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INTRODUCTION

One of the principal problems associated with cal�
culation of turbulent flows using large eddy simulation
(LES) method is the necessity of setting unsteady
boundary conditions at the inflow boundaries of the
calculation region that will extremely accurately cor�
respond to the actual characteristics of turbulence at
these boundaries. Recently, this problem became
especially acute in connection with the active develop�
ment of the so�called zone approaches to the turbu�
lence description, based on the use of the LES only in
a limited flow region and the description of the other
region within the Reynolds averaged Navier–Stokes
(RANS) equations [1]. In this case, realistic turbulent
characteristics of the flow should be set at outflow
boundaries of the RANS region, which are simulta�
neously inflow boundaries of the LES region. Unfor�
tunately, an ideal solution of this problem is essentially
impossible, and the case in point can be only more or
less efficient approximate approaches, to whose devel�
opment a large number of studies is devoted. As a
result, a rather wide spectrum of methods were pro�
posed (see, e.g., review [2]), which can be divided into
three main groups.

In the first�group methods, the boundary condi�
tions for LES inflow boundaries are set using properly
scaled results of direct numerical simulation (DNS),
known for some certain “canonical” turbulent flows,
e.g., for the developed channel and flat�plate bound�
ary�layer flows at low Reynolds numbers. These meth�
ods are accurate; however, their applicability is
restricted to a narrow class of flows rather close to
canonical ones.

Methods that are conventionally referred to as tur�
bulence “recycling” belong to the second group.
Within these methods, the turbulent flow characteris�
tics at the LES inflow boundary are calculated by their
transfer from a certain section within the LES region.
In this case, changes in turbulence characteristics in
the interval from the inflow boundary to the recycling
section are taken into account based on available the�
oretical concepts on the evolution of averaged param�
eters of the downstream flow. In principle, recycling
methods yield quite realistic parameters of turbulent
pulsations at the inflow boundary of the LES region
and, in contrast to the first�group methods, are closed
(do not require any external information). However,
their applicability region is very limited, since the laws
of evolution of averaged parameters of turbulent
downstream flows are known only for relatively simple
cases. Furthermore, when using the recycling meth�
ods, a false resonant peak which appears in the turbu�
lence spectrum, whose frequency is related to the dis�
tance from the inflow section to the recycling section
(this disadvantage is of particular importance for
aeroacoustic applications).

Finally, the third group of methods is based on set�
ting an artificial (“synthetic”) turbulence in the inflow
section of the LES region; i.e., nonstationary velocity
pulsations that correspond to one extent or another to
actual turbulence in the section under consideration.
Generally speaking, these methods are more versatile
and universal than the methods of the first two groups;
however, their accuracy depends heavily on a particu�
lar method of synthetic turbulence generation. Analy�
sis of publications devoted to this problem evidences
that one of the most efficient (economic and accurate)
methods is the synthetic eddy method (SEM) pro�
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posed in [2, 3]. In particular, the SEM makes it possi�
ble to appreciably shorten the length of the intermedi�
ate region inevitably arising during the transition from
the synthetic to actual turbulence, which noticeably
improves the calculation accuracy in comparison with
other known methods of synthetic turbulence genera�
tion, e.g., the method of [4]. Nevertheless, when using
the SEM, this region remains rather extended (its
length is on the order of (8–10)δ, where δ is the char�
acteristic thickness of the boundary layer).

In this paper, based on an analysis of the results cal�
culated using the SEM, an advanced version of this
method is proposed, which allows significant shorten�
ing of the intermediate region.

The structure of the paper is as follows.
In Section 1, basic equations of the LES method

for a viscous incompressible liquid are formulated and
a numerical method used for calculations are pre�
sented. In Section 2, the SEM is briefly described; in
Section 3, the LES results obtained using this method
in calculating the developed turbulent plane�channel
and turbulent flat�plate boundary�layer flows are
described and analyzed. Finally, Section 4 presents the
proposed SEM modification and the results of the
solution of the same problems obtained using the
SEM. In the Conclusions, the main results of the
study are briefly formulated.

1. LES MEHOD EQUATIONS AND NUMERICAL 
METHOD USED FOR THEIR SOLUTION

Spatially filtered Navier–Stokes equations for an
incompressible liquid in combination with the linear
subgrid model of eddy viscosity can be written in the
form

where V and p are the filtered velocity vector and pres�
sure; ρ is the constant liquid density; and ν and νSGS

are the coefficients of molecular and subgrid kine�
matic viscosity, respectively. The latter is defined using
the simplest Smagorinsky algebraic model with the
Van Driest damping factor [5],

(1)

where  are components of the strain

rate tensor,  is the universal coordi�
nate of the wall law (τw is the friction stress on the
wall), Δ is the subgrid linear scale, κ = 0.41 is the Kar�
man constant, and CSmag is the Smagorinsky empirical
constant.

The subgrid linear scale entering Eq. (1) was
defined according to [6],

∇ V⋅ 0,=

∂V/dt V∇( )V+ 1
ρ
��∇p ∇ ν ν+ SGS( )∇V( ),⋅+–=

νSGS

=  min κy( )2 CSmagΔ( )2,( ) 1 y+
/25( )

3
–( )exp–[ ]S.

S 2SijSij Sij,=

y+ y τw/ρ/ν=

where dw is the distance from the point under consid�
eration to the streamlined solid surface, hmax = max(hx,
hy, hz) maximum grid spacing, hwn is the grid spacing
along the normal to the streamlined surface, and Cw =
0.15 is the empirical constant.

As shown in [6], such a definition of the subgrid
scale Δ makes it possible to describe near�wall and free
turbulent flows using the same Smagorinsky constant
in (1). In this study, this value was set equal to 0.2 (it
provides an accurate slope of the spectrum of decaying
homogeneous isotropic turbulence in the inertial
range of wavenumbers).

All calculations presented below are performed
using the NTS code described in [7]. To calculate
incompressible liquid flows, the method of [8] is used.
In this case, to approximate nonviscous and viscous
flows, the symmetric fourth�order�accuracy finite vol�
ume and symmetric second�order approximations,
respectively, were used in basic equations. Time inte�
gration is performed using the implicit second�order�
accuracy three�layer scheme with internal pseudotime
iterations. To solve systems of linear equations
obtained by discretizing basic differential equations,
the diagonally?dominant alternating direction
implicit (DDADI) is used.

2. SYNTHETIC EDDY METHOD

A detailed description and validation of the SEM
are contained in [2]; therefore, here we present only
details of implementation of the method.

Let the inflow boundary of the LES region on
which hydrodynamic value fluctuations (“synthetic
eddies”) should be created be a surface S given by a set
of points x = {x1, x2, …, xs}; the parallelepiped B with
volume VB incorporates this surface. The minimum
and maximum coordinates of parallelepiped points are

defined as  and  =

 where σ is the linear scale of syn�

thetic fluctuations, which defined below. Then the
velocity vector components at the inflow boundary are
calculated as

(2)

Here Ui are the components of the averaged flow
velocity at points of the inflow section, which are

assumed to be known, and  is the
number of generated synthetic eddies; the arrange�

ment xk and components  of the intensity vector of
individual “eddies” are independent random variables
equiprobably taking the values of +1 and –1.

Δ min max Cwdw Cwhmax hwn, ,( ) hmax,( ),=

xi min, xi σ x( )–[ ]
x S∈

min= xi max,

xi σ x( )+[ ]
x S∈

max ,
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N
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σ

x xk–( ).
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N
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N max VB/σ3( )=

εj
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The function  in (2), defining the velocity
distribution in the eddy is given by

where the one�dimensional distribution function f is
calculated by the formula

The quantity aij entering (2) means components of
the Cholesky decomposition of the Reynolds stress
tensor (as a result of its introduction, the Reynolds
stresses calculated by velocity fluctuations defined by
relation (4) coincide with their specified distribu�
tions).

Finally, the linear scale σ defining synthetic eddy
sizes is calculated by the formula

(3)

Here  is the maximum grid
spacing, lturb is the integral turbulence scale in the LES
inflow section, and δ is the characteristic flow macros�
cale (e.g., the boundary layer thickness).

In this study, the average velocity in the inflow sec�
tion is determined within the RANS using the Menter
k–ω SST model [9], in which the integral scale is

 kt is the kinetic energy of turbu�
lence, ωt is the specific velocity of its dissipation, and
Cμ = 0.09).

The time dependence of velocity field (2) is set as
follows. It is assumed that eddies are transferred within
the parallelepiped B with constant velocity Uc equal to
the average flow velocity in the inflow section. Thus,
for one time step Δt, the kth eddy moves to distance
UcΔt: xk(t + Δt) = xk(t) + UcΔt. If it appears beyond the
parallelepiped B boundary through the boundary F
during the calculation, an eddy with a new random

intensity vector  is placed at a random point
of the opposite parallelepiped boundary. At the first
time step, points xk are randomly uniformly distrib�
uted within parallelepiped B.

Thus, the SEM creates a stochastic velocity field
with given average velocity components Ui, Reynolds
stresses, and linear scales σ on the surface S.

3. RESULTS CALCULATED USING
THE SEM AND THEIR ANALYSIS

To estimate the accuracy of the unsteady boundary
conditions created by the SEM, LES calculations of
the developed plane�channel and flat�plate boundary�
layer flows were performed using this method. In this

fσ x xk–( )

fσ x xk–( ) VBσ
3– f xi xi

k–( )/σ( ),
i 1=

3

∏=

f x( ) 3/2( )1/2 1 x–( ) at x 1< ,

0   at x 1≥ .⎩
⎨
⎧

=

σ max min lturb κδ,( ) Δ,( ).=

Δ max Δx Δy Δz,,( )=

lturb kt
3/2

/Cμωt=

εj
k 1± .=

case, the results obtained using periodic boundary
conditions along the longitudinal coordinate and the
results of calculations by the turbulence recycling
method [10, 11] (as shown in these papers, this
method provides rather high calculation accuracy in
this case) were used as “references” for the first and
second problems, respectively.

3.1. Statement of the Problem of the Steady
Turbulent Plane�Channel Flow

This flow was calculated for the Reynolds number

constructed by the dynamic velocity  channel

half�width δ and viscosity ν, and  (the Rey�
nolds number constructed by the average�rate velocity
Ub is 7 × 103). The computational domain dimension
was 8δ × 2δ × 3δ in x, y, and z directions (along the flow,
along the normal to channel walls, and across the
flow), respectively.

In reference calculations, adhesion boundary con�
ditions V = 0 on channel walls were set; periodicity
conditions were applied to boundaries along longitu�
dinal and transverse coordinates. In the calculations,
the same boundary conditions were used for walls and
transverse boundaries of the region; conditions at the
inflow boundary were set using relations (2) and (3). In
this case, the average velocity profiles and turbulent
characteristics kt and ωt were determined from the pre�
liminary RANS calculation using the k–ω SST model
[9]. A constant pressure was set at the outflow bound�
ary of the computational domain.

Both calculations were performed on the same grid
uniform along x and z and a nonuniform (densifying in
the channel wall direction) grid with dimensions of 81 ×
84 × 41 (278964 nodes). The spacings of his grid in the
units of the wall rule are Δx+ = 40, Δz+ = 20,

 and  which a priori satisfies
the requirements imposed on grids for LES near�wall
flows.

3.2. Statement of the Problem of Turbulent
Flat�Plate Boundary�Layer Flow

This flow was calculated in the variation range of
the Reynolds numbers constructed by the momentum
loss thickness, Reθ = 1200–1700. The computational
domain size was 20δ0 × 4δ0 × 3δ0 (δ0 is the boundary
layer thickness in the inflow section) in the x, y, and z
directions, respectively. On the plate surface (y = 0),
the adhesion conditions V = 0 were used; at the region
boundaries along the z coordinate, periodicity condi�
tions were set; and, at the outflow boundary, the pres�
sure constancy condition was set.

To set the conditions at the inflow boundary, the
“recycling” method was used in reference calculations
[11]; in SEM calculations, the synthetic velocity field
constructed by the average velocity profiles and turbu�

τw/ρ,

Re
τ

400=

Δymin
+ 0.9= Δymax

+ 23,=
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lence characteristics obtained from the preliminary
RANS calculation was used.

As in the case of the plane channel, both calcula�
tions were performed on the same grid with dimension
257 × 56 × 78 (only 1 122 576 nodes) with densification
along the normal to the plate in a geometrical progres�
sion with an exponent of 1.1. In the units of the wall
law, the grid spacing is close to that of the grid used in

the calculation of the plane�channel flow, ,

, , and .

3.3. Calculation Results

Figures 1 and 2 compare the longitudinal distribu�
tions of the friction coefficient cf and the profiles of the
average velocity and Reynolds shear stresses in various

Δx+ 40≈

Δz+ 20≈ Δymin
+ 1.0≈ Δymax

+ 180≈

flow sections, obtained from reference calculations of
plane�channel and boundary�layer flows and from
similar SEM calculations.

We can see that, when using the SEM, the friction
coefficient in both cases initially significantly deviates
from the reference distribution and then gradually
approaches it. For the channel flow, the maximum devi�
ation is observed at distance (1–2)δ from the inflow sec�
tion and its value is 20–25%. The friction coefficient is
almost completely restored in the section x = 8δ. For
the boundary�layer flow, the cf distribution deviation on
the plate from the reference one reaches 30–35% and
decreases to 5% only in the section x = 10δ.

The same trends are observed in the behavior of
average velocity profiles (see Figs. 1 and 2): near the ini�
tial section, they differ significantly from the reference
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Fig. 4. Comparison of the instantaneous fields of velocity components in the inflow plane for (a) the “reference” calculation and
calculations using the (b) initial and (c) modified SEM methods: (1) u, (2) v, and (3) w.

profiles, and then gradually approach them; at x = 6δ,
both solutions become almost completely identical.

As for the shear stress profiles also shown in Figs. 1
and 2, the differences between these profiles calcu�
lated using the SEM and reference profiles remains
rather significant throughout the calculated region.

Thus, having set inflow boundary conditions for
the LES using the SEM, the intermediate region
length for averaged flow characteristics is (8 –10)δ; for
shear stresses, it is appreciably larger. This conclusion
is consistent with the conclusions of the authors of the
SEM [2, 3], which confirms the correctness of its
implementation in the present study. This also suggests
that, despite the noticeable superiority of the SEM
over other known synthetic methods, demonstrated in
[2], its error remains rather significant. The causes of
the insufficiently rapid restoration of the velocity field
are obviously associated with the differences between
the synthetic velocity field created by the SEM and the
“actual” field formed in the inflow section in reference
calculations. A comparison of these fields for the
plane�channel flow is shown in Figs. 3 and 4.

Analysis of the eddy fields shown in these figures in
various flow sections allows the following conclusions
to be drawn.

First, when using the SEM, eddy structures near
the inflow section (x/δ = 0) are isotropic, whereas, in
the reference calculation, they are significantly
extended along the flow near the wall (see Fig. 3). This
is quite natural, since the velocity fluctuation anisot�
ropy in the SEM almost is not considered.

Second, the eddy structure sizes in the calculation
using the SEM substantially exceed the corresponding
sizes of the “reference” field structures, and this dis�
crepancy is observed not only near solid walls, but also
at a distance from it (see Fig. 4). This synthetic field
defect is associated with the determination of the lin�
ear scale σ (7), which is based on the integral turbu�
lence scale lturb. For example, in the logarithmic region
of the boundary layer, the value of the latter varies in
the range ((2 –2.5)dw (dw is the distance to the wall),
while the quantity σ which is the radius of eddy struc�
tures generated by the SEM should not exceed dw.
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4. PROPOSED SEM MODIFICATION

To eliminate, or at least soften, the above SEM dis�
advantages, the following modification of this method
is proposed in this paper.

First, to exclude the possibility of generating too
large (with sizes exceeding the distance to the wall)
eddy structures, the additional factor of 0.5 is intro�
duced into the turbulence scale definition,

Second, to provide the desirable anisotropy of gen�
erated eddy structures, the longitudinal (in the flow
direction) size of local fluctuations near the wall
should exceed their transverse size; far from the wall,
both sizes should be almost identical. The simplest
method to achieve this is the introduction of two
scales, i.e., transverse σy and longitudinal σx ones,
which are defined as

(4)

For the flow in the boundary layer in which the inte�
gral scale lturb nonmonotonically varies with distance
from the wall (initially increases and then decreases),
the transverse scale definition slightly changes: until
reaching the lturb maximum point, it is calculated by for�
mula (4), and then it is set to be constant.

The effect of the described SEM modifications on
the channel flow eddy structure is illustrated in Figs. 3
and 4. It follows from the figures that these modifica�
tions indeed cause generation of more realistic eddies
near the walls: they are substantially anisotropic
(extended along the main flow) even in the immediate

lturb 0.5kt
3/2

/Cµωt.=

σy max min 0.5
kt

3/2

Cµω
�������� κδ,⎝ ⎠

⎛ ⎞ Δ,⎝ ⎠
⎛ ⎞ σx, max σy( ).= =

vicinity from the inflow section (Fig. 3). Furthermore,
when using the proposed modifications, the field
structure of synthetic velocity pulsations in the y–z
inflow plane is in appreciably better agreement with
the corresponding structure obtained in the reference
calculation than when using the initial SEM (Fig. 4).

The indicated quality improvements of the syn�
thetic turbulence generated on the LES inflow bound�
ary naturally lead to a significant improvement in the
LES accuracy. This is confirmed by Figs. 5–8, which
compare the results of calculations of two flows under
consideration obtained using the initial and modified
SEM versions. We can see that the proposed modifica�
tion leads to a significantly smaller deviation of the
calculated results from the reference ones and to a
decrease in the length of the intermediate region
within which these results are “restored” to the refer�
ence values.

For example, for the channel flow, the friction
coefficient is almost identical to the reference one (see
Fig. 5); for the boundary�layer flow, its deviation from
the reference calculation decreases from 30% to 10–
15% (see Fig. 6).

The average velocity profiles obtained using the
modified SEM (Figs. 7 and 8) almost do not differ
from the reference ones. An insignificant difference in
them is observed only in the section x/δ0 = 1 for the
boundary–layer flow. However, this is explained not so
much by disadvantages of the synthetic velocity field in
the inflow section as by the difference between the
RANS solution using the k–ω SST model and the LES
solution at the relatively low Reynolds number under
consideration. Finally, the computational accuracy of
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the shear stress profiles when using the proposed SEM
modification also appreciably increases.

CONCLUSIONS

By means of the example of two canonical turbu�
lent flows (steady plane�channel flow and boundary�
layer flat�plate flow), the capabilities of the synthetic
eddy method (SEM) developed in [2, 3] were analyzed
for setting inflow boundary conditions in calculating
turbulent flows using the LES method. Based on this
analysis, a modification of the method for determining
the linear scale of generated eddy structures, used in
the SEM, was proposed. It was shown that, in the cal�
culation of the flows under consideration, this modifi�
cation makes it possible to significantly decrease the
determination error of the averaged flow parameters
and to shorten the region in which the transition from
synthetic turbulence to the physically realistic field of
velocity pulsations occurs.
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Fig. 7. Development of the average velocity and Reynolds shear stress profiles for the channel flow: (circles) “reference” calcu�
lation, (1) original SEM, and (2) modified SEM.
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Fig. 8. Development of the average velocity and Reynolds shear stress profiles for the boundary�layer flow: (circles) “reference”
calculation, (1) original SEM, and (2) modified SEM.


