill
height.

In order to motivate why this case is especially useful for basic
investigations of the performance of turbulence models – not only
subgrid-scale (SGS) models but also statistical models in the RANS
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Fig. 1. Sketch of the flow geometry and snapshot of instantaneous streamwise
velocity at Re ¼ 5600.
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context –, and other issues such as wall modeling, the history how
this test case was established is briefly sketched.

Almeida et al. [1,2] experimentally investigated the flow behind
two-dimensional model hills. Two different configurations were
considered, i.e., the flow over a single hill and the flow over peri-
odic hills. In 1995 these experiments were chosen as the basis of
a test case at the ERCOFTAC/IAHR workshop held in Karlsruhe by
Rodi et al. [42]. In order to select the least demanding configura-
tion, the periodic arrangement without side walls was considered.
However, the calculations carried out for this test case highlighted
a number of serious problems and open questions, see [33]. This
concerns the unknown influence of the side walls in the experi-
ment not taken into account in the predictions. Since the aspect ra-
tio in the experiment was small (almost square cross-section), it
was expected that the spanwise confinement provoked spanwise
variations. Furthermore, the predictions at the workshop [42] have
cast doubt on the true periodicity of the experimental setup lead-
ing to the fact that simulations and experiment were not compara-
ble. Another critical point is the high Reynolds number. Based on
the hill height h and the mean centerline velocity the Reynolds
number was Re ¼ 60;000. Since the channel height in the experi-
ment was large (Ly ¼ 6:071h), the corresponding Reynolds number
based on Ly is even about six times larger resulting in high compu-
tational costs for the configuration chosen. This problem even in-
creases if the single hill case is considered for which suitable
experimental data are available. The unknown effect of the side
walls remains for this case. Therefore, a new configuration was
defined by Mellen et al. [33], which leans on the experimental set-
up by Almeida et al. [1] but avoids the problems discussed above.

The re-definition of the test case also allows to meet a number of
desiderata judged to be associated with a good test case for LES stud-
ies [33,48]. The flow has to contain the key generic phenomena of
interest, whilst being amenable to a simulation at economically tol-
erable cost. The new geometry is sketched in Fig. 1. The shape of the
hill is taken from the study of Almeida et al. [1]. An accurate geomet-
ric specification is available in form of a polynomial ansatz [2].

First, compared with Almeida et al.’s configuration the distance
between two hill crests in streamwise direction was doubled. This
increased distance allows the flow to reattach naturally between
successive hills, providing a significant post-reattachment-recov-
ery region on the flat plate between the two hills prior to the re-
acceleration over the next hill. From the numerical and modeling
point of view this modification means that reattachment is now
strongly influenced by wall modeling, SGS modeling, and grid
arrangement issues. This aspect was not obvious in the original
configuration since reattachment was dictated by the presence of
the windward face of the consecutive hill.

Second, the original channel height was halved. This measure re-
duces the computational effort and allows a higher aspect ratio Lz=Ly.

Third, the side walls existing in the original experimental setup
of Almeida et al. [1] are removed and instead periodicity in the
spanwise direction is assumed. Based on additional investigations
by Mellen et al. [33] a spanwise extension of the computational do-
main of Lz ¼ 4:5h was recommended for LES or hybrid LES–RANS
predictions.
Fourth, the Reynolds number was reduced and set to
Re ¼ 10;595 where Re ¼ UBh=m is based on the hill height h, the bulk
velocity UB taken at the crest of the first hill and the kinematic vis-
cosity m of the fluid. Furthermore, the flow is assumed to be periodic
in the streamwise direction which represents a simple way out of
the dilemma to specify appropriate inflow boundary conditions
for LES or DNS. For that purpose the increase of the distance be-
tween two consecutive hills described above is beneficial too, since
it enhances the streamwise decorrelation. Thus, a well-defined flow
state independent of inflow conditions is achieved.

As a consequence the resulting geometrically simple test case
offers a number of important features challenging from the point
of view of turbulence modeling and simulation. The pressure-in-
duced separation takes place from a continuous curved surface
and reattachment is observed at the flat plate (see Fig. 1). Hence,
these flow features are sensitive to numerical and modeling
aspects. Therefore, this configuration was already a test case at
various workshops, e.g., the ERCOFTAC/IAHR/COST Workshops on
Refined Turbulence Modeling in 2001 [22] and 2002 [29], respec-
tively. Consequently, a variety of predicted results using RANS as
well as LES are available which can only be partially cited in the
succeeding section.

1.2. Previous studies

The periodic hill flow test case has been studied so far pursuing
two main objectives, either the modeling and simulation issue or the
physical issue. Regarding the first, it is used as a benchmark case to
investigate the ability of RANS and LES to resolve separation from a
curved geometry. Furthermore, the flow is also an interesting case
to study the physical mechanisms of separation on curved surfaces
in more detail.

1.2.1. Modeling and simulation issue
Besides the workshops mentioned above [22,29] a few more

studies on the modeling and simulation issue should be provided
first emphasizing on LES. Temmerman and Leschziner [47] investi-
gated the periodic hill flow at Re ¼ 10;595 using LES. The emphasis
was on the effectiveness of different combinations of subgrid-scale
models and wall functions on relatively coarse grids. The accuracy
was judged by reference to a wall-resolved simulation (lower wall
only) on a grid with about 4.6 million nodes. It was demonstrated
[47] that even gross-flow parameters, such as the length of the sep-
aration bubble, are very sensitive to modeling approximations (SGS
and wall models) and the grid quality. A similar investigation was
carried out by Mellen et al. [33] assessing the impact of different
SGS models and the effect of grid refinement. In the succeeding
study by Temmerman et al. [48] the previous efforts of both groups
were combined and a comparative investigation was carried out
applying three grids, six SGS models and eight practices of approx-
imating the near-wall region. Again the coarse-grid simulations
were judged by wall-resolved simulations using the fine grid men-
tioned above and two independent codes. The simulations on
coarse grids highlighted the outstanding importance of an adequate
streamwise resolution of the flow in the vicinity of the separation
line. The main reason is the high sensitivity of the reattachment po-
sition to that of the separation. Furthermore, the near-wall treat-
ment was found to be more influential on the quality of the
results obtained on coarse grids than the subgrid-scale modeling.

In the meantime several studies used this test case to evaluate
the performance not only for coarse-grid LES predictions but also
for different kinds of hybrid LES–RANS approaches including
detached-eddy simulations (DES), see, e.g. [10,12,14,43]. The latter
for example was a collaborative effort involving five different flow
solvers used by five different groups in order to cover a broad range
of numerical methods and implementations. All simulations were



M. Breuer et al. / Computers & Fluids 38 (2009) 433–457 435
conducted on the same grid with approximately one million cells
and compared to a highly resolved LES by Breuer [9]. Overall the
DES predictions and also LES predictions on the same grid were
found to be in good agreement with the reference data. Further
coarsening of the grid did not alter the performance of DES sub-
stantially unless the LES–RANS interface moves outside the bound-
ary layer on the crest of the hill. In that situation a massive
deterioration of the results was detected.

To evaluate the performance of wall models for LES of attached
flows the turbulent plane channel flow [25,34] is the standard test
case. That is due to its geometrical simplicity including two homo-
geneous directions which allow the application of periodic bound-
ary conditions avoiding inflow and outflow boundary conditions
completely. For the development and investigation of wall models
for separated flows, the channel flow with periodic constrictions
has nearly reached an equivalent status and meaning. Similar to
the plane channel the computational setup of the hill flow is simple
owing to the possibility to apply periodic boundary conditions
twice. However, for the hill case the flow separates from a curved
surface and a large back-flow region emerges. Further downstream
the flow reattaches and is accelerated at the windward side of the
hill. Therefore, the separation and reattachment process can be
studied in detail and wall models developed for attached and sep-
arated flows can be evaluated based on this flow.

As mentioned above, Temmerman et al. [48] investigated the
predictive accuracy of different wall models based on this case. It
was clearly shown that the predictions provided by classical wall
models developed for attached flows are not satisfactory if the
wall-nearest computational point is located outside the viscous
sublayer. This renders the case as a sensitive platform to develop
and improve wall models. For example, Manhart et al. [32] used
this flow to evaluate a modified law of the wall for the viscous sub-
layer which accounts for the effect of both, the wall shear stress
and the pressure gradient in the streamwise direction which plays
an important role for separated flows. They analyzed the perfor-
mance of this new formulation based on DNS data of the hill flow
at Re ¼ 5600. In similar investigations Breuer et al. [11,13] devel-
oped a new wall modeling strategy for separated flows. It allows
to derive enhanced wall models which also take the streamwise
pressure gradient into account. Moreover, the concept of artificial
viscosity used for that purpose makes an accurate description of
the physics of the flow in the wall-nearest region possible. Statis-
tical evaluations of highly resolved LES data for the hill flow case
using non-linear stochastic estimation were carried out in order
to determine the important physical dependence involved in the
new wall model, namely the ratio of the thickness of the viscous
sublayer to the height of the wall-nearest cell. The results show
that the enhanced wall model yields reliable predictions for sepa-
rated flows. The agreement with the reference data was found to
be much better than the results obtained by no-slip boundary con-
ditions or classical wall models such as those by Schumann [44]
and Werner and Wengle [49].

1.2.2. Physical issue
Concerning the physical issue a comprehensive investigation for

the periodic hill flow at Re ¼ 10;595 was carried out by Fröhlich et
al. [18] based on LES predictions with about 4.6 million nodes and
two independent codes. By the arguments given in Section 1.1 and
especially the distinct post-reattachment-recovery region it is jus-
tified why the chosen configuration stands out from the crowd of
investigations on flows over wavy-terrain geometries. A detailed
analysis was carried out including the evaluation of the budgets
for all Reynolds stress components, anisotropy measures, and spec-
tra. The emphasis was on elucidating the turbulence mechanisms
associated with separation, recirculation and acceleration. The sta-
tistical data were supported by investigations on the structural
features of the flow. Based on that interesting observations such
as the very high level of spanwise velocity fluctuations in the
post-reattachment zone on the windward hill side were explained.
This phenomenon revealed to be a result of the ‘splatting’ of large-
scale eddies originating from the shear layer and convected down-
stream towards the windward slope. That explains why RANS sim-
ulations even when applying second-moment closures can not
capture the flow field accurately. As stated by the authors [18],
the identification of other structures by means of structure-identi-
fication methods turned out to be difficult, mainly because of the
high Reynolds number.

In [12] a preliminary study was carried out in which the
Reynolds number effect was investigated for the first time. Inter-
esting flow features such as the variation of the reattachment
length were found. Furthermore, the existence of a tiny recircula-
tion at the foot of the windward face of the hill reported in [18]
was confirmed for Re ¼ 10;595. That and other findings motivated
to study the flow under varying Reynolds numbers more deeply.

1.3. Goals and outline of the present study

The objective of the present investigation is concerned with the
physical issue of the periodic hill flow. Compared to the compre-
hensive study by Fröhlich et al. [18] it differs in a certain number
of aspects. The first issue concerns the fundamentals of the inves-
tigations which besides two independent numerical simulation
techniques also relies on experimental measurements (PIV) which
were especially carried out for this work recently. The second
important point is the extension to a wide range of Reynolds num-
bers including the one studied before, for which compared to [18] a
refined simulation including the resolution of the upper wall re-
gion was performed. The extension to a broad range of Reynolds
numbers allows one on the one hand to take also direct numerical
simulations into account using grids with up to about a quarter of a
billion grid points. On the other hand the influence of the Reynolds
number on the statistical data as well as on the dynamical flow
structures could be analyzed in detail. Since the key features of
massively separated flows are assumed to be only weakly depen-
dent on Re, structure-identification methods could be applied to
the low-Re cases involved.

The remainder of the paper is organized as follows: In Section 2
the experimental setup is described. The computational methodol-
ogies and the numerical parameters pertaining to the simulations
reported later are given in Section 3. That includes a thorough anal-
ysis of the resolution issue for both grid types applied. Section 4
delivers cross-comparisons between the different numerical
results and the measured data. The influence of the Reynolds
numbers on statistical as well as structural features of the flow
field will be highlighted in Section 5. Conclusions are finally
presented in Section 6.
2. Experimental setup

A water channel has been set up to investigate the flow exper-
imentally (see Fig. 2). Water was chosen as its density is 800 times
higher than that of air and its kinematic viscosity is 13 times lower.
At the same model scale and Reynolds number the pressure in
water is 4.5 times higher than in air and therefore easier to deter-
mine. The corresponding ratio for the characteristic times is 13.
This issue contributes to higher accuracy especially in instanta-
neous flows [15]. The water was filtered, decalcified and
chlorinated to avoid disturbances from lime stone and biofilm on
the boundaries of the channel.

A well with a maximum discharge of 70 l/s pumps the water
from a reservoir through a pipe with a diffuser into an intake



Table 1
Spatial resolution Ds of the PIV measurements with respect to the Kolmogorov scale g
at three different streamwise locations

Re Ratio x/h = 0.5 x/h = 1.0 x/h = 6.0

5600 Ds=gmin 29.4 26.8 23.4
5600 Ds=gmean 17.2 17.5 16.0

10,595 Ds=gmin 47.5 23.3 37.7
10,595 Ds=gmean 27.8 28.3 25.8

Fig. 2. Experimental setup for the flow over periodic hills.
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reservoir that damps fluctuations. Several fixtures such as sieves,
air intake filters and barriers abate the structures evolving from
the entering jet. The rectangular channel which is 3:036h high
and 18h wide is directly attached to the intake reservoir that is
18h wide as well. The dimensions of the model relate to the hill
height h that was chosen to be 50 mm. The wider extend in the
spanwise direction in comparison to the computational domain
was chosen to accomplish homogeneity in the center part of the
channel [40]. The first part of the channel that is 10h in length is
followed by round flow straighteners that are approximately
0:44h in diameter and 10h long. A distance of 20h lies between
the flow straighteners and the foot of the first hill. In total 10 hills
were chosen to achieve periodicity in the streamwise direction
[40], whereas the measurement section is between hill seven and
eight. A rectangular section of 34h lies between the foot of hill
10 and the outlet reservoir. The water levels in the intake and out-
let reservoir determine the pressure gradient and with it the Rey-
nolds number.

The material mainly used is polyvinylchloride. Plexiglas and
glass were chosen for the cover and the walls of the channel at
the measurement section. The hills were cast from polyurethane
in monolithic blocks. The achieved degree of accuracy of the setup
is 6 0:01h.

To check the periodicity in the streamwise direction 19 holes
were drilled into the top cover of the channel at local positions
x=h ¼ 1:3 and x=h ¼ 6:3 (see Fig. 3). They are located one hill height
off the center plane in order not to disturb the PIV measurements
that were carried out in the center. For control of the homogeneity
in the spanwise direction the pressure was recorded at 14 locations
at local positions z=h ¼ 1:2 and z=h ¼ 7:8 at hill eight.

2.1. Pressure measurements

Two pressure cells with an effective range of 1000 Pa and a spe-
cific error of 0.1% were chosen to acquire the pressure drop and the
spanwise pressure distribution. The pressure was recorded rela-
tively to the one on hill crest eight. It was acquired at a sample rate
of 1000 Hz until the change in variance was less than 5� 10�5.
Instantaneous data could not be evaluated, nevertheless, the mean
values contributed to prove the comparability of the experiment to
the numerical simulations in terms of periodicity and homogeneity
[40]. At Re ¼ 5600 the pressure drops between consecutive hill
9 0
0

1

2

3.036

Hill 6 Hill 7

Pressure holes
Frame 1 Frame 

Frame 4 Fram

Fig. 3. Measurement section be
tops can be seen as constant from hill four on. The spanwise pres-
sure distribution on the leeward and windward side of the hill is
constant in the range of accuracy of the pressure cells as well.

2.2. Velocity measurements

The velocity measurements were conducted with a two-dimen-
sional PIV system. A 190 mJ NdYAG laser emitting 532 nm pulses
was used to generate a light sheet that was 0.7 mm wide. The
images were recorded with a 4 MPx CCD camera. They were
streamed through a RAID system so that 10,000 double frames
could be recorded at a frame rate of 7.25 f/s. The duration of the
experiment corresponds to 335 flow-through times for Re ¼ 5600
and 634 flow-through times for Re ¼ 10;595, where the flow-
through time is based on the distance between two consecutive
hills and the bulk velocity UB. Laser light reflections at the walls
were avoided by adjusting the camera position in the particular
optical axis. Therefore, six camera positions were necessary record-
ing partially overlapping frames with a length/height of 2048 px,
corresponding to 289 mm or 5.79 hill heights (see Fig. 3). The size
of the interrogation areas is 32� 32 pixels. They are overlapping
by half of their side length. The spatial resolution corresponds to
Ds ¼ 2:279 mm or 0:046 hill heights. Table 1 shows ratios of the
side length of the interrogation areas Ds and the smallest scales
in the DNS. The Kolmogorov scale gmin was taken from the DNS
using MGLET (see case 8 in Table 3) at Re ¼ 5600 and scaled by
Re3=4 for Re ¼ 10;595. Since the smallest Kolmogorov length is lo-
cally varying, an averaged value denoted gmean provides a more
reasonable estimation on the spatial resolution and thus this ratio
is added in Table 1.

2.2.1. Seeding particles
The purified water was seeded with hollow glass spheres. The

major advantage of these particles is their dispersion behavior in
water. They do not cluster and bright scattering leads to high-con-
trast images. The diameters of the spheres range from 8 lm to
12 lm, whereas their density varies from 0.1 g/cm3 to 1.5 g/cm3.
The Stokes number of the particles, defined as

St ¼ tp

tk
ð1Þ

with the Kolmogorov time scale

tk ¼
ffiffiffi
m
�

r
ð2Þ
9 18

Hill 8 Hill 9

2 Frame 3

e 5 Frame 6

tween hill seven and eight.



Table 2
Variation of the Reynolds number in the experiment

Nominal Re Remin Remax

5600 5184 5291
10,595 10,979 11,144
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and the particle time scale,

tp ¼
qp

qf

d2
p

18m
; ð3Þ

was calculated to check their behavior in the flow. The maximum
Stokes number as a result of �max, the maximum dissipation in the
flow field from the DNS using MGLET (see case 8 in Table 3) at
Re ¼ 5600, the greatest particle diameter dp and the highest ratio
of the particle’s and fluid’s density qp=qf is St ¼ 1:32� 10�2 � 1.
Hence, it can be assumed that the particles follow the flow within
a sufficiently short time scale.

2.2.2. PIV algorithm
The minimum intensity image was subtracted from the individ-

ual images before the pixel intensity was doubled. The wide inten-
sity distribution leads to high correlation peaks. For saving
computational time cross-correlations have been conducted in
Fourier space, using a so-called ‘Recursive Nyquist Grid’. The veloc-
ity vectors were considered as valid if the magnitude of the
streamwise component was within ½�0:75UB; 1:7UB� and the mag-
nitude of the vertical component was within ½�0:75UB; 0:75UB�.
Afterwards the vectors were median-filtered, while a deviation of
0:4UB from 3� 3 surrounding vectors was tolerated. Skipped vec-
tors were interpolated by means of 5� 5 surrounding vectors.
These vectors determine the initial shift of the second frame inter-
rogation areas for the second processing run. After the final step
about 1% of the vectors were interpolated.

The post-processing was conducted for data using first correla-
tion peak vectors only and for data including also the interpolated
vectors. A comparison of the two differently obtained results
showed no deviations.

2.2.3. Conduction of the experiments
The experimental conditions were controlled through simulta-

neous temperature and discharge measurements (by a magneto
inductive device, MID) at all times. Slight temperature variations
(6 0:4 K) during the individual experimental runs led to changes
in viscosity by less than 1.0%. The discharge was adjusted by a slide
valve that can only be handled with a certain accuracy. With these
boundary conditions, the Reynolds numbers achieved in the six
individual experimental runs for each Reynolds number varied
slightly as shown in Table 2.

The velocity fields of the six different frames were merged into
joint profiles through integrations of the velocity profiles in over-
lapping parts of the six frames. These factors were counterchecked
with the ratios of mean discharges recorded by the MID. The nor-
malization of the velocities and the Reynolds stresses was done
with respect to UB that was acquired from the integration of the
velocity profile at hill crest seven.

3. Numerical setup: methods and modeling approaches

3.1. Governing equations

For the DNS predictions of the present study we solve the three-
dimensional, time-dependent Navier–Stokes equations for an
incompressible fluid which reads in its dimensionless form:
oui

oxi
¼ 0; ð4Þ

oui

ot
þ oðuiujÞ

oxj
¼ � op

oxi
þ 1

Re
o2ui

ox2
j

: ð5Þ

Here, ui, p and Re are the Cartesian velocity components, the pres-
sure and the Reynolds number, respectively. In the LES predictions
only the large energy-carrying eddies are computed directly
whereas the influence of the small eddies has to be modeled by a
subgrid-scale model. Consequently, the governing equations (4)
and (5) have to be filtered in space leading to the so-called filtered
Navier–Stokes equations which are similar to the original set of
equations but contain the additional subgrid-scale stress tensor
[8,39]. Its task is to mimic the influence of the non-resolved
small-scale structures on the resolved large eddies.

3.2. Numerical methodologies

The numerical part of the present study relies on two com-
pletely independent codes based on either curvilinear body-fitted
grids with a colocated variable arrangement or Cartesian non-uni-
form grids using a staggered configuration. The objective is to pres-
ent highly reliable results obtained by carefully cross-checking
between the outcome of both numerical schemes and additional
experimental data. Afterwards the investigations concentrate on
the physical aspects of the flow considered.

In the following, both codes are described briefly. For a more de-
tailed description we refer to [5–8] for the code LESOCC and
[30,31,35] for the code MGLET. No attempt is made to explain all
advantages and drawbacks of each method which would go be-
yond the scope of the present paper.

3.2.1. Finite-volume code LESOCC
LESOCC solves the (filtered) Navier–Stokes equations based on a

three-dimensional finite-volume method for arbitrary
non-orthogonal and non-staggered block-structured grids (see,
e.g., Fig. 4). The spatial discretization of all fluxes is based on
central differences of second-order accuracy. Time advancement
is performed by a predictor–corrector scheme. A low-storage
multi-stage Runge–Kutta method (three substeps, second-order
accuracy) is applied for integrating the momentum equations in
the predictor step. Within the corrector step the Poisson equation
for the pressure correction is solved implicitly by the incomplete
LU decomposition method of Stone [46]. Explicit time marching
works well for DNS and LES with small time steps which are nec-
essary to resolve turbulence motion in time. In order to ensure
the coupling of pressure and velocity fields on non-staggered grids,
the momentum interpolation technique of Rhie and Chow [41] is
used. For modeling the non-resolvable subgrid scales, two different
models are implemented, namely the well-known Smagorinsky
model [45] with Van Driest damping near solid walls and the
dynamic approach with a Smagorinsky base model proposed by
Germano et al. [19] and modified by Lilly [26]. In order to stabilize
the dynamic model, averaging of the numerator and the denomi-
nator in the relation for the determination of the Smagorinsky
value [19,26] was carried out in the spanwise homogeneous
direction and also in time using a recursive digital low-pass filter
[5,8]. The code and the implemented SGS models were validated
on a variety of different test cases. For more information on this
issue, please refer to [5–8].
LESOCC is highly vectorized and additionally parallelized by do-

main decomposition (see Fig. 4) with explicit message-passing
based on MPI allowing efficient computations especially on vec-
tor-parallel machines and SMP clusters. The present simulations
were carried out on the SMP-system Hitachi SR8000-F1, applying
8 nodes (= 64 processors). Related to the usage of a single Hitachi



Fig. 5. Cross-section (x–y) of the Cartesian grid; every 15th grid line is shown.

x

y

Fig. 4. Cross-section (x–y) of the curvilinear grid; every fourth grid line is shown; thick lines depict block boundaries.
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node, the computing time per time step and control volume (CV) is
about 2� 10�6 s.

3.2.2. Finite-volume code MGLET
MGLET is based on a finite-volume formulation for non-uni-

form Cartesian grids with a staggered arrangement of the spatially
filtered variables (see, e.g., Fig. 5). The spatial discretization of the
convective and diffusive fluxes is based on second-order central
differences. The momentum equations are advanced in time by a
fractional time stepping using either an explicit second-order cen-
tral leapfrog scheme (case 51) or a third-order Runge–Kutta scheme
(cases 3 and 8). For the solution of the Poisson equation for the pres-
sure the ‘strongly implicit procedure’ (SIP) by Stone [46] is imple-
mented. For the representation of the hill geometry in the
Cartesian grid an immersed boundary technique is used. All Carte-
sian cells lying inside the body are excluded from the computation.
The excluded cells are determined by the intersection of the hill
geometry with the Cartesian cells. The geometry of the hills is repre-
sented by a triangle mesh. The immersed boundary technique pro-
vides a smooth representation of the body surface in the Cartesian
mesh by using third-order least squares interpolation for the inter-
face cells [35]. This method prevents instabilities which are present
in high-order Lagrange interpolation schemes. The code is used for
DNS and LES simulations. It has been shown by several authors that
second-order accuracy can be sufficient for DNS of flows provided
the grid resolution is sufficient [16,17,30].
MGLET is highly vectorized and parallelized by domain decom-

position using MPI. The simulations were performed on the Hitachi
SR8000-F1, whereupon the DNS at Re ¼ 2800 used 24 nodes and
the DNS at Re ¼ 5600 used 32 nodes. Related to the usage of a sin-
gle Hitachi node, the computing time per time step and CV is about
9:6� 10�7 s for the DNS at Re ¼ 5600. For more information on the
code, please refer to [31].
1 Reason: Runge–Kutta scheme not available at that time.
Hence, both codes are relying on the finite-volume method and
are second-order accurate in space and time. The intrinsic differ-
ence is the type of grids used and related to that the representation
of curved or oblique boundaries of the integration domain.

3.3. Boundary conditions and simulation parameters

Since the grid resolution in the vicinity of the wall is sufficient to
resolve the viscous sublayer (see Section 3.4), the no-slip and imper-
meability boundary condition is used at the wall in both codes. The
flow is assumed to be periodic in the streamwise direction and thus
periodic boundary conditions are applied. Similar to the turbulent
plane channel flow case the non-periodic behavior of the pressure
distribution can be accounted for by adding the mean pressure gra-
dient as a source term to the momentum equation in streamwise
direction. Two alternatives exist. Either the pressure gradient is
fixed which might lead to an unintentional mass flux in the config-
uration or the mass flux is kept constant which requires to adjust the
mean pressure gradient in time. Since a fixed Reynolds number can
only be guaranteed by a fixed mass flux, the second option is chosen
using the method proposed by Benocci and Pinelli [4].

Furthermore, the flow is assumed to be homogeneous in span-
wise direction and periodic boundary conditions are applied, too.
For that purpose the use of an adequate domain size in the span-
wise direction is of major importance in order to obtain reliable
and physically reasonable results. To assure this criterion the
two-point correlations in the spanwise direction have to vanish
in the half-width of the domain size chosen. Based on the investi-
gations by Mellen et al. [33] a spanwise extension of the computa-
tional domain of Lz ¼ 4:5h is used in all computations presented.
This extension of the domain was also used in the investigation
by Fröhlich et al. [18]. It represents a well-balanced compromise
between spanwise extension and spanwise resolution.

Table 3 summarizes the most important parameters of the sim-
ulations available. Ntot denotes the total number of grid points
used; the corresponding number of control volumes is slightly
lower. Although a direct comparison of the number of grid points
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Table 3
Parameters of the simulations performed

Case Re Simulation Ntot=106 Nspan Dt=10�3 Tavg Code

1 700 DNS 13.1 200 0.5 1581 LESOCC

2 1400 DNS 13.1 200 1.1 1249 LESOCC
3 1400 DNS 20.0 132 1.5 540 MGLET

4 2800 DNS 13.1 200 2.0 1249 LESOCC
5 2800 DNS 48.0 304 1.0 562 MGLET

6 5600 DNS 13.1 200 2.0 1214 LESOCC
7 5600 LES 13.1 200 2.0 1303 LESOCC
8 5600 DNS 231.0 404 1.0 343 MGLET

9 10,595 LES 13.1 200 1.8 1277 LESOCC
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used by LESOCC andMGLET in one x–y plane is not reasonable, at
least the number of points equidistantly distributed in the span-
wise direction, Nspan, can be compared.

The dimensionless time-step size Dt is also tabulated in Table 3,
where the time is normalized by the ratio of the hill height h and
the bulk velocity UB taken at the crest of the hill. To reduce statis-
tical errors due to insufficient sampling to a reasonable minimum,
the flow field was averaged in spanwise direction and in time over
a long period of DTavg which is also given in Table 3. Partially, DTavg

covers a time interval of about 140 flow-through times.

3.4. Resolution issues

In this section the choice of grids used in the present study will
be motivated. It is divided into two subsections for the different
numerical methods applied. Nevertheless, similar criteria are used
to determine the appropriate grid design for both numerical
schemes. Satisfying these criteria leads to different restrictions
for both methods which are pointed out in the following. We start
with the curvilinear grid design for the wall-resolved LES predic-
tion at the highest Reynolds number chosen, i.e., Re ¼ 10;595.

3.4.1. Curvilinear grids
For the simulation at Re ¼ 10;595 LESOCC applies a curvilinear

block-structured grid consisting of Ntot ¼ 13:1 million grid points
corresponding to a total of about 12.4 million control volumes.
The grid points are clustered in the vicinity of the lower wall, the
upper wall, and the region where the free shear layer appears. Be-
sides classical quality criteria such as orthogonality and smooth-
ness, two main issues motivated the distribution of the grid
points in space. These are the resolution of the near-wall region
and of the inner domain.

To evaluate the first concern, the most important quality crite-
rion is the distribution of non-dimensional yþ values defined by
yþ ¼ Dyccus=m where Dycc denotes the distance of the cell center
from the wall and us ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
describes the shear stress velocity.

Note that due to the cell-centered variable arrangement Dycc is half
of the corresponding cell height Dy. Fig. 6 depicts the yþ distribu-
tion along the lower wall at all Reynolds numbers considered. At
Re ¼ 10;595 the values are below 0.45 with a mean value of about
0.2 except at the windward side of the hill. Here, the largest values
of the wall shear stress are observed and the yþ value reaches its
maximum of about 1.2. Hence, the lower wall is well resolved.
Regarding the wall-normal resolution the grid satisfies the require-
ments of a wall-resolved LES prediction. Compared to [18] who
employed in their highly resolved simulations a curvilinear grid
with about 4.6 million CVs (196� 128� 186) especially the num-
ber of grid points in the wall-normal direction was increased to
220 in the present investigation. Furthermore, the simulations re-
solve not only the lower wall (the hills) in more detail but also re-
solve the upper wall by a DNS-like representation (yþ 6 0:95 at
Re ¼ 10;595). Thus in contrast to [18] the application of wall func-
tions is avoided. That allows to establish the influence of the reso-
lution of the upper wall on the results. To prove the enhanced
resolution, some numbers are provided. For instance, the cell sizes
at the hill crest, which is a key region for the periodic hill flow are
in the current case Dxcrest=h ¼ 0:026 and Dycrest=h ¼ 2:0� 10�3

whereas the corresponding values in [18] are Dxcrest=h ¼ 0:032
and Dycrest=h ¼ 3:3� 10�3, respectively. Owing to the increased
resolution in streamwise and spanwise direction the cell sizes ex-
pressed in wall units are below Dxþ ¼ 20 and Dzþ ¼ 9 and thus
lower than in [18] and substantially lower than the recommenda-
tions for wall-resolved LES given by Piomelli and Chasnov [38].
That also holds at the windward slope of the hill where the largest
shear stresses are found.

To evaluate the second concern, the resolution of the inner
region, it is reasonable to estimate the size of the smallest scales
given by the Kolmogorov length g ¼ ðm3=�Þ1=4. In order to deter-
mine this quantity within the wall-resolved LES prediction, the dis-
sipation tensor �ij was predicted and averaged in time and in
spanwise direction. It has to be mentioned that this procedure rep-
resents only a rough estimate of �ij since on the one hand the
diminutive SGS contribution is not included and on the other hand
the present grid might slightly underestimate the dissipation ten-
sor. Based on the dissipation rate � ¼ 1=2�ii and the kinematic vis-
cosity m of the fluid, g can be determined and compared to the filter
width D ¼ ðDx� Dy� DzÞ1=3 applied. In Fig. 7 profiles of D=g are
shown at three different locations, x=h ¼ 0:5, 1.0 and 6.0, respec-
tively. With respect to the estimation given by Pope [39] that the
maximum dissipation takes place at a length scale of about 24g,
these structures are resolved by at least 4–5 grid points at
x=h ¼ 0:5. At x=h ¼ 1:0 and 6.0 the maximum of D=g is about 6.3
and thus at least about four times smaller than the decisive scales
found by Pope [39]. Consequently, the grid allows to resolve a
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substantial part of the dissipation. Overall the values D=g are smal-
ler than in [18]. Especially, in the vicinity of the upper wall the sit-
uation is strongly improved.

As explained above the generation of the grid for LESOCC was
designed for the wall-resolved LES predictions at Re ¼ 10;595.
Regarding the lower Reynolds numbers considered, the grid was
not modified when Re was reduced. The reason is twofold. On
the one hand a grid which is sufficiently fine for a certain Reynolds
number should also be adequate for a lower Re. That is visible for
example in Fig. 6 which depicts the distributions of yþ along the
lower wall for all Re. The shear stress increases with decreasing
Reynolds numbers, but for fixed UB and h the viscosity also in-
creases with decreasing Re. As a result the average and maximum
yþ values are strongly reduced. Consequently, with decreasing Re
the resolution becomes better and better. Thus by applying the
same grid for the comparison of two Re, the effect of the grid is
completely excluded from the consideration. On the other hand
the intention was to perform DNS predictions for the lowest Rey-
nolds numbers considered, i.e., at Re ¼ 700, 1400, and 2800. Conse-
quently, the grid should be sufficiently fine for a DNS at Re ¼ 2800.
That is exactly the Reynolds number in the classical plane channel
flow predictions [25,34] who applied a grid of about 2 million
points. In the present case a six times finer grid is applied which
accounts for the more complex flow field and the lower accuracy
of the numerical method. Besides the criteria discussed in detail
above, a further evidence of the adequacy of the grid for DNS at
Re 6 2800 is provided by two simulations carried out at
Re ¼ 5600 (see Table 3). One simulation was done as a wall-re-
solved LES using the dynamic SGS model (case 7) and the other
was carried out without a subgrid-scale model (case 6). As will
be discussed below, only marginal deviations were found between
both cases. That is a clear hint that for the further reduced Rey-
nolds numbers Re 6 2800 the grid used delivers results which
can be regarded as DNS.

In accordance with [18] the simulation at Re ¼ 10;595 (case 9)
was performed with the dynamic Smagorinsky model. Owing to
the increased resolution the ratio of mt=m found in the present pre-
diction is smaller than in the previous study. Moreover, by apply-
ing two different SGS models which delivered strongly differing
eddy-viscosity values, Fröhlich et al. [18] have shown that the
influence of this deviation on the LES prediction is low if a very fine
grid is used as in the present case. That confirms that the present
simulation is not materially inferior to a DNS near the walls.

Besides, for some additional simulations at very low Reynolds
number between 100 and 700 to be discussed in Section 5.5, a
coarser grid with 164� 100� 64 CVs was used.
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Fig. 8. Properties of the grid used byMGLET for the DNS prediction at Re ¼ 5600 (case 8)
resulting distance dþ in wall units are plotted.
3.4.2. Cartesian grids
Also for the Cartesian grid used by MGLET the Kolmogorov

scale in the domain and the resolution at the wall based on the
wall shear stress are the most important criteria. Additional crite-
ria have been established for the immersed boundary method. A
first evaluation of these criteria has been obtained by preliminary
simulations with relatively coarse grids. The finally computed val-
ues then confirmed these resolution estimations [36].

For the DNS at Re ¼ 2800 (case 5) the grid is refined by geomet-
ric stretching in y-direction close to the hill surface where strong
gradients must be resolved. The stretching factors are kept below
3%. Due to the Cartesian grid the refinement in y-direction is not
exactly wall normal at all positions of the geometry. The grid spac-
ings in streamwise and spanwise direction are equidistant. The
simulation yields 48 million grid points.

For the DNS at Re ¼ 5600 (case 8) the mesh is additionally
stretched in x-direction. It is refined more closely according to
the average wall shear stress at the bottom wall. Fig. 8 shows a
plot of the grid spacings in x- and y-direction as well as the
wall-normal distance of the pressure cell center dþ from the
geometry. dþ is a measure to check the variation in the distance
of grid points, which exists in immersed boundaries. If the varia-
tion is bounded as observed in Fig. 8, the body surface is well re-
solved even when it is not grid aligned. Determining the grid
spacing and stretching is an iterative procedure in order to mini-
mize the amount of grid cells used, because for Cartesian grids
small grid spacing leads to a large number of grid points also in
regions where it is not needed. Therefore, it is important to reduce
the number of grid points by stretching at positions with low wall
shear stress and condensing the number of grid points at locations
with high wall shear stress. The wall-normal distance dþ should
remain at (or below) dþ � 1 over the complete domain (see Fig.
8). The stretching factor is also required to stay below 3% for
the DNS.

The resulting grid spacing with respect to the Kolmogorov
length scale D=g can be seen in Fig. 9 for the same three represen-
tative positions as discussed in the section about the curvilinear
grid. The inner domain is well resolved and the grid spacing does
not exceed 2.2 times the Kolmogorov length scale. This also re-
solves scales well beyond the maximum dissipation rate at 24g
as stated by Pope [39]. As it is known that the smallest scales exist
in the turbulent boundary layer, Fig. 9 shows that the grid stretch-
ing compensates for the decrease in Kolmogorov length scale. The
ratio D=g remains small at the wall.

Stretching and condensing the grid in x- and y-direction also
effects the aspect ratio of the cells. For the DNS prediction
(case 8) the aspect ratio Dx=Dy is depicted in Fig. 8. It varies over
5 6 7 8 9

x/h

aspect-ratio
Δx+

Δy+

d+

. Shown are grid spacings in wall units for x- and y-direction. Aspect ratio Dx=Dy and
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the domain length since the grid stretching in x- and y-direction is
adapted to the regions of high wall shear stress.

This leads to an optimization procedure for the grid generation
in Cartesian meshes with immersed boundaries. It consists of four
criteria: (i) Keeping the absolute wall-normal distance at dþ � 1,
(ii) the stretching ratio at � 3%, (iii) the aspect ratio below 9 and
(iv) assuring small grid spacings in relation to the Kolmogorov
length scale in the entire domain. Applying these criteria the
DNS grid (case 8) yields 231 million grid points.

With the same optimization procedure the grid for the DNS at
Re ¼ 1400 (case 3) is designed. Considering the lower Reynolds
number, less points are needed and the grid consists of 20 million
grid points.

4. Cross-comparison of results

4.1. Numerical results at Re = 2800 and 5600

Before investigating the flow physics and working out the influ-
ence of the Reynolds number, a cross-comparison of the results
achieved by the different methods is carried out. For that purpose
two different Reynolds numbers will be considered. According to
Table 3 two DNS predictions are available at Re ¼ 2800. Case 4
was performed by LESOCC using a curvilinear grid and case 5 is
based onMGLET using a Cartesian grid with about 3.5 times more
grid points. At Re ¼ 5600 case 7 is taken into account which
denotes a wall-resolved LES prediction on the curvilinear grid. On
the same grid a simulation without any SGS model was carried out
(see case 6 in Table 3). However, the deviations found between
cases 6 and 7 are marginal. This outcome is consistent with the
very low eddy viscosities observed in case 7 which demonstrate
that the resolution is nearly sufficient for a DNS (mt=m < 0:5 for
nearly all grid points of the instantaneous flow field). Nevertheless,
as a matter of confidence the wall-resolved LES prediction (case 7)
is preferred for the cross-comparison. These results are compared
Fig. 10. Streamlines of the time-averaged flow field p
with case 8 providing numerical data on an extremely fine Carte-
sian grid (231 million grid points) which based on the outcome
of Section 3.4 is beyond all doubt a well-resolved DNS. The cross-
comparison was also conducted for Re ¼ 1400. However, since no
new findings compared to the outcome presented in the following
sections resulted, for the sake of brevity this Reynolds number is
omitted here.

4.1.1. Global view of the flow
A global view of the flow from the DNS at Re ¼ 5600 is given by

the streamlines plot of the averaged flow field in Fig. 10 (case 8,
Table 3). The flow separates at the hill crest at x=h � 0:18 and forms
a large separation bubble reaching to x=h � 5:1. The separation in
this case is not only due to an adverse pressure gradient but also
the result of the strong streamwise curvature of the lower wall.

Fig. 11(a) displays the distribution of the averaged wall shear
stress sw on the lower wall for the cases mentioned above. At both
Re the flow separates shortly behind the hill crest where with
increasing Re the separation point is moving upstream as visible
in Fig. 22. Reattachment takes place about 5.1–5.4 hill heights be-
hind the crest where both codes predict a somewhat larger recircu-
lation length at Re ¼ 2800 compared with Re ¼ 5600. Fig. 22
displaying the separation and reattachment length predicted by
both codes clearly shows that the results are in excellent agree-
ment regarding these integral quantities (see Section 5 for a de-
tailed discussion of this issue).

Downstream of the reattachment region a small recirculation
zone just before the second hill at x=h � 7 is found which forms
in all simulations. Along the ascent the wall shear stress strongly
increases and reaches its maximum shortly before the hill crest.
As will be discussed in detail in Section 5, the peak values of sw

strongly increases with decreasing Re. The overall comparison of
sw in Fig. 11(a) shows on the one hand an excellent agreement be-
tween the results of both codes at Re ¼ 2800 and 5600 except at
the windward side of the hill. On the other hand the dependence
of the wall shear stress on the Reynolds number can be clearly
appreciated (see Section 5 for a detailed discussion).

The deviations between the predictions of LESOCC andMGLET
observed at the windward side are attributed to the immersed
boundary technique used on the Cartesian grid. It is much more
elaborated to reconstruct the wall shear stress for the immersed
boundary technique than for the curvilinear approach. The body
surface is not aligned with the Cartesian grid and velocity values
or derivatives of velocities, respectively, must be transformed into
the wall-aligned coordinate system. As mentioned in Section 3.4.2
there is a variation in the wall-normal distance when considering
the position of the velocity and pressure variables. In addition to
that the variables are staggered and must be interpolated onto
the same position. These two drawbacks, (i) the variation and (ii)
the staggered arrangement make it difficult to reconstruct the wall
shear stress along oblique walls accurately. However, the deviation
in the wall shear stress does not seem to be an indication for
redicted by DNS at Re ¼ 5600 (case 8, Table 3).
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deficiencies in the overall flow field. Velocity profiles (see Section
4.1.2) at the position of maximum wall shear stress agree well
for the Cartesian and the curvilinear grid.

Finally, Fig. 11(b) depicts the distribution of the averaged pres-
sure along the lower wall. As expected a plateau is observed in the
recirculation region which is longer at Re ¼ 2800 than at Re ¼ 5600
and thus consistent with the reattachment lengths found at both
Re. Similar to sw some small deviations between the simulations
by LESOCC and MGLET are found which are again mainly attrib-
uted to difference in the discretization especially along the inclined
slopes. However, since in incompressible flows the pressure distri-
bution shows an elliptic behavior, this discrepancy is already visi-
ble in front of the windward side of the hill. A second reason
causing some minor deviations with respect to the maximum of
the averaged pressure occurring at about x=h ¼ 7:8 for Re ¼ 5600
is given by the fact that one simulation represents an LES (case
7) whereas the other is a DNS (case 8). If the SGS model is switched
off as it was done in case 6, the agreement between the results of
LESOCC and MGLET (not shown here) is slightly better with re-
spect to the maximum, thus a small influence of the SGS model
is present in case 7.

4.1.2. Averaged velocity and Reynolds stress profiles
Fig. 12 shows exemplarily the distribution of the averaged

streamwise velocity hUi=UB at four different vertical positions in
the flow field, i.e., x=h ¼ 0:5, 2, 4, and 6. The first position is located
shortly after the separation line and crosses the strong shear layer;
the second profile is at the beginning of the flat floor and hence
within the main recirculation region. The third one is located near
the end of the recirculation bubble and finally the last is positioned
behind the main separation region in the reattached flow. At both
Re the agreement observed between the results obtained by the
different numerical methods is excellent. Only marginal deviations
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are found. For example, MGLET predicts slightly larger back-flow
velocities at x=h ¼ 4 for Re ¼ 2800 compared with the data of
LESOCC. This marginal deviation is still visible further downstream
at x=h ¼ 6 close to the lower wall. Besides that the profiles result-
ing from the two independent simulation techniques lie on top of
each other at both Re.

Fig. 13 depicts the distribution of the averaged normal velocity
hVi=UB at two locations in the middle and near the end of the recir-
culation bubble, i.e., x=h ¼ 2, and 4. To evaluate this quantity it has
to be taken into account that the normal velocity hVi is about a fac-
tor of 20 (x=h ¼ 2) or 10 (x=h ¼ 4) smaller than the streamwise
velocity hUi, respectively. At both Reynolds number the agreement
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between the predictions byMGLET and LESOCC is extremely good.
Small deviations are visible near the extrema, especially at x=h ¼ 4.
However, expressed in terms of the bulk velocity UB the maximum
deviation of hVi=UB is about 0.4% and hence acceptable.

Furthermore, Figs. 14–16 display the resolved Reynolds stresses
hu0u0i=U2

B, hv0v0i=U2
B, and hu0v0i=U2

B at the same locations as in Fig. 13.
The two main observations are as follows: First, a clear trend is
obvious concerning the variation of the Reynolds stresses with
varying Reynolds numbers. This issue will be addressed in detail
in Section 5. Second, a reasonable agreement is found between
the predictions based on the two different codes at both Re. Similar
to the normal velocity component hVi small deviations are visible
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near the extrema occurring in the free shear layer. Except in this
narrow region the normal stresses and the shear stress belonging
to a certain Re agree satisfactorily. The extremely well-resolved
prediction by MGLET at Re ¼ 5600 (case 8 in Table 3) shows the
largest peak values for hu0u0i=U2

B. The extrema of the normal stress
hv0v0i=U2

B as well as the shear stress hu0v0i=U2
B in the shear layer

(x=h ¼ 2) are also slightly larger than the results predicted by
LESOCC (case 7). The deviations found at this Reynolds number
can be explained by the fact that the last is an LES prediction
whereasMGLET provides DNS data. The modeled stress contribu-
tions, although known to be small, are not taken into account in
the LES data at Re ¼ 5600 in Figs. 14–16.

4.2. Numerical results at Re = 10,595

Furthermore, the wall-resolved LES prediction by LESOCC
(case 9) is compared with literature data [18]. For this comparison
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Fig. 17. Comparison of LES predictions by LESOCC at Re ¼ 10;595 (case 9 in Table 3) and
velocity hUi=UB; (b) normal velocity hVi=UB; (c) resolved turbulent kinetic energy hki=U
one should bear in mind that both simulations are based on similar
numerical techniques (second-order accurate in space and time
using curvilinear grids), but the main issues from Section 3.4 about
the resolution should be recapitulated. The present grid consists of
about three times more grid points than that used in [18] whereby
the increased number of points is especially applied in the wall-
normal direction to resolve also the upper wall and thus to avoid
wall functions.

Fig. 17 depicts a comparison at three different locations
(x=h ¼ 0:5, 2, and 6) showing averaged velocity profiles for hUi=UB

and hVi=UB as well as turbulent quantities such as the resolved tur-
bulent kinetic energy hki=U2

B ¼ 0:5ðhu0u0i þ hv0v0i þ hw0w0iÞ=U2
B and

the shear stress hu0v0i=U2
B. For the streamwise velocity component

hUi=UB it is obvious that a very good agreement can be observed
in the lower part of the computational domain close to the lower
wall. Solely in the vicinity of the upper wall deviations are visible
which can be assigned to the application of wall functions in [18].
0

0.5

1

1.5

2

2.5

3

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

0

0.5

1

1.5

2

2.5

3

-0.03 -0.02 -0.01 0

literature data [18] at three different locations (x=h ¼ 0:5, 2, and 6): (a) streamwise
2
B; (d) resolved shear stress hu0v0i=U2

B.



M. Breuer et al. / Computers & Fluids 38 (2009) 433–457 445
The streamwise velocity component hUi=UB is underpredicted here
and shows a non-smooth behavior. The resolution was quite coarse
in that case in [18] partially leading to wiggles in the solution as
obvious in Fig. 17(b) for the wall-normal velocity component
hVi=UB. The deficits resulting from the usage of wall functions at
the upper wall are also detectable in the turbulent quantities, e.g.,
the location of the peak value of hki=U2

B is shifted away from the
upper wall and the shear stress profile hu0v0i=U2

B strongly deviates
from the wall-resolved LES prediction (case 9) in this region. Since
the total mass flux through the channel was fixed, the underpredic-
tion of hUi=UB in the vicinity of the upper wall has a certain influence
on the overall flow development. Nevertheless, the agreement
between the present wall-resolved LES prediction (case 9) and
the literature data [18] is satisfactory and further validates the
former.

4.3. Comparison between experimental and numerical results at Re
= 5600 and 10,595

Finally, the experimental data at two different Reynolds num-
bers (Re ¼ 5600 and 10,595) are compared with the most accurate
predictions. At Re ¼ 5600 the DNS data achieved byMGLET (case 8
in Table 3) are taken into account, whereas at Re ¼ 10;595 the
highly resolved LES carried out by LESOCC (case 9 in Table 3) is
considered. Fig. 18 depicts averaged velocity profiles for hUi=UB

and hVi=UB at four streamwise positions of x=h ¼ 0:5, 2, 4, and 6.
Regarding the mean streamwise velocity hUi=UB the agreement be-
tween predictions and measurements is very good for both Rey-
nolds numbers. Minor deviations are solely visible in the region
of the shear layer where the measurements show slightly higher
velocities and in the post-reattachment region where the experi-
mental data exhibit a faster recovery. As observed before, the ver-
tical velocity component hVi=UB is about one order of magnitude
smaller than the streamwise component and thus more sensitive.
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hUi=UB at Re ¼ 5600; (b) hVi=UB at Re ¼ 5600; (c) hUi=UB at Re ¼ 10;595; (d) hVi=UB at
Nevertheless, the match between experiments and simulations is
fully satisfactory. The largest deviations are found at x=h ¼ 2,
whereas all other profiles exhibit a closer agreement. It should
be noted here that regarding the minor deviations found the same
trend is observed for both Re independent of the simulation meth-
od applied which indicates some systematic reason for this
behavior.

Furthermore, the measurements and predictions should be
compared with respect to the Reynolds stresses. In the following
the experimental data at Re ¼ 10;595 are taken into account and
compared to the LES prediction (case 9, see Table 3). For that pur-
pose, Fig. 19 displays the three measured components of the
Reynolds stress tensor at three different locations (x=h ¼ 0:5, 2,
and 6). Looking at the streamwise Reynolds stress (Fig. 19(a)),
the measured and predicted data are found to be in close agree-
ment at x=h ¼ 0:5 and 2. Solely in the post-reattachment region
at x=h ¼ 6 the measured peak values of hu0u0i=U2

B are at most 10%
higher than in the predictions. Nevertheless, the location of the
peak values and the distributions itself are in close accordance
with the predictions. The vertical Reynolds stress hv0v0i=U2

B

depicted in Fig. 19(b) shows even a better agreement than the
streamwise component. In case of the Reynolds shear stress
hu0v0i=U2

B (Fig. 19(c)) the deviations observed are of similar magni-
tude as for the vertical component. Nevertheless, the agreement
between the PIV measurement and the LES prediction is highly
satisfactory.

During the measurements it was found that the determination
of the stresses is getting more and more challenging with decreas-
ing Re. For the case of Re ¼ 5600 it leads to the outcome that the
profiles of the Reynolds stresses are similarly shaped, but the
experimentally determined stresses exceed the numerical ones
(case 8 in Table 3) systematically. Pump fluctuations were consid-
ered to be the reason for that, but high-pass filtering excluded this
cause.
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Fig. 20. Comparison of averaged streamwise velocity hUi=UB and streamlines at
two different Reynolds numbers (Re ¼ 700 and 10,595).
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In conclusion, the variety of cross-comparisons carried out have
demonstrated that the predicted data are reliable.

5. Influence of the Reynolds number

After the extensive validations carried out in the previous sec-
tions (i.e., CFD vs. CFD, CFD vs. literature, CFD vs. experiment), in
the following the flow over periodic hills will be investigated in
wide range of Reynolds numbers, i.e., 100 6 Re 6 10;595. Based
on this series of simulations, some peculiar features of the flow
field become evident. Here, the evolution and existence of physical
phenomena with respect to the Reynolds number is documented.
The investigation starts with an overview over the global flow field
based on averaged integral quantities such as the wall shear stress
and pressure distribution along the lower wall. Then the flow
development is studied based on the averaged flow field and the
distribution of the Reynolds stresses leading to an investigation
on the anisotropy of the flow. Furthermore, the length scales occur-
ring at varying Re will be analyzed. Finally, the instantaneous dy-
namic behavior of the flow will be considered which will shed
more light onto the flow structures and mechanism involved.

5.1. Global averaged properties

A global view of the flow for the lowest as well as the highest
Reynolds number investigated is given by the distribution of the
averaged streamwise velocity hUi=UB and the streamlines of the
averaged flow in Fig. 20. Obviously, the flow field does not change
dramatically within this Re range. The recirculation bubble at
Re ¼ 10;595 is smaller and slightly thinner than at Re ¼ 700. Fur-
thermore, the back-flow velocity increases with increasing Re. It
is noteworthy to recall that at Re ¼ 700 the plane channel flow
without constrictions would definitely be in the laminar regime
what is unambiguously not the case here.
Fig. 21(a) displays the distribution of the wall shear stress sw on
the lower wall for all Reynolds numbers. Based on this comparison
of the DNS and the well-resolved LES predictions, the dependence
of sw on Re can be clearly appreciated.

The first observation is that the peak values of sw strongly in-
crease with decreasing Re. That is obvious for the values found at
the hill crest (x=h ¼ 0), the minimum in the recirculation region
(x=h � 2—5), and the maximum at the shoulder of the second hill
(x=h � 8:6). The increase is monotonous but non-linear with Re.
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In order to understand this behavior, two contrary effects have to
be considered playing an important role. Based on the definition
of the wall shear stress sw ¼ loVparallel=on it is on the one hand
obvious that sw increases with decreasing Re since for fixed UB

and h the viscosity has to increase. On the other hand the velocity
gradient at the wall is decreasing when Re is reduced as will be
shown in the next section. Thus both opposite influences are
superimposed yielding this non-linear behavior.

The flow separates shortly behind the hill crest at all Re. As
shown in Fig. 22 the separation point moves upstream from
xS=h � 0:45 at Re ¼ 100 to xS=h � 0:3 at Re ¼ 700 and finally to
xS=h � 0:18 at Re ¼ 5600 but then settles down at a slightly larger
Re
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value of xS=h � 0:19 at Re ¼ 10;595. The undulations in the wall
shear stress at the beginning of the main recirculation bubble seem
to be geometry related and not much affected by Reynolds number
effects. This statement is supported by the observation that the
undulations are visible in all simulations using LESOCC but also
for the predictions based on MGLET (compare Fig. 11(a)).

Past the hill the main recirculation region follows with a nearly
constant pressure plateau in a large part of the separation bubble
(Fig. 21(b)). The reattachment position xR=h displayed in Fig. 22 de-
creases from Re ¼ 100 to 1400. Between Re ¼ 1400 and Re ¼ 2800 a
sudden change can be observed in Fig. 22. The reattachment length
xR=h increases again in this narrow Re-range. Afterwards, a clear
trend concerning the reattachment length is visible for Re P 2800
where xR=h decreases again with increasing Re. Since this phenom-
enon is consistently predicted by both independent codes, it is as-
sumed to be no numerical artifact. The corresponding values of
the reattachment lengths are xR=h ¼ 5:24;5:19;5:41;5:09, and
4.69 for Re ¼ 700 to 10,595, respectively. A similar behavior of the
reattachment length with increasing Re has been observed for the
backward-facing step flow by Armaly et al. [3]. This observation also
explains why with increasing Re there is no continuous trend visible
for the averaged pressure distribution depicted in Fig. 21(b).

Interestingly, a small region with positive averaged wall shear
stress is found within the main separation bubble at Re ¼ 1400
by both codes (case 2 and 3). That leads to a tiny counterclockwise
rotating structure in the region x=h � 0:6–0.8 at the falling edge of
the hill which is depicted in Fig. 23. Contrarily, at the higher Re
numbers sw is negative in the entire recirculation region and thus
no such tiny structure is detected. This special feature solely
observed at Re ¼ 1400 might be an explanation for the non-monot-
onous behavior of the reattachment length xR=h. However, the
interpretation has to be done with care, since one has to bear in
mind that the data presented are averaged in time and in homoge-
neous direction. Animations of the flow field at the low Reynolds
number cases have clearly shown that along the falling edge of
the hill intermittently attached flow regions can be detected which
explain the positive wall shear stress.

In the post-reattachment zone a tiny recirculation region is de-
tected in front of the second hill at x=h � 7:0—7:4. This feature is
found for all Re > 200 investigated, but again the largest extension
of this structure is observed at Re ¼ 2800 (see Fig. 24). On the
windward side of the second hill the flow is strongly accelerated
(see also Fig. 21(b) for the pressure distribution) leading to a dis-
tinctive peak of sw shortly before the hill crest at x=h � 8:6. The
peak value of sw significantly increases with decreasing Re. Down-
stream of that position the pressure gradient suddenly changes
from favorable to adverse yielding a strong drop of the wall shear
stress between x=h � 8:6—9:0 for all Re. At the hill crest, just before
Fig. 23. Tiny bubble with positive averaged wall shear stress found within the main
recirculation region at the falling edge of the hill at Re ¼ 1400 visualized by the
averaged streamwise velocity hUi=UB and streamlines.



Fig. 24. Tiny recirculation bubble in front of the second hill at Re ¼ 2800 visualized
by the averaged streamwise velocity hUi=UB and streamlines.
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the main separation, a tiny recirculation zone forms solely at the
highest Re. This phenomenon was not observed before. It is unli-
kely that it is an artifact because a clear downwards trend of the
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Fig. 25. Profiles of the streamwise velocity hUi=UB, the normal velocity hVi=UB, and the
x=h ¼ 0:05 for five different Reynolds numbers, predictions by LESOCC.
wall shear stress with increasing Re definitely supports this obser-
vation. Furthermore, an additional simulation at Re ¼ 22;400 (not
shown here) assists the decreasing sw at x=h � 0 and thus delivers
further evidence. It should be noted in this context that right on
the hill crest the boundary is flat.

An explanation for this tiny recirculation zone in the averaged
flow field can be found in the instantaneous data. Irregularly the
flow in the vicinity of the hill crest already separates at x=h � 8:8
generating additional eddies. These partially strong eddies are
transported downstream and affect the flow supposed to separate
on the curved wall. Therefore, also the separation on the leeward
side is strongly influenced by the flow phenomena appearing be-
fore or at the crest. Since this early separation before the hill crest
is only detected temporarily, it is hardly visible in the averaged
flow field.

5.2. Averaged velocity and Reynolds stress profiles

In this section certain positions in the flow will be investigated
more closely. For that purpose the mean flow velocities hUi=UB and
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hVi=UB as well as all non-zero Reynolds stresses are depicted at
four locations, i.e., x=h ¼ 0:05 (close to the hill crest), x=h ¼ 2 (in
the middle of the main recirculation region), x=h ¼ 4 (close to the
end of the main recirculation region), and x=h ¼ 8 (at the wind-
ward side of the second hill). The corresponding plots can be found
in Figs. 25–28.

It is visible at all positions shown that on both walls the velocity
gradients of hUi=UB increase with increasing Re and owing to a
fixed mass flow rate the maximum of the streamwise velocity is
decreasing (compare also Fig. 20). The change in the slope can be
seen most clearly at the upper wall. Furthermore, the back-flow
velocity in the middle of the main recirculation region (x=h ¼ 2) in-
creases with increasing Re and overall the recirculation bubble be-
comes slightly thinner. A clear trend is also obvious for hVi=UB. For
example at x=h ¼ 0:05 the maximum and at x=h ¼ 4 the minimum
significantly increase with decreasing Re, respectively.

Concerning the Reynolds stresses the following observations can
be made. At the beginning of the free shear layer at x=h ¼ 0:05 the
peak value of hu0u0i=U2

B is strongest at Re ¼ 10;595, whereas only
about half of the strength is found at Re ¼ 700. The fluctuations in
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Fig. 26. Profiles of the streamwise velocity hUi=UB, the normal velocity hVi=UB, and the
x=h ¼ 2:0 for five different Reynolds numbers, predictions by LESOCC.
wall-normal direction hv0v0i=U2
B are, however, of the same size for

all Re. Since the development of the free shear layer is shifted down-
stream for decreasing Re (see Fig. 29), similar peak values of
hu0u0i=U2

B and hu0v0i=U2
B are already observed at x=h ¼ 2 for all Re.

Thus these extrema appearing in the free shear layer are approxi-
mately independent of Re. Furthermore, with increasing Re the posi-
tions of the extrema are shifted closer to the lower wall which is in
accordance with the thinner recirculation region mentioned above.
The size of the peak values of the two other Reynolds stresses
hv0v0i=U2

B and hw0w0i=U2
B, however, decrease with decreasing Re.

Another clear trend can be seen for the free shear layer which
broadens with increasing Re. That is obvious in the distribution
of all Reynolds stresses depicted in Fig. 26 at x=h ¼ 2. Moreover,
the peak values of hu0u0i=U2

B and hw0w0i=U2
B in the vicinity of the

upper wall increase with increasing Re and move closer to the
walls as expected for a turbulent flow in the vicinity of a plane
wall.

Close to the end of the recirculation bubble at x=h ¼ 4 and past
the bubble at x=h ¼ 6 (not shown here) the situation is different.
Here, the peak values of hu0v0i=U2

B increase strongly with decreasing
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Re. Contrarily to x=h ¼ 2 the peak values of all normal Reynolds
stresses at x=h ¼ 4 and 6 also increase with decreasing Re. An
explanation for the opposite behavior found at the different loca-
tions can be given based on Fig. 29 which depicts exemplarily
the distribution of the turbulent kinetic energy for the lowest
and the highest Reynolds number investigated. This comparison
clearly shows that the peak values of hki=U2

B are of similar size at
both Re but shifted downstream for the low-Re case compared with
the high-Re case. Thus, lower fluctuations are found for example at
x=h ¼ 2 for Re ¼ 700 compared with Re ¼ 10;595, whereas further
downstream larger peak values exist for the low-Re flow.

In principle, the same trend as observed at x=h ¼ 4 and 6 can
also be seen at the windward slope of the second hill, i.e., at
x=h ¼ 8. The most interesting feature is here the observation that
the maximum of the spanwise Reynolds stress hw0w0i=U2

B in the
vicinity of the wall is nearly independent of the Reynolds number.
As discussed in [18] this phenomenon reveals to be the result of
the ‘splatting’ of large-scale eddies originating from the shear layer
and convected downstream towards the windward slope. Thus, the
distribution of hw0w0i=U2

B in Fig. 28(e) delivers a clear hint that the
same mechanism must play an important role also for the lowest
Reynolds number considered. Consequently, the phenomenon
has to be nearly independent of Re. That explains why the distribu-
tions of the mean velocities and Reynolds stresses are very similar
close to the windward slope of the second hill at x=h ¼ 8.

5.3. Anisotropy-invariant investigations

Lumley and Newman [27] and Lumley [28] found that the state
of turbulence can be characterized by the amount of anisotropy
that prevails in the flow. The anisotropy of a flow can be derived
from the Reynolds stresses sij ¼ �qhuiuji by subtracting the isotro-
pic part from sij and normalizing with sss ¼ �qhususi. This leads to
the non-dimensional anisotropy tensor

aij ¼
huiuji
2hki �

1
3

dij; ð6Þ

with the turbulent kinetic energy hki ¼ 1=2hususi and the Kronecker
delta dij. The tensor aij has three scalar invariants:
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Fig. 28. Profiles of the streamwise velocity hUi=UB, the normal velocity hVi=UB, and the resolved Reynolds stresses hu0u0i=U2
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B at position
x=h ¼ 8:0 for five different Reynolds numbers, predictions by LESOCC.
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aii ¼ 0; II ¼ aijaji; III ¼ aijajkaki: ð7Þ

By cross-plotting II and III, the state of turbulence in a flow can be
displayed with respect to its anisotropy. If the scalar invariants II
and III are evaluated for the case of a two-component turbulence
(one component of the velocity fluctuations is negligibly small com-
pared with the other two), this leads to II ¼ 2=9þ 2III. Doing the
same for the axisymmetric turbulence (two components are equal
in magnitude) yields II ¼ 3=2ð4=3jIIIjÞ2=3. Hence, if these relations
are cross-plotted as done in Fig. 30, they define a narrow region
called the anisotropy-invariant map. It was shown by Lumley [28]
that all physically realizable turbulence has to lie within this small
region. However, different states of turbulence are represented by
different parts of the map.

The boundaries of the invariant map describe the limiting states
of turbulence [24]. Isotropic turbulence is found at the lower cor-
ner point of the map (origin in Fig. 30) where II ¼ III ¼ 0, hence
the anisotropy is zero. The left branch of the map (III < 0) describes
axisymmetric turbulence in which one component of the velocity
fluctuations is smaller than the other two. In the literature, this
is sometimes referred to as ‘pancake’ type of turbulence. The sim-
plest example of this type is the passage of grid turbulence through
axisymmetric contraction. In contrast, the axisymmetric turbu-
lence on the right side (III > 0) is characterized by one fluctuating
component which dominates over the other two. This, for example,
holds for grid turbulence through axisymmetric expansion and is
called ‘cigar’-like turbulence. The remaining boundary line on top
of the map is the limiting case of a two-component turbulence as
it can be found in the direct vicinity of walls. Here, the wall-normal
component of the velocity fluctuations is tending towards zero,
leaving only the wall-parallel components. The corner point on
the left-hand side of the anisotropy-invariant map represents a
turbulence state in which only two fluctuating components of
equal intensity exist called two-component isotropic turbulence.
Finally, the right top end of the map describes one-component tur-
bulence, which consists merely of one fluctuating component.

In order to compare the lowest and the highest Reynolds num-
ber regarding the anisotropy of turbulence, Fig. 30 displays the
states of turbulence along four streamwise locations in the flow
field, namely x=h ¼ 2, 4, 6, and 8. The points at the upper and lower



Fig. 29. Comparison of turbulent kinetic energy hki=U2
B at two different Reynolds

numbers (Re ¼ 700 and 10,595).
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wall are denoted by ‘U’ and ‘L’, respectively. First, it has to be re-
marked that taking the entire flow into account all states indeed
lie within the invariant map (not shown here), as it is required
by realizability constraints. Second, as requested, the end points
of the streamwise profiles at both walls are found at the two-com-
ponent limit for both Re. At the upper wall the anisotropy is larger
for Re ¼ 10;595 than for Re ¼ 700 and thus the U-point at all loca-
tions considered is shifted to the right towards the one-component
limit. Contrarily, at the lower wall the L-point is shifted to the left
towards the two-component isotropic limit at Re ¼ 10;595 in com-
parison with Re ¼ 700. In the vicinity of the upper wall the well-
known behavior of the invariants for a plane channel flow can be
observed, i.e., progressing along the ‘axisymmetric expansion’ line
in the log-region towards the one-component limit and settling
down at the two-component limit at the wall. The main difference
between both Re is given by larger extrema found at Re ¼ 10;595.

When approaching the lower wall at x=h ¼ 2 a fundamental devi-
ation is found for both Re. In the high-Re case the approach occurs
mostly along the ‘axisymmetric contraction’ line (III < 0), whereas
for the low-Re case the approach is closer to the ‘axisymmetric
expansion’ line (III > 0). However, looking at the situation further
downstream (x=h ¼ 4) in the region of the main recirculation bubble,
the trace in the anisotropy-invariant map is similar for both Re.
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Fig. 31. Comparison of (instantaneous) vorticity component xz normal to the cross-section at 11 different Reynolds numbers (Re ¼ 100–10,595) at an arbitrarily chosen
instant in time; cases (a)–(f) were computed on a coarser grid as described in Section 5.4.
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Fig. 32. Spectra of the velocity component W close to the rising slope of the second
hill (x=h ¼ 8:3; y=h ¼ 0:72) for three different Reynolds numbers.
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Coming from the area of high anisotropy in the region of the one-
component limit (vicinity of the upper wall) with decreasing dis-
tance to the lower wall the trace in the invariant map first progresses
towards the isotropic limit, nestles against the ‘axisymmetric expan-
sion’ line and finally comes close to the ‘axisymmetric contraction’
line stopping at the two-component limit. As mentioned in [18] this
signifies a behavior very different from that in a log-law layer of an
attached flow. The corresponding end points are at (Re ¼ 10;595)
or very close to (Re ¼ 700) the left corner point of the anisotropy-
invariant map, i.e., the two-component isotropic turbulence.

Basically, the same observation can be also made at x=h ¼ 6.
Thus the qualitative disagreement found at x=h ¼ 2 is again result-
ing from the delayed development of the flow in streamwise direc-
tion at Re ¼ 700 compared with Re ¼ 10;595 as shown in Fig. 29.

At x=h ¼ 8 the states of turbulence deviate for the upper part of
the computational domain. That is the result of a much thicker
boundary layer for the low-Re case (see Fig. 28). However, close
to the windward side of the second hill where the flow is strongly
accelerated again, the two-component state at the wall itself is ap-
proached coming from the ‘axisymmetric expansion’ line (III > 0)
in both cases. That means that one component is dominating over
the other two. Reconsidering the profiles of the Reynolds stresses
at x=h ¼ 8 in Fig. 28, it is clear that the spanwise component
hw0w0i is substantially larger close to the wall than both other nor-
mal Reynolds stresses. That holds for all Re investigated and is a di-
rect result of the ‘splatting’ effect mentioned above. As shown in
[18] for Re ¼ 10;595, the pressure–strain correlation in the Rey-
nolds stress equation is the major source of gain for hw0w0i.

In summary, the anisotropy-invariant map demonstrates that
physically similar observations can be made for both Re. Partially,
the development is shifted downstream for the low-Re case as seen
before leading to disagreements, e.g., at x=h ¼ 2. Nevertheless, in
spite of more pronounced extrema observed for the high-Re case,
the states of turbulence are comparable at both Re.

5.4. Length scales in the flow field

Fig. 31 displays a snapshot of the instantaneous vorticity distri-
bution at an arbitrary instant in time at different Reynolds num-
bers including a series of Reynolds numbers not mentioned
before, i.e., Re ¼ 100, 200, 300, 400, 500, and 600. For these low-
Re cases it was not necessary to apply the very fine curvilinear grid
described in Section 3.4.1. Instead, a body-fitted grid with about 1
million CVs (164� 100� 64) was generated. Comparisons of re-
sults obtained on this grid and those of the fine grid at Re ¼ 700
served as an evidence that the coarse grid is sufficient to resolve
all flow features in this Re range.

The series depicted in Fig. 31 clearly demonstrates how the
scales in the flow field become smaller with increasing Re. Based
on the well-known relation g=L � Re�3=4 for the Kolmogorov length
g describing the smallest length scales in a turbulent flow, the ratio
between the length scales at two different Re can be estimated.
Assuming that the largest scale L restricted by the geometry stays
constant, the maximal ratio of the smallest length scales is about
20 for the instantaneous cases depicted in Fig. 31(b)–(k).

For the low-Re cases the shear layer developing past the hill is dis-
tinctively visible followed by the well-known Kelvin–Helmholtz
instability. With increasing Re the region where this instability is ob-
served first, moves upstream and comes very close to the hill crest.
Furthermore, a lot of small-scale vortices are visible in this area so
that the origin of the Kelvin–Helmholtz instability is hardly visible.

5.5. Instantaneous dynamics of the flow

Based on the outcome of Sections 5.1–5.4 which showed that
the important flow features are very similar in a wide range of
Reynolds numbers, the idea came up to investigate the dynamics
of the flow field first at low Reynolds numbers. The objective is
to study the dynamic behavior of the large-scale structures in the
flow which at low Re are not overwhelmed by small-scale eddies.
Thus structure-identification methods such as the k2 criterion by
Jeong and Hussain [23] can be applied to the low-Re cases involved.

As mentioned above, for that purpose additional simulations
were carried out at a series of Reynolds numbers in the range
100 6 Re 6 700 using a curvilinear grid with about 1 million CVs.
All simulations were started from scratch with two-dimensional
initial conditions defined by U=UB ¼ 1 (except at the walls) and
V=UB ¼W=UB ¼ 0.

At the lowest Reynolds number considered, i.e., Re ¼ 100, the
flow is found to reach steady-state after about 100 dimensionless
time units which is equivalent to about 11 flow-through times (see
Fig. 31(a)). The flow separates past the hill crest at about
x=h ¼ 0:45 and forms a large recirculation region which fills the low-
er portion of the entire constriction completely. Thus reattachment
is observed in this case at the rising edge of the second hill at about
x=h ¼ 7:73. No three-dimensional structures can be detected.

The situation changes completely when the Reynolds number is
increased to Re ¼ 200 (Fig. 31(b)). Now and for all other higher Re
the flow remains unsteady all the time. Up to about 140 dimen-
sionless time units the flow field at Re ¼ 200 is two-dimensional.
However, after this initial phase first three-dimensional flow struc-
tures develop which are detected by monitoring the spanwise
velocity component W. With increasing Re the initial two-dimen-
sional stage is shortened so that at Re ¼ 700 first three-dimen-
sional phenomena can be found at about 50 dimensionless time
units past the initial stage. The corresponding snapshots of the
instantaneous vorticity distribution at an arbitrary instant at all
low-Re cases considered are displayed in Fig. 31(a)–(g).

Fig. 32 displays one-dimensional spectra of the spanwise veloc-
ity component W recorded for a point close to the rising slope of
the second hill (x=h ¼ 8:3; y=h ¼ 0:72). The frequency f is normal-
ized by UB and h. Three different Reynolds numbers are taken into
account. At the lowest Reynolds number considered (Re ¼ 200) the
spectrum is already continuous as expected for a turbulent flow.
With increasing Re the spectrum extends towards higher frequen-
cies as visible at the change-over from Re ¼ 200 to 700. This trend
continues for the change-over from Re ¼ 700 to 10,595. Based on
this observation it is clear that the low-Re cases indeed represent
fully turbulent flow fields defined by a continuous spectrum. In
addition to the analysis of the statistical data carried out in Sec-
tions 5.1–5.4, this finding is an additional evidence why the main
flow features responsible for the dynamic behavior of the flow
are found to be similar.



Fig. 33. Iso-surface of k2 (second eigenvalue of S2 þX2, here k2 ¼ �0:1); criterion used for structure identification [23]; Re ¼ 200; six different phases in time representing
one flow-through time.

2 The DNS, LES and experimental data will be published on the ERCOFTAC database,
http://cfd.mace.manchester.ac.uk/ercoftac/.
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In order to identify characteristic structures in the flow, the
lowest Reynolds number at which the flow is found to be three-
dimensional and instantaneous is investigated based on structure-
identification methods [23]. For that purpose Fig. 33 depicts flow
structures at six instants in time which represents an interval of
one flow-through time. Three important flow features have to be
mentioned. On the one hand elongated streamwise structures (de-
noted A in Fig. 33(a)) inclined to the wall are detected in the vicinity
of the upper plane wall. They show a strong similarity to well-known
streaks and are convected downstream with the mean flow.

On the other hand a variety of structures highly elongated in the
streamwise direction (denoted B) are found close to the concave
wall in front of the second hill. They are either generated by an
instability due to the effect of the centrifugal forces first described
by Görtler [20] or the Craik–Leibovich type-2 instability [37]. In the
literature a controversy about the question which of these mecha-
nisms is responsible for the generation of these longitudinal vorti-
ces in sheared flows over rigid wavy walls still exists (see, e.g.
[18,21] and the references cited therein) with a tendency towards
the latter. In the present study these vortices are extremely long at
the low-Re case considered. They extend over the hill crest and ow-
ing to the periodic boundary conditions applied at least until half
of the succeeding constriction. Similar to the first kind of structures
a convective transport takes place in streamwise direction. In an
experimental investigation of a channel flow with a wavy wall
[21], similar streamwise structures were found above the hill crest
for both laminar and turbulent flows. Furthermore, Fröhlich et al.
[18] studied this flow phenomenon in great detail based on their
LES predictions of the periodic hill flow at Re ¼ 10;595. Although
the identification of the structures at this Re is much more difficult
than for the low-Re case taken into account here, the outcome also
supports the present findings. As expected and demonstrated in
Fig. 31, the length scales in the flow increase with decreasing Rey-
nolds number so that the extension of the structures especially in
streamwise direction are substantially smaller in [18] than for the
case depicted in Fig. 33.

Finally, structures denoted C developing in the region of the free
shear layer (see region of strong vorticity in Fig. 31(b)) have to be
mentioned. They are visible for instance in Fig. 33(e) and are
originally aligned and elongated in spanwise direction. Here, the
well-known Kelvin–Helmholtz instability is responsible for their
generation. With increasing Reynolds number these structures be-
come more and more obvious (see, e.g., vorticity plots in Fig.
31(d)–(f) for Re ¼ 400, 500, and 600). Animations of the flow field
over a longer time interval showed that these structures change
their orientation towards the streamwise direction when con-
vected downstream. This phenomenon is perceptible in Fig. 33(a)
which depicts similar structures at a later state, again denoted C.
At this stage oblique structures have already developed which
are mainly elongated in streamwise direction but are still inclined
in spanwise direction.

6. Conclusions

The paper presents a complementary numerical/experimental
investigation2 on the turbulent flow over a periodic arrangement

http://cfd.mace.manchester.ac.uk/ercoftac/
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of hills [33] at varying Reynolds numbers in the range
100 6 Re 6 10;595. A large number of different simulations using
DNS and LES on very fine grids were carried out applying two fully
independent numerical methods. Cross-comparison was done in
three steps. In a first step the results of both codes are compared
against each other. Then the predicted data are checked by cross-
comparison with data from the literature [18]. Based on both steps
the quality of the present predictions was carefully proven. Besides
this purely numerical assessment in a third step PIV measurements
were performed in a water channel involving 10 hills in streamwise
direction and a large aspect ratio. These experimental data place fur-
ther confidence on the results presented here.

The results achieved by this complementary study do not only
support prior findings [18] at Re ¼ 10;595. Furthermore, the series
of predictions for the broad range of Reynolds numbers considered
shed new light on the flow. In particular, the existence of a small
recirculation at the foot of the windward face of the hill was con-
firmed for Re ¼ 10;595 but also exists for 200 < Re < 10;595. Be-
sides, a tiny recirculation on the hill crest which has not been
discussed before was found which solely exists at the highest Re. This
was possible due to a new LES prediction with increased resolution
supported by a series of DNS at lower Reynolds numbers. These data
also allowed to investigate the behavior of the separation and reat-
tachment length as a function of the Reynolds number. The separa-
tion length past the hill crest was found to continuously decrease
with increasing Re until it reaches at minimum at Re ¼ 5600 and
slightly increases again for Re ¼ 10;595. Even more exciting is the
non-monotonous behavior of the reattachment length, which with
one exception also decreases with increasing Re but shows a local
minimum at Re ¼ 1400. Interestingly, a small counter-rotating flow
structure with positive averaged wall shear stress was detected
within the main recirculation region at the falling edge of the hill be-
tween x=h � 0:6 and 0:8. This phenomenon is exclusively visible at
this Reynolds number and provides an explanation for the variations
of the reattachment length.

Based on the analysis of the Reynolds stresses and the behavior
of the flow in the anisotropy-invariant map, it is obvious that the
development of the shear layer past the hill crest is delayed and
thus shifted downstream at Re ¼ 700 compared to Re ¼ 10;595.
If this downstream shift is taken into consideration, similar states
of turbulence can be found at both limiting Reynolds numbers with
more distinctive extrema observed for the high-Re case. The simi-
larity is especially pronounced for the ‘splatting’ phenomenon of
large-scale eddies originating from the shear layer and convected
downstream towards the windward slope as described in [18]. In
this flow region the spanwise velocity fluctuations hw0w0i=U2

B show
nearly the same peak values and distribution for all Re studied.
Nevertheless, in the remaining domain clear trends in the distribu-
tions of the mean velocities, Reynolds stresses, anisotropies and
the wall shear stresses were found. As mentioned above that led
for example to the observation of the tiny recirculation bubble at
the hill crest at Re ¼ 10;595.

Furthermore, the length scales appearing in the turbulent flow
field at varying Re and the dynamic behavior of the flow were
investigated taking even smaller Reynolds number into account.
At Re ¼ 100 the flow is found to be steady and two-dimensional.
The situation changes completely at Re P 200 for which a three-
dimensional instantaneous and chaotic flow field is observed.
The corresponding spectrum at this and any higher Reynolds num-
ber considered comprises a fully continuous spectrum which ex-
tends towards higher frequencies with increasing Re. Three main
flow structures can be detected already in the lowest-Re case.
These are streaky structures close to the upper wall, streamwise
vortices close to the concave wall in front of the second hill, and
vortical structures induced by the Kelvin–Helmholtz instability of
the free shear layer.
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