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The high-Reynolds-number behaviour of the canonical incompressible turbulent
channel flow is investigated through large-scale direct numerical simulation (DNS). A
Reynolds number is achieved (Reτ = h/δv ≈ 4000, where h is the channel half-height,
and δv is the viscous length scale) at which theory predicts the onset of phenomena
typical of the asymptotic Reynolds number regime, namely a sensible layer with
logarithmic variation of the mean velocity profile, and Kolmogorov scaling of the
velocity spectra. Although higher Reynolds numbers can be achieved in experiments,
the main advantage of the present DNS study is access to the full three-dimensional
flow field. Consistent with refined overlap arguments (Afzal & Yajnik, J. Fluid Mech.
vol. 61, 1973, pp. 23–31; Jiménez & Moser, Phil. Trans. R. Soc. Lond. A, vol. 365,
2007, pp. 715–732), our results suggest that the mean velocity profile never achieves
a truly logarithmic profile, and the logarithmic diagnostic function instead exhibits a
linear variation in the outer layer whose slope decreases with the Reynolds number.
The extrapolated value of the von Kármán constant is k ≈ 0.41. A near logarithmic
layer is observed in the spanwise velocity variance, as predicted by Townsend’s
attached eddy hypothesis, whereas the streamwise variance seems to exhibit a
shoulder, perhaps being still affected by low-Reynolds-number effects. Comparison
with previous DNS data at lower Reynolds number suggests enhancement of the
imprinting effect of outer-layer eddies onto the near-wall region. This mechanisms is
associated with excess turbulence kinetic energy production in the outer layer, and it
reflects in flow visualizations and in the streamwise velocity spectra, which exhibit
sharp peaks in the outer layer. Associated with the outer energy production site, we
find evidence of a Kolmogorov-like inertial range, limited to the spanwise spectral
density of u, whereas power laws with different exponents are found for the other
spectra. Finally, arguments are given to explain the ‘odd’ scaling of the streamwise
velocity variances, based on the analysis of the kinetic energy production term.
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1. Introduction

The study of turbulent flows over solid surfaces is of great importance in
engineering fluid dynamics, but it is also a subject of great intrinsic academic interest.
According to the common notion, turbulence in the near-wall layer is approximately
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universal, when quantities are scaled in wall units (namely, the friction velocity
uτ = √τw/ρ and the viscous length scale δv = ν/uτ ). On the other hand, far from
the wall, the correct length scale is the thickness of the wall layer (in channels, the
half-width h), whereas the relevant velocity scale is still uτ . Conventionally (Pope
2000), the inner layer is assumed to end at y/h≈ 0.1 and the outer layer to start at
y+ ≈ 50. Matching the mean velocity profile in the overlap region between the inner
and the outer layer (if any) yields the logarithmic law, which then only emerges if the
friction Reynolds number, Reτ = h/δv is of the order of thousands or so. The universal
nature of wall turbulence has been put into question by a series of studies which have
highlighted violations of the universal structure, the most evident being perhaps the
variation of the near-wall peak of the streamwise turbulence intensity, whose amplitude
is found to grow logarithmically with the friction Reynolds number (Klewicki & Falco
1990; DeGraaff & Eaton 2000; Marusic & Kunkel 2010). This behaviour has been
linked to the influence of outer-scaled eddies, which mainly contain wall-parallel,
inactive motions (Kim & Adrian 1999; Guala, Hommema & Adrian 2006; Hutchins
& Marusic 2007). The imprint of the outer-layer eddies becomes more evident as Reτ
is increased, eventually leading to violation of the pure wall scaling. Is is generally
believed that, to be able to probe high-Reynolds-number effects, friction Reynolds
numbers of the order of a few thousands should be explored, the consensus threshold
to observe an order-of-magnitude logarithmic variation of the mean velocity being
Reτ ≈ 4000 (Hutchins & Marusic 2007; Jiménez & Moser 2007).

Studying wall-bounded turbulent flows (boundary layers, channels, pipes) in
the moderate- to high-Reynolds-number regime is then a challenging task both
for experiments, because of the stringent requirements on the velocity probe
size (Hultmark, Bailey & Smits 2010), and even more for direct numerical simulation
(DNS). The latter offer the advantage of easier access to the full three-dimensional
flow fields, but it is seriously hampered by the need of huge computational resources.
Given the approximate proportionality between the Kolmogorov scale and the viscous
length scale at the wall (Pope 2000), it is found that the energetically relevant scales
of motion are resolved (at least in pseudo-spectral calculations) provided the spacings
in the wall-parallel directions are 1x+ ≈ 10, 1z+ ≈ 6 (the superscript + is hereafter
used to denote quantities made non-dimensional with uτ and δv). Further, to keep the
resolution constant in terms of Kolmogorov units, the number of collocation points in
the wall-normal direction shall grow as Re3/4

τ (Pope 2000), hence making up for a total
number of points growing as Re11/4

τ . This restriction makes the numerical simulation
of wall-bounded flows at high Reynolds number (in the operational sense given above)
quite challenging. To date, the highest Reynolds number attained in incompressible
boundary layer DNS is Reτ ≈ 2000 (Sillero, Jiménez & Moser 2013), for channel
flows Reτ ≈ 2000 (Hoyas & Jiménez 2006) and for pipe flows Reτ ≈ 1100 (Wu &
Moin 2008). Recently, Reτ ≈ 4000 was achieved in a compressible boundary-layer
DNS by the present authors (Pirozzoli & Bernardini 2013).

In this paper we present novel data from incompressible channel flow DNS, which
extends the Reynolds number envelope of numerical channels to Reτ ≈ 4000, thus
meeting the constraints for the flow to be regarded at least representative of the
high-Reynolds-number regime. The numerical methodology used for the purpose
is explained in § 2, and the flow statistics are presented in § 3, which includes a
discussion of the results. Final comments are given in § 4.
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Flow case Line style Reb Reτ Nx Ny Nz 1x+ 1z+ Tuτ/h

CH1 Dashed 20 063 550 1024 256 512 10.0 6.7 36.3
CH2 Dash-dot 39 600 999 2048 384 1024 9.2 6.1 26.9
CH3 Dash-dot-dot 87 067 2022 4096 768 2048 9.3 6.2 14.9
CH4 Solid 191 333 4079 8192 1024 4096 9.4 6.2 8.54

TABLE 1. List of parameters for turbulent channel flow cases. Here Reb = 2hub/ν is the
bulk Reynolds number and Reτ = huτ/ν is the friction Reynolds number. We use Nx, Ny
and Nz to denote the number of grid points in the streamwise, wall-normal and spanwise
directions and 1x+ and 1z+ to denote the grid spacings in the wall-parallel direction, in
wall units. The time averaging window T given in terms of eddy turnover times h/uτ .

2. Computational set-up

We solve the Navier–Stokes equations for a divergence-free velocity field, by
enforcing a time-varying pressure gradient to maintain a constant mass flow rate.
The equations are discretized in an orthogonal coordinate system (x, y, z denote the
streamwise, wall-normal and spanwise directions) using staggered central second-order
finite-difference approximations, which guarantee that kinetic energy is globally
conserved in the limit of inviscid flow. Time advancement is achieved by a hybrid
third-order low-storage Runge–Kutta algorithm (Bernardini & Pirozzoli 2009) coupled
with the second-order Crank–Nicolson scheme, combined in the fractional-step
procedure, whereby the convective and diffusive terms are treated explicitly and
implicitly, respectively. The Poisson equation for the pressure field, stemming from
the incompressibility condition, is efficiently solved using a direct solver based on
Fourier transform methods, as described by Kim & Moin (1985). A full description
of the numerical method is provided by Orlandi (2000).

It is worth noting that the computations are performed in a convective reference
frame for which the bulk velocity is zero, i.e. in which the net streamwise mass
flux is zero. In addition to allowing a larger computational time step, this expedient
minimizes the dispersion errors associated with the finite-difference discretization,
leading to results that are very close to those of spectral methods (Bernardini et al.
2013).

The DNS have been carried out in a (Lx × Ly × Lz) = (6πh × 2h × 2πh)
computational box, which is expected to be sufficiently long to accommodate the
largest outer-layer flow structures based on previous DNS results at lower Reynolds
number (Flores & Jimenez 2010). The mesh spacing in the wall-parallel directions
has been kept (nearly) the same in wall units for all simulations. A cosine stretching
function (y(ξ) = − cos(π(ξ + 1)/2), ξ = [−1; 1]) has been used to cluster points
in the wall-normal direction, in such a way that the first point off the wall lies
at 1y+w ≈ 0.01, and the maximum spacing in terms of local Kolmogorov units is
(1y/η)max ≈ 1.84, for all flow cases, where η = (ν3/ε)1/4, ε = 2νs′ijs′ij. Furthermore,
since η+w ≈ 1.5, the resolution in the wall-parallel directions is 1x/η. 6.5, 1z/η. 4.5
throughout. Details on the computational mesh and on the flow parameters for the
DNS are provided in table 1.

The simulations have been initiated with a laminar parabolic Poiseuille velocity
profile, with maximum velocity up at the centreline, and bulk velocity ub = 2/3 up.
After an initial transient, the pressure gradient starts to fluctuate about a nearly
constant value, at the end of which spatial averages of the instantaneous fields in
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FIGURE 1. (Colour online) Time evolution of streamwise velocity fluctuations at y+= 15
averaged in the wall-parallel plane, in inner units. The time origin is arbitrary. See table 1
for line legend.

wall-parallel planes are taken at time intervals of 1t=h/up. The time window used for
averaging, reported in table 1 in terms of the turnover periods for eddies of size h and
typical velocity uτ , is comparable to that used in previous studies (Hoyas & Jiménez
2006). The time history of the streamwise velocity variance at y+ = 15 (averaged in
the wall-parallel plane) is shown in figure 1. Note that, for the sake of comparison
among the flow cases, the same time window is used, with an arbitrary time origin.
The figure shows that the space averages oscillate in time with excursions of a few
per cent, at most, without significant drift, which suggests that time stationarity is
achieved in all computations.

The adequacy of the mesh used for the DNS has been verified through a grid
sensitivity study carried out at the lowest Reynolds number (CH1 flow case), for
reasons of computational feasibility. First, the influence of mesh resolution was
established by successively halving the spacing in both wall-parallel directions. The
results of the study are shown in figure 2 for the velocity variances (a) and the
vorticity variances (b), and compared with reference DNS data (Hoyas & Jiménez
2006), which were obtained with a pseudo-spectral code. Convergence of the flow
statistics is observed on the two finer meshes, whose results are very close to the
pseudo-spectral data. For the baseline mesh, the observed scatter is small for the
velocity fluctuations (less than 1% in the peak variance), and somewhat larger for the
vorticity variances (O(3 %) at most), consistent with the notion that the smallest flow
scales are most affected by mesh resolution effects, and possibly by the accuracy
of the flow solver (Bernardini et al. 2013). The mean velocity profiles (not shown)
exhibit scatter among the various curves by no more than 0.1 %. Overall, we believe
that these findings qualify second-order finite differences for DNS of wall-bounded
turbulence.

The effect of the computational box size has also been addressed, by performing
a DNS with the same spatial resolution as the CH1 flow case, on a computational
box with doubled length (Lx = 12πh). The velocity and vorticity statistics, shown in
figure 2 with dots, do not highlight any visible difference with the baseline CH1 data
(indeed, the curves are indistinguishable in the selected representation). A comparison
of the velocity spectra taken in the outer layer at y/h = 0.3 is provided in figure 3.
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FIGURE 2. (Colour online) Grid sensitivity study for the CH1 flow case: distribution of (a)
velocity variances (i=1, circles; i=2, diamonds; i=3, squares) and (b) vorticity variances
(i = 1, circles; i = 2, diamonds; i = 3, squares). Solid lines, baseline resolution (1x+ =
10.1, 1z+ = 6.7); dashed lines, doubled resolution (1x+ = 5.1, 1z+ = 3.4); dash-dotted
line, quadruple resolution (1x+= 2.5,1z+= 1.7); dots, long domain (Lx= 12πh). Symbols
indicate data from pseudo-spectral DNS at Reτ = 550 (del Álamo & Jiménez 2003).
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FIGURE 3. (Colour online) Effect of computational domain length on streamwise spectral
densities at y/h = 0.3 for flow case CH1: (a) spectra of u; (b) spectra of w. Square
symbols, Lx = 6πh; circles, Lx = 12πh.

Even though some energy is present at the longest resolved scales of motion, this is
still well represented on the baseline mesh, as indicated by the near coincidence of
the spectra on the two domains. The results of the grid-sensitivity study here carried
out for Reτ = 550 can be extrapolated to higher Reynolds numbers with some caution,
on the grounds that: (i) the near-wall turbulence scales in wall units, hence keeping
the same grid resolution in wall units is likely to preserve the quality of the results
in this region; (ii) the size of the outer-layer eddies scales on h, hence the size of
the computational box is kept the same for all DNS. Although the two assumptions
may be criticized, we believe that they are reasonably accurate for the present study,
in which the Reynolds number varies over less than a decade. As a final check, the
mean velocity profiles and the velocity variances are compared in figure 4 with the
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FIGURE 4. (Colour online) Comparison with pseudo-spectral DNS at Reτ = 2000:
distribution of (a) mean velocity and (b) velocity variances. Solid lines, CH3 data;
symbols, data from Hoyas & Jiménez (2006).

reference DNS data of Hoyas & Jiménez (2006) at Reτ = 2003, which shows a similar
level of error as at lower Reynolds number, granted the validity of the pseudo-spectral
data.

3. Results
3.1. Velocity statistics

The mean streamwise velocity profiles for the CH1–4 simulations are shown in
figure 5(a), together with recent experimental data (Schultz & Flack 2013), at
Reynolds numbers very close to those of the CH2–4 simulations. Figure 5 highlights
the onset of a layer with nearly logarithmic velocity variation, whose extent visually
increases with Reτ , and excellent agreement with experiments. Fitting the CH4 data
with a logarithmic velocity distribution u+= 1/k log y++C yields k≈ 0.386, C≈ 4.30,
which are not too far, but still sensibly different than the set of constants k = 0.37,
C= 3.7, quoted by Nagib & Chauhan (2008) to be appropriate for channel flow.

More refined information on the behaviour of the mean velocity profile can be
gained from inspection of the log-law diagnostic function

Ξ = y+ du+/dy+, (3.1)

shown in figure 5(b), whose constancy would imply the presence of a logarithmic
layer in the mean velocity profile. For reference, in figure 5(b) we also show the
trends of the defect-layer velocity profile derived by Townsend (1976, p. 147), under
the assumption of uniform eddy viscosity

u+CL − u+ = 1
2 Rs(1− y/h)2, (3.2)

which implies
Ξ = Rsy/h(1− y/h), (3.3)

where uCL is the mean velocity at the channel centreline, and Rs is a constant to be
determined empirically. Specifically, the curves drawn in figure 5(b) were obtained
using Rs = 14.
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FIGURE 5. (Colour online) Distribution of mean velocity (a) and log-law diagnostic
function (b), as defined in (3.1). In (a) the symbols indicate experimental data from
Schultz & Flack (2013), at Reτ = 1010 (squares), Reτ = 1956 (diamonds) and Reτ =
4048 (circles). In (b) the thick grey lines correspond to the generalized logarithmic
profiles defined in (3.4), for Reτ corresponding to the CH2-4 DNS; the thick dashed lines
correspond to the defect-layer profiles defined in (3.3); and the symbols correspond to the
DNS data of Hoyas & Jiménez (2006). See table 1 for nomenclature of the DNS data.

The figure supports universality of the mean velocity in inner units up to y+≈ 100,
where the diagnostic function attains a minimum, and the presence of a maximum
whose position scales in outer units, at y/h ≈ 0.5. Between those two extreme
regions the distribution varies with the Reynolds number. While for Reτ . 1000 the
diagnostic function connects the inner-layer minimum with the outer-layer maximum
monotonically, an inflection point forms for Reτ & 2000, which yields a region
of linear variation extending from y+ ≈ 600 to y/h ≈ 0.5, based on the present
data. Approximate linear variation of the diagnostic function was also observed by
Jiménez & Moser (2007), who, also based on the refined overlap arguments of
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Afzal & Yajnik (1973), proposed the following fit

Ξ = 1
k
+ α y

h
+ β

Reτ
, (3.4)

where α, β are adjustable constants and k is the equivalent of the von Kármán
constant. Based on the CH3 and CH4 DNS data (fitted in the range of linear
variation of Ξ ) we obtain k = 0.41, α = 1.15, β = 180, which are not too different
from the set of constants suggested by Jiménez & Moser (2007) (k = 0.40, α = 1,
β = 150). The resulting plots are shown as solid grey lines in figure 5(b), which
highlights the accuracy of the fit. The natural consequence of this behaviour is that
a genuine logarithmic layer would never be achieved at any finite Reynolds number.
Of course, at this stage we can only rely on the results of two DNS exhibiting
inversion of the slope of the diagnostic function, which is the symptom of the onset
of such generalized logarithmic layer. In this respect, available experiments are not
very useful as they typically yield significant scatter in the diagnostic function graph.
Hence, DNS at higher Reynolds number would be most welcome to confirm or refute
our findings, and possibly determine more accurate values of the log-law constants
in (3.4).

To verify possible alternatives to the logarithmic law (and its generalizations),
we have also considered the diagnostic function for power-law behaviour, namely
y+/u+(du+/dy+), whose constancy would imply power-law variation of the mean
velocity. The resulting distributions, not shown, have no significant plateau, which
leads us to believe that the logarithmic law is more robust than the power law, in
agreement with most current literature on the subject (Marusic et al. 2010).

Strictly related to the behaviour of the mean velocity profile is the friction law.
Early studies proposed approximations based on either log-law representations
of the whole mean velocity profile, such as the classical Prandtl’s smooth flow
formula (Durand 1935) √

2
Cf
= 1

k
log

(
Reb

2

√
Cf

2

)
+C− 1

k
, (3.5)

and power-law representations, such as Dean’s (Dean 1978)

Cf = 0.073Re−0.25
b , (3.6)

where Cf = 2τw/(ρu2
b), Reb = 2hub/ν, and ub =

∫ 2h
0 u dy/(2h) is the bulk velocity.

In figure 6 we show the DNS data together with experimental data from Schultz
& Flack (2013), compared with the semi-empirical curve-fits. The DNS data are
in overall good agreement with experiments, albeit with systematic deviations of
∼1 %, which are however within the range of experimental uncertainty (Schultz &
Flack 2013). It is also clear that Dean’s power-law fit rapidly loses accuracy at high
Reynolds number, and once a sensible log layer is formed, Prandtl’s formula is clearly
superior. We have tested Prandtl’s formula (as given in (3.5)), with two different
sets of log-law coefficients, those suggested by Nagib & Chauhan (2008), and those
derived from fitting the present DNS data. While the discrepancies are minor at low
Reynolds number (Reb . 2 × 105), where Nagib’s set of coefficients seems to be in
closer agreement with the available data, the reverse behaviour is found at higher
Reb, although no clear preference can be given to any set of constants.

The second-order velocity fluctuations statistics are shown in inner coordinates
in figure 7 and their peaks are shown in figure 8 as a function of Reτ . The main
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FIGURE 6. (Colour online) Comparison of skin friction coefficient with correlations and
experiments. Square symbols denote DNS from CH1–4 datasets, and circles experimental
data (Schultz & Flack 2013). The solid line indicates the friction law (3.5) with k= 0.386,
C= 4.30; the dashed line indicates the friction law (3.5) with k= 0.37, C= 3.7; the dot-
dashed line indicates Dean’s friction law (equation (3.6)).

impression gained from the figure is that the trends observed at lower Reynolds
number (Hoyas & Jiménez 2006) continue to hold. Specifically, the longitudinal
stress (a) shows an evident lack of universality in inner scaling, with fluctuation
amplitudes which increase nearly logarithmically with Reτ .

This behaviour has been attributed (Metzger & Klewicki 2001; del Álamo et al.
2004; Mathis, Hutchins & Marusic 2009) to the increasing influence of inactive
outer-layer modes on the near-wall dynamics. At this Reynolds number, no clear
range with logarithmic variation of the streamwise velocity variance is observed, as
predicted by the attached eddy hypothesis (Townsend 1961; Perry & Li 1990), and
for which experiments in boundary layers and pipes at much higher Reynolds number
suggest (Marusic et al. 2013)

u′2/u2
τ ≈ B1 − A1 log(y/h), (3.7)

with A1 ≈ 1.26, which we have tentatively sketched in the figure. The spanwise
velocity fluctuations (b) have a similar behaviour, with substantial dependence of the
inner-scaled intensities on Reτ . In this case, the formation of an extended logarithmic
layer is much clearer, and we find evidence for a universal scaling

w′2/u2
τ ≈ B3 − A3 log(y/h), (3.8)

with A3≈ 0.44, B3≈ 0.95, first found by Jiménez & Hoyas (2008) at lower Reτ (with
A3 ≈ 0.5, B3 ≈ 0.8). The wall-normal velocity fluctuations (c) exhibit universality in
inner scaling in a wider part of the near-wall region, but their peak still grows with
Reτ , even though the growth is sublogarithmic, and probably v′2 tends to saturate as
u′v′+ approaches the unit value (d). Furthermore, no evident plateau of v′2 (predicted
by the attached-eddy hypothesis) has formed at the Reynolds numbers of this study.
Overall, it should be noted that the agreement of the observed trends with experiments
is excellent, except perhaps for the peak of the wall-normal velocity, which is by the
way notoriously difficult to measure. The agreement with the similarity formulation
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FIGURE 7. (Colour online) Distribution of Reynolds stress components across the channel.
Open symbols indicate experimental data from Schultz & Flack (2013), at Reτ = 1010
(squares), Reτ = 1956 (diamonds), Reτ = 4048 (circles). The solid symbols indicate curve
fits obtained with the formulation of Marusic & Kunkel (2010). The dashed diagonal line
in (a) denotes the distribution given in (3.7) for B1 = 2.1 A1 = 1.26, Reτ = 4000, and
the dashed diagonal lines in (b) denote the distribution given in (3.8), with A3 = 0.44,
B3 = 0.95. Refer to table 1 for nomenclature of the DNS data.

for the streamwise turbulence intensity proposed by Marusic & Kunkel (2010), and
based on an extension of the attached eddy hypothesis, is also satisfactory.

Velocity variances are shown in (uτ , h) scaling in figure 9, to highlight outer-layer
trends. Clear collapse of the distributions is observed for the spanwise velocity
fluctuations, whereas violation of the uτ scaling is observed for the streamwise
velocity fluctuations. This discrepancy was first noticed by DeGraaff & Eaton (2000),
who attributed it to the effect of large-scale motions scaling with the velocity at the
edge of the wall layer (in this case, the mean centreline velocity). Later (del Álamo
et al. 2004), it became clear that the increase of u′ at fixed y/h is associated with
h-scaled outer-layer modes which are superposed onto the wall-attached modes, which
scale on uτ . Here (figure 9b), consistent with the findings of DeGraaff & Eaton (2000),
it is found that scaling u′ by uMIX = (uτuCL)

1/2 effectively removes this dependency,
and collapse of the streamwise velocity is observed for y/h& 0.2. Further explanation
for the observed scaling is provided later on. More ambiguous is the behaviour of
v′. Inspection of figure 9(c,d) shows than none of the two velocity scalings is able
to remove the Reτ dependency. However, as also found for the inner layer, the uτ
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FIGURE 8. (Colour online) Peak velocity variances as a function of Reτ , normalized by
their value at Reτ = 550. Symbols: u, circles; v, diamonds; w, squares; uv, gradients.

scaling seems to yield a flat asymptotic behaviour at the highest Reτ available, which
leads us to suspect that lack of universality is a low-Reynolds-number effect.

A visual impression of the effect of outer-scaled eddies on the near-wall layer
can be gained from figure 10, where we show velocity fluctuation contours in
wall-parallel planes at y+ ≈ 15, which corresponds to the position of the peak of
streamwise velocity fluctuations, and in the outer layer, at y/h = 0.3. A two-scale
organization is clearly visible at y+ = 15, with high- and low-momentum streaks
having width of the order of 100 wall units, which are part of the inner-layer
turbulence sustainment cycle (Smith & Metzler 1983; Jiménez & Pinelli 1999), and
superposed on them much larger streaks, having size of the order of h. While this
effect was previously noticed in DNS at lower Reynolds number (Hutchins & Marusic
2007), the scale separation and imprinting effects here are much more prominent. The
flow organization in cross-stream planes is monitored in figure 11, where we show
the contours of velocity fluctuations. It appears that the core flow is mainly organized
into ‘towering’ eddies which are attached to the wall, and which occupy the entire
half-channel in which they are generated. Significant correlation of u′ and v′ events
is observed (negative in the lower half of the channel, positive in the upper half),
which points to a non-negligible contribution of these eddies to the Reynolds stress
far from the walls. Less clear is the organization of w′. In the classical picture (del
Álamo & Jiménez 2006), outer-layer streaks (i.e. u′ events) are associated with rollers,
hence spanwise velocity fluctuations should have a quadrupolar distribution around
positive/negative u′ events. However, this pattern is not easy to discern in the flow
visualizations.

3.2. Velocity spectra
Spectral densities of the velocity fluctuations are shown in figure 12 for the inner
layer and in figure 13 for the outer layer. Note that wavelengths (λi = 2π/ki) are
shown on the horizontal axis, rather than the corresponding wavenumbers, to more
clearly highlight the eddies length scales. Further, the spectra are premultiplied
by the wavenumber, in order that equal areas correspond to equal energies in a
logarithmic plot. Consistent with expectations, inner scaling yields collapse of the
spectra at the smallest resolved scales of motion across the range of Reynolds
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FIGURE 9. (Colour online) Distribution of Reynolds stress components in outer scaling
(a,c,e) and mixed scaling (b,d,f ). See table 1 for nomenclature of the DNS data.

numbers, whereas outer scaling yields (approximate) collapse of the large scales. The
inner-layer spectra clearly show the presence of an energetic inner site corresponding
to the near-wall streak regeneration cycle. The typical length scales in the spanwise
direction remain very roughly universal, with λu

z ≈ λw
z ≈ 100δv, λvz ≈ 50δv, which in the

classical interpretation (Hamilton, Kim & Waleffe 1995), correspond to the near-wall
streaks/streamwise vortices system. Additional energy appears at large wavelengths in
the u and w spectra as Reτ increases, as a result of outer-layer imprinting processes.
A k−1

z range in the streamwise velocity spectra, whose presence is predicted by the
attached eddy hypothesis (Perry & Abell 1977; Nickels et al. 2005) at sufficiently
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FIGURE 10. Instantaneous streamwise velocity field in x–z planes at y+ = 15 (a), y/h=
0.3, for the CH4 dataset. Contour levels are shown for −1.77 6 u′/urms 6 1.77 (a), and
−1.96 6 u′/urms 6 1.96 (b), from dark to light shades. The inset in (a) shows a enlarged
view of a (1500+ × 1000+) box, to highlight viscous length scales.

high Reτ , is not clear based on the present data, even though its emergence might
be inferred based on the small plateau in the premultiplied spectra at Reτ = 4000.
The spanwise spectral densities (figure 13) exhibit a qualitatively similar organization
as the inner-layer spectra, but on a different scale. Specifically, the typical length
scales of the eddies are λu

z ≈ λw
z ≈ h, λvz ≈ h/2, which suggests that the large-scale

organization of the flow still consists of streaks coupled with rollers. It is noteworthy
that, while the spanwise spectra of v and w are relatively broad-banded, and tend to
be weakly affected by Reτ , those of u tend to exhibit a sharp peak as Reτ increases.
This feature is difficult to observe in experiments, which typically can only access
streamwise spectra upon use of Taylor’s hypothesis, and it is likely caused by the
activation of the outer-layer modes through a transient growth mechanism (del Álamo
& Jiménez 2006; Hutchins & Marusic 2007). This observation is further corroborated
from the uv co-spectra, shown in figure 13(d), which can be interpreted as spectra of
turbulence kinetic energy production (at a given off-wall distance), and which exhibit
the same spikes as the u spectra.

Clearer control on the structural flow changes with Reτ is obtained from figure 14,
where we show the distribution of the production-to-dissipation ratio, P/ε (where
P = −(du/dy)u′v′), and of the effective Taylor-scale Reynolds number, defined as
Reλ = λq/ωrms, with λ = q/ωrms (where q2 = u′iu′i is the velocity fluctuation variance,
and ωrms is the root-mean-square vorticity). The most noticeable feature of figure 14(a)
is the slow (but steady) increase of P/ε with Reτ in the outer layer, where it attains
a plateau. In fact, production exceeds dissipation for Reτ & 1000, by up to 8 % in
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FIGURE 11. Instantaneous cross-stream visualizations of u′ (a), v′ (b) and w′ (c) for the
CH4 dataset. Contour levels below −0.5uτ are shown in black and contour levels above
0.5uτ are shown in grey.

the CH4 simulation, over a significant fraction of the outer wall layer. This effect
was first speculated by Bradshaw (1967), and it was not noticed in early DNS at
limited Reynolds number (Mansour, Kim & Moin 1988). A little production excess
was observed to emerge in channel flows only at Reτ & 1000 (Hoyas & Jiménez
2008). From a physical standpoint, this finding implies that the excess turbulence
kinetic energy shall be transferred to the underlying layers through turbulent diffusion
(convection and pressure). Indeed, the only other term left in the kinetic energy budget
is viscous diffusion, which is negligible throughout the outer layer. This observation
points to the activation of top-down mechanisms of influence, in addition to the
conventional bottom-up scenario (Hunt & Morrison 2001). The Taylor Reynolds
number (figure 14b) is observed to increase in the outer layer, attaining values
which make it possible the formation of inertial ranges in the velocity spectra. The
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FIGURE 14. (Colour online) Distribution of (a) the production/dissipation ratio and (b)
the Taylor-scale Reynolds number.

presence of power-law ranges in the velocity spectra is verified in figure 15, where
data are shown in Kolmogorov units, at y/h = 0.3, which roughly coincides with
the peak location of Reλ. The spectra are reported in compensated form, in such
a way that a plateau corresponds to a power-law range, and compared with forced
isotropic turbulence data at Reλ = 142 (Jiménez et al. 1993), to verify the accuracy
in the prediction of the small scales of turbulence. The streamwise spectrum of u
highlights the presence of a decade with k−1.48 variation, which is significantly less
steep than Kolmogorov’s k−5/3 inertial spectrum. Similar deviations from the ideal
behaviour were observed in experiments of grid turbulence (Mydlarski & Warhaft
1996) and homogeneously sheared flow (Ferchichi & Tavoularis 2000), and attributed
to low-Reynolds number effects. In particular, Mydlarski & Warhaft (1996) proposed
a fit for the scaling exponent of the longitudinal spectra,

E(k)∼ k5/3−p, p= 5.25Re−2/3
λ . (3.9)

For Reλ ≈ 140 (which corresponds to the outer-layer value of the CH4 DNS), the
resulting exponent is comparable with our observations. Similar conclusions also hold
for the transverse spectra (v and w), which exhibit power-law behaviour with yet
smaller slope than the longitudinal ones. On the other hand, the spanwise spectra
of u show the formation of a narrow k−5/3 spectral band (limited to the CH4 case)
between the large-scale peak and the dissipative range, whereas power-law ranges
with exponents different than −5/3 are observed for v and w. This behaviour can
be tentatively ascribed to the fact that energy is mainly pumped into the streamwise
velocity mode through forcing acting at a discrete spanwise wavenumber, which
translates into the sharp spectral peak of u at λz ≈ h. Such forcing is not found
either in the other two velocity components, nor in any streamwise spectra. Since
Kolmogorov’s theory is based on the assumption that energy if fed into the system
only at the largest scales of motion, and on the assumption of scale separation with
the dissipative scales, it is then natural that Kolmogorov spectra are more easily
observed in the spanwise spectra of u, where production is concentrated. Again, we
point out that this type of analysis is difficult in experiments, and as a matter of
fact, clear Kolmogorov spectra were not observed in longitudinal spectra, even at
much higher Reynolds number (Saddoughi & Veeravalli 1994; McKeon & Morrison
2007). In this sense, the use of DNS at high Reynolds number can provide a useful
contribution.
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FIGURE 15. (Colour online) Compensated spectral densities of velocity fluctuations at
y/h = 0.3 in the streamwise direction (a,c,e) and in the spanwise direction (b,d,f ). The
exponent used for compensation (p) was determined for each case as the value for which
a wider plateau was observed in the CH4 flow case. The symbols indicate isotropic
turbulence data at Reλ= 142 (Jiménez et al. 1993). See table 1 for nomenclature of DNS
data.

3.3. Analysis of turbulence kinetic energy production
Further insight into the mechanisms of turbulence kinetic energy production can be
gained by considering the following decomposition of the kinetic energy production
term (Orlandi 1997)

P=−u′v′
du
dy
= u

(
w′ω′y − v′ω′z

)︸ ︷︷ ︸
PR

− d
dy

(
uu′v′

)
︸ ︷︷ ︸

PC

, (3.10)

whereby production it is split into a term (PR) containing the streamwise component
of the fluctuating Lamb vector ( p=−ω′ × u′), where ω′ = ∇ × u′, and which is an
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indicator of the rate of energy transfer to small scales (Rogers & Moin 1987), and a
term in divergence form (PC), which thus represents redistribution of kinetic energy
production across the channel. The two terms in (3.10) are shown in figure 16 in
inner and outer scaling. For that purpose, we note that the obvious inner normalization
for P is by u3

τ/δv. On the other hand, the natural outer normalization is by u3
τ/h,

assuming that uτ is the only legitimate outer-layer velocity scale. The near-wall
distributions, shown in figure 16(a), highlight close universality in wall units, and
confirm the pattern found in pipe flow (Orlandi 1997), with accumulation of kinetic
energy production associated with PC, which is partly balanced by the energy flux
from the large to the small scales. The opposite scenario holds away from the wall,
where PR is positive and PC is negative, the crossover occurring near the peak
position of the turbulent shear stress. In this case, the natural outer scaling is not
capable of collapsing the distributions across the Reτ range. We then consider an
alternative scaling, which should hold for PC, PR and P. We focus on PR, under
the following assumptions: (i) v′ ∼ w′ ∼ uτ , as confirmed from the analysis of the
velocity variances; (ii) ω′y ∼ ω′z ∼ uτ/δv, which is the generally accepted scaling for
the vorticity fluctuations, at least for y+ & 10 (e.g. Klewicki 2010); (iii) u ∼ uCL in
the outer layer. We then conclude

P∼ PC ∼ PR ∼ u2
τuCL/h. (3.11)

The scaling (3.11) is tested in figure 16(c), and shown to be much more accurate
than the standard outer scaling for y/h & 0.2. A consequence of this finding is that
the streamwise velocity fluctuations should scale as u′2 ∼ P/τ , where τ = h/uτ is the
typical eddy turnover time in the outer layer (Simens et al. 2009). Hence, it follows
that

u′2 ∼ uτuCL, (3.12)

which coincides with the mixed scaling proposed by DeGraaff & Eaton (2000), as
shown in figure 9(b). The reader may consult Marusic & Kunkel (2010) for alternative
explanation of the occurrence of mixed scaling.

4. Conclusions
Flow statistics from DNS at computationally high Reynolds number have been

collected and commented on. At the Reynolds number of the largest simulation
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(Reτ ≈ 4000) some effects which are believed to be typical of the asymptotic high-Re
regime start to manifest themselves.

A range with near logarithmic behaviour of the mean velocity is observed in the
mean velocity profiles. However, rather than being constant in the overlap layer,
the log-law indicator function exhibits a linear increase whose slope decreases with
the Reynolds number. A logarithmic layer would only be recovered in the infinite
Reynolds number limit, for which the appropriate value of the von Kármán constant
is k≈ 0.41. This behaviour would be consistent with refined overlap arguments (Afzal
& Yajnik 1973; Jiménez & Moser 2007), but data at yet higher Reτ are certainly
required to confirm its robustness.

Exploration of the high-Re regime also allows the verification of other theoretical
predictions, including the logarithmic decrement of the wall-parallel velocity variances
with the wall distance (Townsend 1976). While clear and extended logarithmic
ranges are observed for w′, the same does not hold for u′, which rather tends to
form a shoulder in the overlap layer, in the Reynolds number range under inquiry.
This finding is perhaps due to the need for yet higher Reynolds numbers. It is
also confirmed that, while v′, w′ and u′v′ scale with the friction velocity, as in
the standard theory (except for low-Re effects), u′ exhibits a mixed scaling, with
(uτuCL)

1/2 (DeGraaff & Eaton 2000). Justifications for the observed scaling are
proposed, based on dimensional analysis applied to the kinetic energy production
term. A limited spectral range with k−5/3 Kolmogorov scaling is only observed for
the outer-layer spanwise spectra of u′, whereas all other longitudinal and transverse
spectra exhibit power-law behaviour with less steep slope. This behaviour has been
related to the presence of a sharply peaked spectral forcing, associated with O(h)
outer-layer modes, whose excess energy is transferred to the underlying layers through
turbulent transport.

Flow statistics are available at the web page http://newton.dma.uniroma1.it/channel/,
with supporting documentation.
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